机械外文翻译中英文 机床 模具 机械 材料

机械外文翻译中英文 机床 模具 机械 材料
机械外文翻译中英文 机床 模具 机械 材料

附录

英文原文

Industrial Robot and its system’s components

There are a variety of definitions of the term robot. Depending on the definition used, the number of robot installations worldwide varies widely. Numerous single purpose muchines are used in manufacturing plants that might appear to be robots. These machines are hardwired to perform a single function and can not be reprogrammed to perform a different function. Such single-purpose machines do not fit the definition for industrial robots that is becoming widely accepted. This definition was developed by the robot Institute ofAmerica:

A robot is a reprogrammable muhifunctional manipulator designed to move material, parts, tools, or specialized devices through variable progranmled motions for the perfommnce of a variety of tasks.

Note that this definition cxmtalns the words reprograrnmable and multifunctional. It is these two characteristics that separate the true industrial robot from the various single-purpose machines used in modern manufacturing firms. The term"reprogrammable"implies two things:The robot operates aec~)rding to a written program, and this program can be rewritten to acconlmodatc a variety of manufacturing tasks.

The term"multifunctional"means that the robot can, through reprogramming and the use of different cnd-effectors, perform a number of different manufacturing tasks. Definitions written around these two critical characteristics are becoming the accepted definitions among manufacturing professionals.

The fimt articulated arm came about in 1951 and was used by the U.S. Atomic Energy Commission. In 1954, the first programmable robot was designed by George Devol. It was based on two important technologies:

(1) Numerical control (NC) technology.

(2) Remote manipulation technology.

Numerical control technology provided a foma of machine control ideally suited to robots.It allowed for the control of motion by stored programs. These programs contain data points to which the robot sequentially moves, timing signals to initiate action and to stop movement, and logic statements to allow for decision rfmking.

Remote manipulation technology allowed a machine to be more than just another NC machine. It allowed such machines to become robots that can perfoml a variety of manufactuing tasks in both inaccessible an unsafe environmonts. By mering these two technologies, Devol developed the first industrial robot, an unsophistieated programmable materials handling machine.

The first conunercially produced robot was developed in 1959. In 1962, the first industrial robot to be used oil a production llne was installed by General Motors Corporation. This robot was produced by Unimation. A major step forward in robot control occurred in 1973 with the development of the T-3 industrial robot by Cincinnati Milaeron. The T-3 robot was the first commercially produced

industrial robot controlled by a minicomputer.

Numerical control and remote manipulation technology prompted the wide scale development and use of industrial robots. But major technological developments do not take place simply because of such new capabilities. Something must provide the impetus for taking advantage of these capabilities. In the case of industrial robots, the impetus was economies.

The rapid inflation of wages experienced in the 1970s tremendously increased the personnel costs of manufacturing firms. At the same time, foreign competition became a serious problem for U. S. manufacturers. Foreign manufacturers who had under taken automation on a wide scale basis, such as those in Japan, began to gain an increasingly large share of the U.S. and world market for manufactured goods, particularly automobiles.

Through a variety of automation techniques, includicg robots, Japanese manufacturers, beginning in the 1970s, were able to produce better automobiles more cheaply than nonautomated U.S. manufacturers. Consequently, in order to survive, U.S. manufacturers were forced to consider any technological developments that could help improve productivity.

It became imperative to produce better produets at lower costs in order to be competitive with foreign manufacturers. Other factors such as the need to find better ways of performing dangerous marmfacturing tasks contributed to the development of industrial robots. However, the principal rationale has always been,and is still, improved productivity.

One of the principal advantages of robots is that they can be used in settings that are dangerous to humans. Welding and parting are examples of applications where rotmts can be dangerous to humans. Even though robots are closely asmciated with safety in the workplace, they can, in themselves, be dangerous.

Robots and robot cells must be carefully designed and configured so that they do not endanger human workers and other machines. Robot work envelops should be accurately calculated and a danger zone surroundting the envelop clearly marked off. Red flooring strips and barriers can be userd to keep human workers out of a robot’s work envelope.

Eren with such precautions it is still a good idea to have an automatic shutdown system in situations where robots are used. Such a system should should have the capacity to sense the need for an automatic shutdown of operations. Fault-tolerant computers and redunant systems can be installed to ensure proper shutdown of robotics systems to ensure a safe environment.

Industrial robots is the science of designing, building, and applying industrial robcts. What are robots? In the late 1970s the Robotic Industries Association defined a robot as” a manipulator, designed to move material, parts,tools or specialized devices through variable programmed motions for the performance of a variety of tasks". Although this definition does not directly include pick and place arms as robots, teleoperamrs and remotely controlled devicesare often referred to also as robots. The International Standards Organization(ISO) has a more lengthy definition of an industrial robot:

A machine formed by a mechanism including several degrees of freedom, often having tile appearanoa of one or several arms ending in a wrist capable of holding a tool or a workpiece or an inspection device. In particular, its control unit must use a memorizing device and .sometimes it can use sensing or adaptation appliances taking into account environment and circumstances. These multipurtpose machines are generally designed to carry out a repetitive function and can be adapted to other functions.

The RIA and ISO definitions both stress the muLtifunctional and programmable capabilities and, therefore, exclude special-purpose "hard automation" tools and equipment typically found in high volume production. Also excluded are manual remote manipulators, which are extensions of human hands for use in, for example, sterile, hot, or radioactive environments.

In Japan, the Japanese Industrial Robot Association (JIRA) classifies industrial robots by the method of input informatkm and the method of teaching:

1. Manual Manipulators. Manipulators directly activated by the operator.

2. Fixed-sequence Robot. Robot that once programmed for a given sequence of operations is not easily changed.

3. Variable-sequence Robot. Robot that can be programmed for a given sequence of operations and can easily be changed or reprogrammed.

4. Playback Robot. Robot that "memorizes" work sequences taught by a human being who physically leads the device through the intended work pattern; the robot can then create this sequence repetitively from memory.

5. Numerically Controlled (NC) Robot. Robot that operatas from and is controlled by digital data, as in the form of punched tape, cards, or digital switches; operates like a NC machine.

6. Intelligent Robot. Robot that uses sensory perception to evaluate its environment andcmake decisions and proceeds to operate accordingly.

The first-generation of robot systems was defined for the various robots with limited computer power. Their main intelligant functions include programming by showing a sequence of manipulation steps by a human operator using a teach box. Without any sensors, these robots require a prearranged and relatively fixed factory environment and, therefore, have limited use.

The second-generation of robot systems was enhanced by the addition of a computer processor. A major step in industrial robotics development was the integration of a computer with the industrial robot mechanism. This has provided real-time calculation of trajectory to smooth the motions of the end effector and integration of mine simple force and proximity sensors to obtain external signals.

The main applications of second generation robots include spot and arc welding, spray painting, and some assembly.

Third-generation robot systems incorporate multiple eomputer processors and multiple arms that can operate asynchronously to perform .several functions. Distributed hierarchical mmputer organization is preferred, because it can coordinate motions and interface with external sensors, other machines, and other robots and can communicate with other computers. These robots can already exhibit

intelligent behavior, including knowledge-based control and learning abilities.

Japan ranks as the world's top robot-producing and robot-using country, with more than 40% of the world's industrial robot installations. The reasons for this penetration are sociological-and technological factors that are unique to Japan: industrial robots brought productivity and quality gains in Japanese industry, coupled with improvements of the work enviromnent. These have perpetuated the social-demand for more robots as well as increased the expectation from this technology.

Current and emerging robot applications in industry can be categorized on the complexity and requirements of the job. They range from simple, low technolngy pick-and place operations through medium technology painting, some assembly and welding operations to high technology precision assembly and inspection operations.

Pick-and-place Operations The earliest applications of robots were in machine loading unloading, pick-and-place, and material transfer operations. Such robots typically were not servo controlled and worked with pneumatic or hydraulic power. The Icxad-carrying requirements were high, working in dirty or hazardous factory environments. Replacing unskilled human labor often in hazardous jobs, these robots had to be robust and low in initial and maintenance costs.

Painting and Welding Operations The next level in the sophistimtion of industrial robot applications was in spray painting, and spot and arc welding. These applications complemented or replaced certain skilled human labor. Often the justification was by eliminating dangerous environmental exposures. These applications often require tracking complex trajectories such as painting surface mntours, hence mrvo controlled "articulated or spherical robot structures were used.Lead-through teaching modes became commom, and sometimes sophisticated sensors are employed to maintain process consistency. Experience has shown that when properly selected and implemented, thase robotic applications usually lead to reduced overall manufacturing costs and improved product quality compared with manual method.

Assembly Operations The most advanced level of technology employing third-generation industrial robots is found in assembly. System repeatability is of utmost importance. End-of-arm tooling must be compliant, i.e., have both force and displacement control to adjust part insertions, which require that the robot actually "feel" its way along. This technology usually requires a measure of artificial intelligence. Assembly robots generally are electronically driven and operate in clean enviromnents. Assembly robots are expected to exceed further technology applications.

Other Applications Other typical applications of robots include inspection, quality control, and repair; processing such as laser and water jet cutting and drilling, riveting, and clean room operations; and applications in the wood, paper, and food-processing industries. As industrial robot technology and robot intelligence improve even further, additional applications may be justified effectively.

The components of a robot system could be discussed either from a physical point of view or from a systems point of view. Physically, we would divide the system into the robot, power system, and controller (computer). Likewise, the robot itself could be partitioned anthropomorphically into base, shoulder, elbow, wrist, gripper, and tool. Most of these terms require little explanation.

Consequently, we will describe the components of a robot system from the point of view of information transfer. That is, what infomtation or signal enters the component; what logical or arithmetic operation does the component perform; and what information or signal does the component produce? It is important to note that the same physical component may perform many different information proees.sirkg operations (e. g. , a central computerperforms many different calculations on different data). Likewise, two physically separate components may perform identical information operations ( e. g., the shoulder and elbow actuators both convert signals to motion in very similar ways).

Actuator Asmciated with each joint on the robot is an actuator which causes that joint to move. Typical actuators are electric motors and hydraulic cylinders. Typically, a robot system will contain six actuators, since six are required for full control of position and orientation. Many robot applications do not require this full flexibility, and consequently, robots are often built with five or fewer actuators.

Sensor To control an actuator, the computer must have infommtion regarding the position and possibly the velocity of the actuator. In this context, the term position refers to a displacement from some arbitrary zero reference point for that actuator. For example, in the case of a rotary actuator , "position" would really the angular position and be measured in radians.

Many types of sensors can provide indications of position and velocity. The various types of sensors require different mechanisms for interfacing to the computer. In addition, the industrial use of the manipulator requires that the interface be protected from the harsh electrical environment of the factory. Sources of electrical noise such as arc welders and large motors can easily makena digital system useless unless care is taken in design and construction of the interface.

Computation We could easily have labeled the computation module "computer,"as most of the Functions to be described are typically perfommd by digital computers. However, many of the Functions may be performed in dedicated custom hardware or networks of computers We will, thus, discuss the commputational component as if it were a simple computer, recognizing that tile need for real-time control may require special equipment and that some of this equipment may even be analog, although the current trend is toward fully digital systems.

One further note: We will tend to avoid the use of the term microprocessor in this book and simply say computer, although many current robot manufacturers use one or more microprocessors in their systems.

The computation component performs the following operations: Servo Given the current position and/or velocity of an actuator, determine the appropriate drive

signal to move that actuator toward its desired position. "This operation must be performed for eaeh actuator. Kinematics Given the current statel of the actuators (position and velocity ),determine the current state of the gripper. Conversely, given a desired state of the hand, determine the desired state for each actuator.

Dynamics Given knowledge of the loads on the arm (inertia, friction, gravity, acceleration), use this information to adjust the sorvo operation to achieve better performance.

Workplace Sensor Analysis Given knowledge of the task to be performed, determine appropriate robot motion commands. This nmy include analyzing a TV picture of the workplace or measuring and compensating for forces applied at the hand.

In addition to these easily identified co. mponents, there are also supervisory operations such as path planning and operator interaction.

中文翻译

工业机器人及其系统组成

有许多关于机器人这个术语的定义。采用不同的定义,全世界各地机器人的数量就会发生很大的变化。在制造T 厂中使用的许多单用途机器可能会看起来像机器人。这些机器是硬连线的,不能通过新编程的方式去完成不同的工作。这种单用途的机器不能满足被人们日益广泛接受的关于工业机器人的定义。这个定义是由美国机器人协会提出的:机器人是一个以改编程序的多功能操作器,被设计涉及用束按照预先编制的、能够完成多种作业的运动程序运送材料、零件、工具或者专用设备。

注意在这个定义中包含“可以改编程序”和“多功能”这两个词。正是这两个词将真证的机器人与现代制造工厂中使用的单一用途的机器区分开来。“可以改编程序”这个术语意味着两件事:机器人根据编写的程序工作,以及可以通过重新编写程序来适应不同种类的制造工作的需要。

“多功能”这个词意味着机器人能够通过编程和使用的末端执行机构,完成不同的制造上作。围绕着这两个关键特征所撰写的定义正在变成制造业的专业人员所接受的定义。

第一个带有活动关节的于臂于1951年被研制出来,由美国原子能委员会使用。在1954年,第一个可以编程的机器人由乔治·狄弗设计出来。它基于下面两项重要技术:

(1)数字控制(NC)技术;

(2)远程操作技术。

数字控制技术提供一种非常适合于机器人的机器控制技术。它可通过存储的程序对运动进行控制。这些程序包含机器人进行顺序运动的数据,开始运动和停止运动的时间控制信号,以及做出决定所需要的逻辑语句。

远程操作技术使得一台机器的性能超出一台数控机器。它可以使这种机器能够在不容易进入和不安全的环________徉_境中完成各种制造任务。通过融合上述两项技术,狄弗研制出第一个机器人,它是一个不复杂的,可以编程的物料运送机器人。

第-台商业化生产的机器人在1959年研制成功。通用汽车公司在1962 年安装了第一台用于生产线上的工业机器人,它是尤尼梅森公刊生产的。在1973 年,辛辛哪挺·米兰克朗公司研制出T 3 工业机器人,存机器人的控制方面取得r 较大的进展。T 3 机器人是第一台商业化生产的采用计算机控制的机器人。

数字控制技术和远程操作技术推动了大范围的机器人研制和应用。但是主要的技术进步并不仅仅是由于这些新的应用能力而产生的,而是必须由利用这些能力所得到的效益来

提供动力。就工业机器人而古,这个动力是经济件。

在 20 世纪70 年代中,丁资的快速增长大大增加了制造业的企业中的人工费用。与此同时,来自国外的竞争成为美国制造业所面临的一个严峻的考验。诸如日本等外国的制造厂家在广泛地应用自动化技术之后,其工业产晶,特别是汽车,在美国和世界市场上占据了日益增大的份额。

通过采用包括机器人在内的各种自动化技术,从20世纪70 年代开始,口本的制造厂家能够比没有采用自动化技术的美国制造厂家生产更好的和便宜的汽车。随后,为了生存,美国制造厂家被迫考虑采用任何能够提高生产率的技术。

为了与国外制造厂家进行竞争,必须以比较低的成术,生产出更好的产品。其他的因素,诸如寻找能够更好地完成带有危险性的制造工作的方式也促进了工业机器人的发展。但是,主要的理由一直是,而日.现在仍然是提高生产率。

机器人的一个主要优点是它们可以在对于人类来说是危险的位置上工作。采用机器人进行焊接和切断工作是比由人工来完成这些工作更安全的例子。尽管机器人与工作地点的安全密切相关,它们本身也可能是危险的。

应该仔细地设计和配置机器人和机器人单元,使它们不会伤害人类和其他机器。应该精确地算出机器人的工作范围,且在这个范围的四周清楚地标出危险区域。可以采用在地面上画出红颜色的线和设置障碍物以阻止工人进入机器人的工作范围。即使有了这些预防措施,在使用机器人的场地中设置一个自动停止工作的系统仍然不失为一个好主意。机器人的这个系统应该具有测出是否有需要自动停止工作的要求的能力。为了保证有一个安全的环境,应当安装容错计算机和冗余系统,保证在适当的时候停止机器人的工作。

工业机器人是一门设计、建筑、应用工业机器人的科学。什么是机器人呢?在20 世纪70 年代,机器人工业协会把机器人定义为“设计成可通过为实现各种各样任务而编制好的运动来移动材料、零件、工具或特别设备的操作者”。尽管这种定义没有直接把抓—放型手臂算作机器人,但远距离操纵装置和遥控装置通常被认为是机器人。国际标准组织有一个更合法的工业机器人的定义:

一种含有多层次自由度的机器,通常用一条或多条手腕的末端来握住一个工具或一个部件或检测装置。特别地,它的控制单元必须用一个记忆设备,考虑到环境和条件等因素通常可用检测或适应装置,这些多用途的机器通常设计为实现重复性功能,同时也可适用于其他功能。机器人工业协会和国际标准组织都强调多功能和程序化的功能。因此,包括特殊用途“硬自动化”工具和装置特别地出现在高档产品。同时也包括远途手动操作者,它们是人类工作在如枯燥无味的、热的、辐射性的环境里应用的延伸。

在日本,日本工业机器人协会根据输入信息和示教方法的不同把工业机器人分为:

1、手动操作者操作者直接由操作人操纵。

2、固定顺序机器人这类机器人一旦被给定某执行顺序的程序,就不容易改变。

3、可边顺序机器人可以对这类机器人进行编程,使其按一定的顺序工作,可以很容易地改变这种顺序或者重新编程。

4、再现式机器人这种机器人的记忆工作顺序由人的示教,他通过已定的工作类型亲自引导设备来实现。这种机器人可以由记忆重复实现这种顺序。

5、数字控制机器人这种机器人由数字化数据来操作和控制,这些数字数据有针孔带、记忆卡、或数字表等形式,像一台数字控制机器操作。

6、智能机器人这种机器人采用感官知觉对它周围的环境进行评价和做出决定,并据此进行工作。第一代机器人系统被定义为许多带有有限计算机能力的机器人,他们主要的智力功能包括通过由操作人员用一个示教盒来显示出一系列的操作步骤的程序。没有任何传感器,这些机器人需要一个预先设计,直接与工厂相应的环境。因此,其应用的场所很

有限。

第二代机器人系统的功能由于增加一个计算机程序而加强。其在工业机器人发展中的关键步骤是将一台计算机与工业机器机构相集合。这样就提供实时的轨迹计算。可以使末端作用器的运动更为平滑,并且集成了某些简单的力传感器和接近式传感器以获取外部信号。第二代机器人的主要应用包括勘测、焊接、喷漆和其它一些的组合。

第三代机器人系统包括多层次计算机程序和多层次手臂,它能自如地实现多种功能。分配多层次计算机组织为首选,因为它能协调各种运动并且可以与外部传感器、其他机构和其他机器人相联接,并且可以和其他计算机相联系。这些机器人可展示智力行为,包括在知识基础上的控制和学习能力。

日本作为世界顶尖的机器人制造和使用的国家,拥有高达40%以上的世界工业机器人装置。其原因为这种集中是由于日本独特的社会和科技因素:工业机器人在日本工业中带来了高生产率和高质量产品,并与其工业的环境的提高相匹配,这些因素使得社对更多的机器人的需求被无限期地延续下去和增加了人们对这种技术的期望。现行的和正在开发的机器人在工业上的应用可由其复杂程度和工作的需求的不同而分类。它们可分为从通过中介技术图案简单的、低技术抓—放型操作,一些组合和焊接操作到高技术高精度的组合检测操作。

抓—放型操作机器人最早的应用为在机器装、卸载,抓、放和材料转运的操作。这

种机器人典型地不是传输控制和用压缩气体或气动能量来工作。它的载荷运作要求很高,工作在有脏又危险的工厂环境中。这些机器人通常被用来替代从事危险性工作的非技术工

人,它们必须坚固而且具有较低的使用费用和维护费用。

喷漆和焊接操作工业机器人复杂应用的下一水平为喷漆、勘测和焊接。这些应用实施或代替一些技术工业的劳动力。通常需要跟踪复杂轨迹如图案表面轮廓,因此,控制铰接或关节型机器人被选用。示教型这种方式变得比较常见,有时还需要复杂的传感器来保持过程的一致性。经验显示当合理选择和实施时,与人工方法相比应用这些机器人通常能降低整个制造成本和提高产品的质量。

装配操作技术应用第三代工业机器人的最高水平是装配的重复性能为最重要时,臂切削端必须是顺从的,例如,有两个力和位移控制来调整部件选用,它需要机器人能实际地感觉到它的距离。这种技术通常需要一个人工智能的手段。组装机器人通常由电子驱动逼供内在洁净的环境中工作,组装机器人有望于超出低技术应用。

其他应用机器人其他典型的应用包括检测、质量控制,和修复;过程如激光和水枪切、钻和清扫屋舍操作;和在木业,纸业和食品制造业的应用。作为工业机器人技术和机器人智力的提高甚远,附加的应用也可被视为有效的。

可以从物质的观点电可以从系统的观点,讨论机器人系统的组成部分。从物质上看我们可以将系统分成机器人、电源系统和控制器(计算机)。机器人本身可以像人一样被分为基座、肩、肘、腕、抓持器和工具。这此术语中的大部分不需要做任何解释。

因此,我们将根据信息传递的观点来描述机器人系统的组成部分。也就是,什么信息或者信号进入计算机的组成部分,这个组成部分进行何种逻辑或者算术运算,这个组成部分产生什么信息或者信号?成该认识到,同一个组成部分可以完成许多不同的信息处理工作(例如,中心汁算机可以根据小同的数据进行许多不同种类的计算),这一点是很重要的。与之相似,在结构上分开的两个组成部分可以进行相同的信息操作(例如,肩部和肘部的执行机构用非常相似的方式将信息转换为运动)。

执行机构执行机构与机器人的每个关节相连,并且驱动这个关节进行运动。电动机和液压缸都是典型的执行机构。由于对位置和方向进行完全控制需要六个变量,通常一个机器人系统需要六个执行机构。在实际应用中,许多机器人并不需要具有这种完全的灵活性,因此,机器人通常只有五个或更少的执行机构。

传感器为了控制执行机构,计算机内须有关于执行机构位置的信息,还可能有执行机构速度的信息。这里所说的位置是指执行机构相对任意零参考点的位移。例如在转动装置中,“位置”为角度的位置,并且采用弧度为单位来对其进行度量。

许多种类的传感器能够表示位置和速度。各种传感器要有不同的机构作为它与计算机之间的连接装置。此外,操纵型机器人在工业中的应用要求对这种连接装置加以保护,使其免受工厂中的恶劣电气环境的影响。如果在设计和制作时没有认真考虑对数字系统的连接装置加以保护,诸如电弧焊机和大电动机所产生的电气噪声源可以很容易地使这个数字

系统失去作用。

计算部分我们可以容易地将计算模块称为计算机,这是凶为将要描述的大部分功能通常是由数字计算机完成的。然而,许多功能也可以由专用的硬件或者计算机网络来完成。应该认识到在要求进行实时控制时,可能需要专门的设备,尽管目前的趋势是向着全数字化发展,这个设备的某些部位甚至还可能采用模拟方式。在这里,将把计算部分当做一个简单的计算机来讨论。

进一步的说明:尽管许多机器人制造厂家目前在他们的系统中使用一个或者几个微处理器,在本书中我们避免使用微处理器这个术语,简单地将其称为计算机。计算部分可以完成上述工作。

伺服已知执行机构当前的位置和/或速度,确定使执行机构向着它预定的位置运动的驱动信号。对于每个执行机构都需要进行这种控制。

运动学已知执行机构目前的状态(位置和速度),确定抓握器当前的状态。相反地,已知于的一个期望状态,确定每个执行机械的期望状态。

动力学已知机器人臂的负载信息(惯量、摩擦、加速度),利用这种信息对伺服机构进行控制,以取得更好的工作特性。

在工作地点进行传感器信息分析已知需要完成任务的信息,确定适当的机器人运动指令。这可能会包括对工作场所的电视图像的分析,或者对手部施加的力的测量和补偿。

除了这些容易确定的组成部分,还有一些监督管理工作,例如路径设计和操作者的干涉。

机械毕业设计英文外文翻译71车床夹具设计分析

附录A Lathe fixture design and analysis Ma Feiyue (School of Mechanical Engineering, Hefei, Anhui Hefei 230022, China) Abstract: From the start the main types of lathe fixture, fixture on the flower disc and angle iron clamp lathe was introduced, and on the basis of analysis of a lathe fixture design points. Keywords: lathe fixture; design; points Lathe for machining parts on the rotating surface, such as the outer cylinder, inner cylinder and so on. Parts in the processing, the fixture can be installed in the lathe with rotary machine with main primary uranium movement. However, in order to expand the use of lathe, the work piece can also be installed in the lathe of the pallet, tool mounted on the spindle. THE MAIN TYPES OF LATHE FIXTURE Installed on the lathe spindle on the lathe fixture

机械手机械设计论文中英文资料对照外文翻译

中英文资料对照外文翻译 机械设计 摘要: 机器由机械和其他元件组成的用来转换和传输能量的装置。比如:发动机、涡轮机、车、起重机、印刷机、洗衣机和摄影机。许多机械方面设计的原则和方法也同样适用于非机械方面。术语中的“构造设计”的含义比“机械设计”更加广泛,构造设计包括机械设计。在进行运动分析和结构设计时要把产品的维护和外形也考虑在机械设计中。在机械工程领域中,以及其它工程领域,都需要机械设备,比如:开关、凸轮、阀门、船舶以及搅拌机等。 关键词:设计流程设计规则机械设计 设计流程 设计开始之前就要想到机器的实用性,现有的机器需要在耐用性、效率、重量、速度,或者成本上得到改善。新的机器必需能够完全或部分代替以前人的功能,比如计算、装配、维修。 在设计的初级阶段,应该充分发挥设计人员的创意,不要受到任何约束。即使有一些不切实际的想法,也可以在设计的早期,即在绘制图纸之前被改正掉。只有这样,才不致于阻断创新的思路。通常,必须提出几套设计方案,然后进行比较。很有可能在这个计划最后指定使用某些不在计划方案内的一些想法的计划。 一般当产品的外型和组件的尺寸特点已经显现出来的时候,就可以进行全面的设计和分析。接着还要客观的分析机器性能、安全、重量、耐用性,并且成本也要考虑在内。每一个至关重要的部分要优化它的比例和尺寸,同时也要保持与其它组成部分的平衡。 选择原材料和工艺的方法。通过力学原理来分析和实现这些重要的特性,如稳定和反应的能量和摩擦力的利用,动力惯性、加速度、能量;包括材料的弹性强度、应力和刚度等物理特性,以及流体的润滑和驱动器的流体力学。设计的过程是一个反复与合作的过程,无论是正式的还是非正式的,对设计者来说每个阶段都很重要。。产品设计需要大量的研究和提升。许多的想法,必须通过努力去研究成为一种理念,然后去使用或放弃。

外文翻译

Load and Ultimate Moment of Prestressed Concrete Action Under Overload-Cracking Load It has been shown that a variation in the external load acting on a prestressed beam results in a change in the location of the pressure line for beams in the elastic range.This is a fundamental principle of prestressed construction.In a normal prestressed beam,this shift in the location of the pressure line continues at a relatively uniform rate,as the external load is increased,to the point where cracks develop in the tension fiber.After the cracking load has been exceeded,the rate of movement in the pressure line decreases as additional load is applied,and a significant increase in the stress in the prestressing tendon and the resultant concrete force begins to take place.This change in the action of the internal moment continues until all movement of the pressure line ceases.The moment caused by loads that are applied thereafter is offset entirely by a corresponding and proportional change in the internal forces,just as in reinforced-concrete construction.This fact,that the load in the elastic range and the plastic range is carried by actions that are fundamentally different,is very significant and renders strength computations essential for all designs in order to ensure that adequate safety factors exist.This is true even though the stresses in the elastic range may conform to a recognized elastic design criterion. It should be noted that the load deflection curve is close to a straight line up to the cracking load and that the curve becomes progressively more curved as the load is increased above the cracking load.The curvature of the load-deflection curve for loads over the cracking load is due to the change in the basic internal resisting moment action that counteracts the applied loads,as described above,as well as to plastic strains that begin to take place in the steel and the concrete when stressed to high levels. In some structures it may be essential that the flexural members remain crack free even under significant overloads.This may be due to the structures’being exposed to exceptionally corrosive atmospheres during their useful life.In designing prestressed members to be used in special structures of this type,it may be necessary to compute the load that causes cracking of the tensile flange,in order to ensure that adequate safety against cracking is provided by the design.The computation of the moment that will cause cracking is also necessary to ensure compliance with some design criteria. Many tests have demonstrated that the load-deflection curves of prestressed beams are approximately linear up to and slightly in excess of the load that causes the first cracks in the tensile flange.(The linearity is a function of the rate at which the load is applied.)For this reason,normal elastic-design relationships can be used in computing the cracking load by simply determining the load that results in a net tensile stress in the tensile flange(prestress minus the effects of the applied loads)that is equal to the tensile strength of the concrete.It is customary to assume that the flexural tensile strength of the concrete is equal to the modulus of rupture of the

机械设计外文翻译-- 机械加工介绍

毕业论文(设计) 外文翻译 题目:机械加工介绍

机械加工介绍 1.车床 车床主要是为了进行车外圆、车端面和镗孔等项工作而设计的机床。车削很少在其他种类的机床上进行,而且任何一种其他机床都不能像车床那样方便地进行车削加工。由于车床还可以用来钻孔和铰孔,车床的多功能性可以使工件在一次安装中完成几种加工。因此,在生产中使用的各种车床比任何其他种类的机床都多。 车床的基本部件有:床身、主轴箱组件、尾座组件、溜板组件、丝杠和光杠。 床身是车床的基础件。它能常是由经过充分正火或时效处理的灰铸铁或者球墨铁制成。它是一个坚固的刚性框架,所有其他基本部件都安装在床身上。通常在床身上有内外两组平行的导轨。有些制造厂对全部四条导轨都采用导轨尖朝上的三角形导轨(即山形导轨),而有的制造厂则在一组中或者两组中都采用一个三角形导轨和一个矩形导轨。导轨要经过精密加工以保证其直线度精度。为了抵抗磨损和擦伤,大多数现代机床的导轨是经过表面淬硬的,但是在操作时还应该小心,以避免损伤导轨。导轨上的任何误差,常常意味着整个机床的精度遭到破坏。 主轴箱安装在内侧导轨的固定位置上,一般在床身的左端。它提供动力,并可使工件在各种速度下回转。它基本上由一个安装在精密轴承中的空心主轴和一系列变速齿轮(类似于卡车变速箱)所组成。通过变速齿轮,主轴可以在许多种转速下旋转。大多数车床有8~12种转速,一般按等比级数排列。而且在现代机床上只需扳动2~4个手柄,就能得到全部转速。一种正在不断增长的趋势是通过电气的或者机械的装置进行无级变速。 由于机床的精度在很大程度上取决于主轴,因此,主轴的结构尺寸较大,通常安装在预紧后的重型圆锥滚子轴承或球轴承中。主轴中有一个贯穿全长的通孔,长棒料可以通过该孔送料。主轴孔的大小是车床的一个重要尺寸,因此当工件必须通过主轴孔供料时,它确定了能够加工的棒料毛坯的最大尺寸。 尾座组件主要由三部分组成。底板与床身的内侧导轨配合,并可以在导轨上作纵向移动。底板上有一个可以使整个尾座组件夹紧在任意位置上的装置。尾座体安装在底板上,可以沿某种类型的键槽在底板上横向移动,使尾座能与主轴箱中的主轴对正。尾座的第三个组成部分是尾座套筒。它是一个直径通常大约在51~76mm之间的钢制空心圆柱体。

机械类数控车床外文翻译外文文献英文文献车床.doc

Lathes Lathes are machine tools designed primarily to do turning, facing and boring, Very little turning is done on other types of machine tools, and none can do it with equal facility. Because lathes also can do drilling and reaming, their versatility permits several operations to be done with a single setup of the work piece. Consequently, more lathes of various types are used in manufacturing than any other machine tool. The essential components of a lathe are the bed, headstock assembly, tailstock assembly, and the leads crew and feed rod. The bed is the backbone of a lathe. It usually is made of well normalized or aged gray or nodular cast iron and provides s heavy, rigid frame on which all the other basic components are mounted. Two sets of parallel, longitudinal ways, inner and outer, are contained on the bed, usually on the upper side. Some makers use an inverted V-shape for all four ways, whereas others utilize one inverted V and one flat way in one or both sets, They are precision-machined to assure accuracy of alignment. On most modern lathes the way are surface-hardened to resist wear and abrasion, but precaution should be taken in operating a lathe to assure that the ways are not damaged. Any inaccuracy in them usually means that the accuracy of the entire lathe is destroyed. The headstock is mounted in a foxed position on the inner ways, usually at the left end of the bed. It provides a powered means of rotating the word at various speeds . Essentially, it consists of a hollow spindle, mounted in accurate bearings, and a set of transmission gears-similar to a truck transmission—through which the spindle can be rotated at a number of speeds. Most lathes provide from 8 to 18 speeds, usually in a geometric ratio, and on modern lathes all the speeds can be obtained merely by moving from two to four levers. An increasing trend is to provide a continuously variable speed range through electrical or mechanical drives. Because the accuracy of a lathe is greatly dependent on the spindle, it is of heavy construction and mounted in heavy bearings, usually preloaded tapered roller or ball types. The spindle has a hole extending through its length, through which long bar stock can be fed. The size of maximum size of bar stock that can be machined when the material must be fed through spindle. The tailsticd assembly consists, essentially, of three parts. A lower casting fits on the inner ways of the bed and can slide longitudinally thereon, with a means for clamping the entire assembly in any desired location, An upper casting fits on the lower one and can be moved transversely upon it, on some type of keyed ways, to permit aligning the assembly is the tailstock quill. This is a hollow steel cylinder, usually about 51 to 76mm(2to 3 inches) in diameter, that can be moved several inches longitudinally in and out of the upper casting by means of a hand wheel and screw. The size of a lathe is designated by two dimensions. The first is known as the swing. This is the maximum diameter of work that can be rotated on a lathe. It is approximately twice the distance between the line connecting the lathe centers and the nearest point on the ways, The second size dimension is the maximum distance between centers. The swing thus indicates the maximum work piece diameter that can be turned in the lathe, while the distance between centers indicates the maximum length of work piece that can be mounted between centers. Engine lathes are the type most frequently used in manufacturing. They are heavy-duty machine tools with all the components described previously and have power drive for all tool movements except on the compound rest. They commonly range in size from 305 to 610 mm(12 to 24 inches)swing and from 610 to 1219 mm(24 to 48 inches) center distances, but swings up to 1270 mm(50 inches) and center distances up

机械设计外文翻译(中英文)

机械设计理论 机械设计是一门通过设计新产品或者改进老产品来满足人类需求的应用技术科学。它涉及工程技术的各个领域,主要研究产品的尺寸、形状和详细结构的基本构思,还要研究产品在制造、销售和使用等方面的问题。 进行各种机械设计工作的人员通常被称为设计人员或者机械设计工程师。机械设计是一项创造性的工作。设计工程师不仅在工作上要有创造性,还必须在机械制图、运动学、工程材料、材料力学和机械制造工艺学等方面具有深厚的基础知识。如前所诉,机械设计的目的是生产能够满足人类需求的产品。发明、发现和科技知识本身并不一定能给人类带来好处,只有当它们被应用在产品上才能产生效益。因而,应该认识到在一个特定的产品进行设计之前,必须先确定人们是否需要这种产品。 应当把机械设计看成是机械设计人员运用创造性的才能进行产品设计、系统分析和制定产品的制造工艺学的一个良机。掌握工程基础知识要比熟记一些数据和公式更为重要。仅仅使用数据和公式是不足以在一个好的设计中做出所需的全部决定的。另一方面,应该认真精确的进行所有运算。例如,即使将一个小数点的位置放错,也会使正确的设计变成错误的。 一个好的设计人员应该勇于提出新的想法,而且愿意承担一定的风险,当新的方法不适用时,就使用原来的方法。因此,设计人员必须要有耐心,因为所花费的时间和努力并不能保证带来成功。一个全新的设计,要求屏弃许多陈旧的,为人们所熟知的方法。由于许多人墨守成规,这样做并不是一件容易的事。一位机械设计师应该不断地探索改进现有的产品的方法,在此过程中应该认真选择原有的、经过验证的设计原理,将其与未经过验证的新观念结合起来。 新设计本身会有许多缺陷和未能预料的问题发生,只有当这些缺陷和问题被解决之后,才能体现出新产品的优越性。因此,一个性能优越的产品诞生的同时,也伴随着较高的风险。应该强调的是,如果设计本身不要求采用全新的方法,就没有必要仅仅为了变革的目的而采用新方法。 在设计的初始阶段,应该允许设计人员充分发挥创造性,不受各种约束。即使产生了许多不切实际的想法,也会在设计的早期,即绘制图纸之前被改正掉。只有这样,才不致于堵塞创新的思路。通常,要提出几套设计方案,然后加以比较。很有可能在最后选定的方案中,采用了某些未被接受的方案中的一些想法。

毕业设计外文翻译资料

外文出处: 《Exploiting Software How to Break Code》By Greg Hoglund, Gary McGraw Publisher : Addison Wesley Pub Date : February 17, 2004 ISBN : 0-201-78695-8 译文标题: JDBC接口技术 译文: JDBC是一种可用于执行SQL语句的JavaAPI(ApplicationProgrammingInterface应用程序设计接口)。它由一些Java语言编写的类和界面组成。JDBC为数据库应用开发人员、数据库前台工具开发人员提供了一种标准的应用程序设计接口,使开发人员可以用纯Java语言编写完整的数据库应用程序。 一、ODBC到JDBC的发展历程 说到JDBC,很容易让人联想到另一个十分熟悉的字眼“ODBC”。它们之间有没有联系呢?如果有,那么它们之间又是怎样的关系呢? ODBC是OpenDatabaseConnectivity的英文简写。它是一种用来在相关或不相关的数据库管理系统(DBMS)中存取数据的,用C语言实现的,标准应用程序数据接口。通过ODBCAPI,应用程序可以存取保存在多种不同数据库管理系统(DBMS)中的数据,而不论每个DBMS使用了何种数据存储格式和编程接口。 1.ODBC的结构模型 ODBC的结构包括四个主要部分:应用程序接口、驱动器管理器、数据库驱动器和数据源。应用程序接口:屏蔽不同的ODBC数据库驱动器之间函数调用的差别,为用户提供统一的SQL编程接口。 驱动器管理器:为应用程序装载数据库驱动器。 数据库驱动器:实现ODBC的函数调用,提供对特定数据源的SQL请求。如果需要,数据库驱动器将修改应用程序的请求,使得请求符合相关的DBMS所支持的文法。 数据源:由用户想要存取的数据以及与它相关的操作系统、DBMS和用于访问DBMS的网络平台组成。 虽然ODBC驱动器管理器的主要目的是加载数据库驱动器,以便ODBC函数调用,但是数据库驱动器本身也执行ODBC函数调用,并与数据库相互配合。因此当应用系统发出调用与数据源进行连接时,数据库驱动器能管理通信协议。当建立起与数据源的连接时,数据库驱动器便能处理应用系统向DBMS发出的请求,对分析或发自数据源的设计进行必要的翻译,并将结果返回给应用系统。 2.JDBC的诞生 自从Java语言于1995年5月正式公布以来,Java风靡全球。出现大量的用java语言编写的程序,其中也包括数据库应用程序。由于没有一个Java语言的API,编程人员不得不在Java程序中加入C语言的ODBC函数调用。这就使很多Java的优秀特性无法充分发挥,比如平台无关性、面向对象特性等。随着越来越多的编程人员对Java语言的日益喜爱,越来越多的公司在Java程序开发上投入的精力日益增加,对java语言接口的访问数据库的API 的要求越来越强烈。也由于ODBC的有其不足之处,比如它并不容易使用,没有面向对象的特性等等,SUN公司决定开发一Java语言为接口的数据库应用程序开发接口。在JDK1.x 版本中,JDBC只是一个可选部件,到了JDK1.1公布时,SQL类包(也就是JDBCAPI)

【机械类文献翻译】机床

毕业设计(论文)外文资料翻译 系部: 专业: 姓名: 学号: 外文出处:English For Electromechanical (用外文写) Engineering 附件:1.外文资料翻译译文;2.外文原文。 指导教师评语: 此翻译文章简单介绍了各机床的加工原理,并详细介绍了各机床的构造,并对方各机床的加工方法法进行了详细的描述, 翻译用词比较准确,文笔也较为通顺,为在以后工作中接触英 文资料打下了基础。 签名: 年月日注:请将该封面与附件装订成册。

附件1:外文资料翻译译文 机床 机床是用于切削金属的机器。工业上使用的机床要数车床、钻床和铣床最为重要。其它类型的金属切削机床在金属切削加工方面不及这三种机床应用广泛。 车床通常被称为所有类型机床的始祖。为了进行车削,当工件旋转经过刀具时,车床用一把单刃刀具切除金属。用车削可以加工各种圆柱型的工件,如:轴、齿轮坯、皮带轮和丝杠轴。镗削加工可以用来扩大和精加工定位精度很高的孔。 钻削是由旋转的钻头完成的。大多数金属的钻削由麻花钻来完成。用来进行钻削加工的机床称为钻床。铰孔和攻螺纹也归类为钻削过程。铰孔是从已经钻好的孔上再切除少量的金属。 攻螺纹是在内孔上加工出螺纹,以使螺钉或螺栓旋进孔内。 铣削由旋转的、多切削刃的铣刀来完成。铣刀有多种类型和尺寸。有些铣刀只有两个切削刃,而有些则有多达三十或更多的切削刃。铣刀根据使用的刀具不同能加工平面、斜面、沟槽、齿轮轮齿和其它外形轮廓。 牛头刨床和龙门刨床用单刃刀具来加工平面。用牛头刨床进行加工时,刀具在机床上往复运动,而工件朝向刀具自动进给。在用龙门刨床进行加工时,工件安装在工作台上,工作台往复经过刀具而切除金属。工作台每完成一个行程刀具自动向工件进给一个小的进给量。 磨削利用磨粒来完成切削工作。根据加工要求,磨削可分为精密磨削和非精密磨削。精密磨削用于公差小和非常光洁的表面,非精密磨削用于在精度要求不高的地方切除多余的金属。 车床 车床是用来从圆形工件表面切除金属的机床,工件安装在车床的两个顶尖之间,并绕顶尖轴线旋转。车削工件时,车刀沿着工件的旋转轴线平行移动或与工件的旋转轴线成一斜角移动,将工件表面的金属切除。车刀的这种位移称为进给。车

机械专业外文翻译中英文翻译

外文翻译 英文原文 Belt Conveying Systems Development of driving system Among the methods of material conveying employed,belt conveyors play a very important part in the reliable carrying of material over long distances at competitive cost.Conveyor systems have become larger and more complex and drive systems have also been going through a process of evolution and will continue to do so.Nowadays,bigger belts require more power and have brought the need for larger individual drives as well as multiple drives such as 3 drives of 750 kW for one belt(this is the case for the conveyor drives in Chengzhuang Mine).The ability to control drive acceleration torque is critical to belt conveyors’ performance.An efficient drive system should be able to provide smooth,soft starts while maintaining belt tensions within the specified safe limits.For load sharing on multiple drives.torque and speed control are also important consideratio ns in the drive system’s design. Due to the advances in conveyor drive control technology,at present many more reliable.Cost-effective and performance-driven conveyor drive systems cov ering a wide range of power are available for customers’ choices[1]. 1 Analysis on conveyor drive technologies 1.1 Direct drives Full-voltage starters.With a full-voltage starter design,the conveyor head shaft is direct-coupled to the motor through the gear drive.Direct full-voltage starters are adequate for relatively low-power, simple-profile conveyors.With direct fu11-voltage starters.no control is provided for various conveyor loads and.depending on the ratio between fu11- and no-1oad power requirements,empty starting times can be three or four times faster than full load.The maintenance-free starting system is simple,low-cost and very reliable.However, they cannot control starting torque and maximum stall torque;therefore.they are

引进外资外文翻译资料

河南科技学院新科学院 2013届本科毕业生论文(设计) 英文文献及翻译 Foreign capital inflows and welfare in an economy with imperfect competition 学生姓名:王艳杰 所在院系:经济系 所学专业:国际经济与贸易 导师姓名:侯黎杰 完成时间:2013年4月15日

Foreign capital inflows and welfare in an economy with imperfect competition Abstract:This paper examines the resource allocational and welfare effects of exogenous inflows of foreign capital in a general-equilibrium model with oligopolistic competition and unemployment. Although the welfare impact for the short run is ambiguous and dependent upon the strength of excess profits and scale economies relative to unemployment in manufacturing, in the long run additional inflows of foreign capital always improve national welfare with capital mobility. Hence, attracting foreign capital remains a sound policy for economies characterized by imperfect competition, scale economies,and regional unemployment. Keywords: International capital mobility; Imperfect competition; Welfare 1.Introduction The welfare effects of exogenous inflows of foreign capital in the presence of trade restrictions have been extensively studied. Brecher and Diaz Alejandro (1977) show that when imports are subject to tariffs, an introduction of fo reign capital inflows accentuates the tariff distortion and hence reduces national welfare if the import-competing sector is relatively capital-intensive. In contrast, Dei (1985) shows that when imports are restricted by quotas,foreign capital inflows in the presence of foreign-owned capital always improve welfare by depressing the rental and so lowering the payments to existing foreign-owned capital. Recently, Neary (1981), using a common framework for both tariffs and quotas, obtains more general results of foreign capital inflows; the welfare effect of such inflows depends crucially on whether foreign-owned capital exists initially in the home country. In addition, Khan (1982) and Grinols (1991) have examined the effects of foreign capital inflows for a generalized Harris-Todaro economy under tariff protection. Khan finds that the result by Brecher and Diaz Alejandro is still valid even in the presence of unemployment, whereas Grinols argues that increased foreign capital need not be detrimental to welfare if the opportunity costs of labor are sufficiently low. Noteworthy is that the models used by these authors are all based upon the premise of perfect competition along with constant returns-to-scale technology. Although perfect competition serves as a useful assumption in crystallizing theoretical insights, it nevertheless fails to depict many of the real-world phenomena. The real-world economy is characterized, to a large extent, by imperfect competition and economies of scale. The policy implications of imperfect competition and economies

机床加工外文翻译参考文献

机床加工外文翻译参考文献(文档含中英文对照即英文原文和中文翻译) 基本加工工序和切削技术 基本加工的操作 机床是从早期的埃及人的脚踏动力车和约翰·威尔金森的镗床发展而来的。它们为工件和刀具提供刚性支撑并可以精确控制它们的相对位置和相对速度。基本上讲,金属切削是指一个磨尖的锲形工具从有韧性的工件表面上去除一条很窄的金属。切屑是被废弃的产品,与其它工件相比切屑较短,但对于未切削部分的厚度有一定的增加。工件表面的几何形状取决于刀具的形状以及加工操作过程中刀具的路径。 大多数加工工序产生不同几何形状的零件。如果一个粗糙的工件在中心轴上转动并且刀具平行于旋转中心切入工件表面,一个旋转表面就产生了,这种操作称为车削。如果一个空心的管子以同样的方式在内表面加工,这种操作称为镗孔。当均匀地改变直径时便产生了一个圆锥形的外表面,这称为锥度车削。如果刀具接触点以改变半径的方式运动,那么一个外轮廓像球的工件便产生了;或者如果工件足够的短并且支撑是十分刚硬的,那么成型刀具相对于旋转轴正常进给的一个外表面便可产生,短锥形或圆柱形的表面也可形成。

平坦的表面是经常需要的,它们可以由刀具接触点相对于旋转轴的径向车削产生。在刨削时对于较大的工件更容易将刀具固定并将工件置于刀具下面。刀具可以往复地进给。成形面可以通过成型刀具加工产生。 多刃刀具也能使用。使用双刃槽钻钻深度是钻孔直径5-10倍的孔。不管是钻头旋转还是工件旋转,切削刃与工件之间的相对运动是一个重要因数。在铣削时一个带有许多切削刃的旋转刀具与工件接触,工件相对刀具慢慢运动。平的或成形面根据刀具的几何形状和进给方式可能产生。可以产生横向或纵向轴旋转并且可以在任何三个坐标方向上进给。 基本机床 机床通过从塑性材料上去除屑片来产生出具有特别几何形状和精确尺寸的零件。后者是废弃物,是由塑性材料如钢的长而不断的带状物变化而来,从处理的角度来看,那是没有用处的。很容易处理不好由铸铁产生的破裂的屑片。机床执行五种基本的去除金属的过程:车削,刨削,钻孔,铣削。所有其他的去除金属的过程都是由这五个基本程序修改而来的,举例来说,镗孔是内部车削;铰孔,攻丝和扩孔是进一步加工钻过的孔;齿轮加工是基于铣削操作的。抛光和打磨是磨削和去除磨料工序的变形。因此,只有四种基本类型的机床,使用特别可控制几何形状的切削工具1.车床,2.钻床,3.铣床,4.磨床。磨削过程形成了屑片,但磨粒的几何形状是不可控制的。 通过各种加工工序去除材料的数量和速度是巨大的,正如在大型车削加工,或者是极小的如研磨和超精密加工中只有面的高点被除掉。一台机床履行三大职能:1.它支撑工件或夹具和刀具2.它为工件和刀具提供相对运动3.在每一种情况下提供一系列的进给量和一般可达4-32种的速度选择。 加工速度和进给 速度,进给量和切削深度是经济加工的三大变量。其他的量数是攻丝和刀具材料,冷却剂和刀具的几何形状,去除金属的速度和所需要的功率依赖于这些变量。 切削深度,进给量和切削速度是任何一个金属加工工序中必须建立的机械参量。它们都影响去除金属的力,功率和速度。切削速度可以定义为在旋转一周时

相关文档
最新文档