数字电子技术基础简明教程课件第2章_门电路
数字电子技术基础(第5版)第二章-门电路

物理与电子学教研室
二、动态特性 1. 二极管的电容效应
结电容 C j 扩散电容 C D
2. 二极管的开关时间
电容效应使二极管 的通断需要一段延 迟时间才能完成
uI
0
t
ton — 开通时间 toff — 关断时间
iD
0
ton t of(ftrr )≤ 5ns
(反向恢复时间)
ton
t t off
物理与电子学教研室
二极管导通(相当于开关闭合) UD0.7V
2. 外加反向电压(反偏)
UD 0.5 V
二极管截止(相当于开关断开) ID 0
物理与电子学教研室
二极管的开关作用:
[例] 电路如图所示,
+ 0.DD7 V -
uI 2V或 3V 试判别二极管的工作
+
uI
-
+
uO
-
状态及输出电压。
[解] uIUIL2V二极管截止 uO = 0 V uI UIH3V二极管导通 uO = 2.3 V
小规模集成电路 SSI
(Small Scale Integration)
中规模集成电路 MSI
(Medium Scale Integration)
< 10 门/片 或 < 100 元器件/片
10 ~ 99 门/片 或 100 ~ 999 元器件/片
大规模集成电路 LSI
100 ~ 9 999 门/片
2. 1. 3 半导体三极管的开关特性 一、静态特性 (电流控制型)
1. 结构、符号和输入、输出特性(Transistor)
(1) 结构 集电极 collector
基极
base
数字电子技术基础课件:逻辑门电路

逻辑门电路
逻辑门电路
3.非门电路 图2.1.5(a)是由三极管构成的反相器,也称为非门电路。 当输入电压uI为低电平(0V)时,此时发射结和集电结均处于反 向偏置,所以三极管 V 截止,输出uO为高电平。当输入电压uI 为高电平(+5V)时,此时发射结和集电结均处于正 向偏置,三 极管 V 饱和,输出uO为低电平。若分别用A 和F 表示该电路 的输入和输出逻辑 变量,把分析结果列入表2.1.5中,可知图 2.1.5(a)电路完成的是非逻辑运算关系,其逻辑表 达式为
逻辑门电路
图2.2.4 TTL与非门电压传输特性的测试电路
逻辑门电路
图2.2.5 TTL与非门的电压传输特性
逻辑门电路
2.TTL与非门的输入特性 图2.2.6(a)为 TTL与非门的输入电路,在图示参考方向下 的输入电流为
根据图2.2.6(a)电路,可以画出 TTL 与 非 门 的 输 入 电 流 与 输 入 电 压 之 间 的 关 系 曲 线———输入特性曲线, 如图2.2.6(b)所示。
逻辑门电路
图2.2.3 有源泄放 TTL与非门电路
逻辑门电路
2.2.2 TTL与非门的外特性 1.TTL与非门的电压传输特性 TTL与非门的电压传输特性是指与非门的输出电压与输
入电压的关系,它表示输入信 号由低电平逐渐上升到高电平 时输出电平的相应变化。图2.2.4为 TTL与非门电压传输特 性的测试电路,图中输入端A 与可调直流电源E 相连接,其余 输入端均接高电平。改变可调 直流电源E 的大小,用电压表 测出输入电压uI和输出电压uO 的大小,就可得到图2.2.5所 示 的电压传输特性。
逻辑门电路
4.TTL与非门的输入端负载特性 图2.2.8(b)为输入信号uI随输入负载电阻R 变化的规律, 也就是输入端负载特性曲线。 由图2.2.8(a)可知
数字电子技术 第2章 逻辑门

2
2.1
主要内容:
基本逻辑门
与、或、非三种基本逻辑运算
与、或、非三种基本逻辑门的逻辑功能
41
标准TTL门的输入 / 输出逻辑电平 :
42
CMOS门的输入 / 输出逻辑电平(+5V电源时) :
4.4V
0.33V
43
传输延迟时间tpd
t pd 1 (tPHL tPLH ) 2
tPHL和tPLH的定义(下图为非门的输入和输出波形) :
44
输入/输出电流 (1)“拉电流”工作状态 (2)“灌电流”工作状态
9
2.1.2 或门
实现“或”运算的电路称为或逻辑门,简称或门 。 逻辑或运算可用开关电路中两个开关相并联的例 子来说明
真 值 表
A 0 0 1 1
B 0 1 0 1
F A B
0 1 1 1
10
“或”运算的逻辑表达式为: F = A+B “或”逻辑的运算规律为:
一般形式
000 0 1 1 0 1 11 1
A
一般形式
A A A A 1 A A 0
14
非门的逻辑符号:
74LS04(六非门)
例2-5 : 向非门输入图示的波形,求其输出波形F。 解:
15
2.2 复合逻辑门
主要内容:
与非、或非、异或、同或的复合逻辑运算 与非门、或非门的逻辑功能 异或门、同或门的逻辑功能 各种复合逻辑门的真值表及输出波形
数字电路---第二章门电路ppt课件

第二章 门电路
分立元件门电路
TTL门电路
MOS门电路
TTL门电路与CMOS门电路
2.1 概述
门电路——实现根本逻辑关系的电子电路
主要构成 双极性逻辑门电路
DTL——二极管、三极管逻辑门电 路
TTL——晶体管、晶体管逻辑门电 路
ECL——发射极耦合逻辑门电路
HTL——高阈值逻辑门电路
前往
TTL反相器的任务原理
TTL反相器的任务原理
当输入为低电平Vi= ViL,T1导通、T2截止、T5截止,输出 通路由T3、T4构成,
VO = VCC – iB3 R2 -VBE3 –V BE4 ≈5-0.7-
0.7V=3.6V
当输入为高电平Vi= 和形状,那么: VO
V=iHVO时L,=T1V倒CE置S5、≈T02.导2V通、T5为深前度往饱
TTL反相器的传输特性
电压传输特性
阈值电压:VT= 1.4V
输入低电平的最大值VIL(MAX)≈ 0.8V (又称关门电 压VOFF )
输入高电平的最小值VIH(MIN) 压VON )
≈
1.8V
(又称开前门往电
TTL反相器的输入伏安特性
输入伏安特性
当Vi= 0V时,有电流流出门,且最大 Ii= IIS〔输入 短路电流〕
前往
其他TTL门电路
TTL门电路
集成TTL门电路有:与门、或门、非门、与非 门、或非门、
与或非门、异或门、同或门
TTL与非门
TTL或非门
TTL与或非门
TTL异或门
逻辑符号、逻辑功能、电气特性
逻辑符号、逻辑功能——与前引见同
电气特性——参考TTL反相器
常用的TTL集成门电路器件
数字电子技术门电路PPT

第2章 门电路
2.2.3 TTL与非门的电气性能
1. TTL与非门的输入特性 输入特性是描述输入电流与输入电压之间的关系曲线 ,如图 示:
第2章 门电路
2. TTL与非门的输出特性 输出电压与负载电流之间的关系曲线,称为输出特性。 (1)输出为低电平时的输出特性曲线:
第2章 门电路
(2)输出为高电平时的输出特性曲线:
第2章 门电路
真值表为:
逻辑表达式为: F A B
第2章 门电路
3.三极管非门电路 非门:实现非运算的电路。 电路及其逻辑符号如图所示。当输入A为低电平时,三极 管截止,输出F为高电平,输入A为高电平时,三极管饱和,
输出F为低电平。逻辑表达式F= A 。
第2章 门电路
2.1.2 与非门、或非门电路
时间 tPLH 。通常把二者的平均值称作平均传输延迟时间,
t 以
pd
表示。 t pd
tPHL tPLH 2
2章 门电路
2. 动态尖峰电流 与非门从导通状态转换为截止状态或从截止状态转换为导通 状态,在这个转换过程中,都会出现T4、T5两管瞬间同时导 通,这瞬间的电源电流比静态时的电源电流要大,但持续时 间较短,故称之为尖峰电流或浪涌电流,如图示。
第2章 门电路
2. TTL门驱动CMOS门 当TTL电路和CMOS电路相连接时,必须考虑它们之间电流 驱动能力及高、低电平的配合等接口技术问题。当TTL门驱 动CMOS门时,可能出现TTL门输出高电平低于CMOS门要 求输入高电平的值,所以,常用TTL OC门作为接口电路, 其输出端上拉电阻R必须接到CMOS门的正电源VDD上,如 图示。
第2章 门电路
抗干扰能力分为输入低电平的抗干扰能力VNL和输入高电平 的抗干扰能力VNH。 低电平的抗干扰能力为:
《数字电子技术基础》第六版--门电路-1117省名师优质课赛课获奖课件市赛课一等奖课件

S
D
B
不论D、S间有无电压, 均无法导通,不能导电
第 章 门电路
3.3.1 MOS管旳开关特征 以N沟道增强型为例研究通电情况:
数字电子技术基础 第六版
2、添加垂直电压VGS
形成电场G—B,把衬底中旳电子吸引 到上表面,除复合外,剩余旳电子在 上表面形成了N型层(反型层)为D、 S间旳导通提供了通道。
VGS(th)称为阈值电压(开启电压)
第 章 门电路
数字电子技术基础 第六版
3.3.1 MOS管旳开关特征
MOS管输入特征和输出特征
① 输入特征:直流电流为0,看进去有一种输入电 容CI,对动态有影响。
② 输出特征: iD = f (VDS) 相应不同旳VGS下得一族曲线 。
第 章 门电路
3.3.1 MOS管旳开关特征 输出特征曲线(分三个区域)
第 章 门电路
3.2.2 二极管或门 二极管构成旳门电路旳缺陷
• 电平有偏移 • 带负载能力差
数字电子技术基础 第六版
• 只用于IC内部电路
第 章 门电路
集成门电路
数字电子技术基础 第六版
集成门电路
双极型 TTL (Transistor-Transistor Logic Integrated Circuit)
第 章 门电路
数字电子技术基础 第六版
3.3.2 CMOS反相器旳电路构造和工作原理 三、输入噪声容限
噪声容限--衡量门电路旳抗干扰能力。 噪声容限越大,表白电路抗干扰能力越强。
测试表白:CMOS电路噪声容限VNH=VNL=30%VDD,且 随VDD旳增长而加大。所以能够经过提升VDD来提升噪声容限
第 章 门电路
半导体基础知识(2)
精品课件-数字电子技术-第2章
第2章 逻辑门电路
(2) 当输入A、B全为高电位时,即当VIH=3.6 V时,V1的 集电极、V2和V5发射极均导通,则V2和V5管处于饱和状态,故 VO=VOL=VCES5=0.3 V。另外,由于VC2=VB3= VCES2+VBE5=0.3+0.7=1 V,此电压不足以使V4导通,故V4处于截
(1) 高电平输出特性。当TTL与非门输出为高电平时,若 在门电路输出端接入负载,这时将有负载电流流出驱动门,好像 是负载从与非门拉走电流,此电流称为拉电流(或高电平输出电 流),如图2-25所示,记为IOH。一般IOH≤0.4 mA
(2) 低电平输出特性。当TTL与非门输出为低电平时,若 在门电路输出端接入负载,这时将有负载电流流入驱动门,好像 是负载向与非门灌入电流,此电流称为灌电流(或低电平输出电 流),如图2-26所示,记为IOL。一般IOL≤8 mA
(2) 低电平输入电流IIL。 IIL为与非门输入低电平时流 出输入端的电流,如图2-24所示,一般IIL≤0.4 mA
第2章 逻辑门电路
图2-23 TTL与非门高电平输入特性
第2章 逻辑门电路
图2-24 TTL与非门低电平输入特性
第2章 逻辑门电路
2) 输出特性是TTL与非门接入负载后,其输出电流与负载的关
(1) 输出逻辑高电平VOH和输出逻辑低电平VOL。 VOH和VOL的典型取值分别为3.6 V和0.3 V,但是,由于器件制 造中存在不可避免的差异,因此通常规定VOH≥3.0 V VOL≤0.3 V。器件手册规定,在额定负载情况下,VOHmin >2.4 V,VOLmax<0.8 V
第2章 逻辑门电路
或更多的输入,但只有一个输出。 通常,输入画在与门的一边,输出画在与门的另一边。两
数字电子技术基础ppt课件
R
vo K合------vo=0, 输出低电平
vi
K
只要能判
可用三极管 代替
断高低电 平即可
在数字电路中,一般用高电平代表1、低 电平代表0,即所谓的正逻辑系统。
2.2.2 二极管与门
VCC
A
D1
FY
B
D2
二极管与门
A
B
【 】 内容 回顾
AB Y 00 0 01 0 100 11 1
&
Y
2.2.2 二极管或门
一般TTL门的扇出系数为10。
三、输入端负载特性
输入端 “1”,“0”?
A
ui
RP
R1 b1
c1
T1
D1
•
R2
•
T2
•
R3
VCC
•
R4
T4 D2
•
Y
T5
•
简化电路
R1
VCC
ui
A ui
T1
be
RP
2
be 0
RP
5
RP较小时
ui
RP RP R1
(Vcc Von )
当RP<<R1时, ui ∝ RP
•
R4
T4 D2
•
Y
T5
•
TTL非门的内部结构
•
R1
R2
A
b1 c1
T1
•
T2
D1
•
R3
VCC
•
R4
T4 D2
•
Y
T5
•
前级输出为 高电平时
•
R2
R4
VCC
T4 D2
数字电子技术_第2章_逻辑门
第2章逻辑门内容提要:本章系统地介绍数字电路的基本逻辑单元—门电路,及其对应的逻辑运算与图形描述符号,并针对实际应用介绍了三态逻辑门和集电极开路输出门,最后简要介绍TTL集成门和CMOS集成门的逻辑功能、外特性和性能参数。
2.1 基本逻辑门导读:在这一节中,你将学习:⏹与、或、非三种基本逻辑运算⏹与、或、非三种基本逻辑门的逻辑功能⏹逻辑门真值表的列法⏹画各种逻辑门电路的输出波形在逻辑代数中,最基本的逻辑运算有与、或、非三种。
每种逻辑运算代表一种函数关系,这种函数关系可用逻辑符号写成逻辑表达式来描述,也可用文字来描述,还可用表格或图形的方式来描述。
最基本的逻辑关系有三种:与逻辑关系、或逻辑关系、非逻辑关系。
实现基本逻辑运算和常用复合逻辑运算的单元电路称为逻辑门电路。
例如:实现“与”运算的电路称为与逻辑门,简称与门;实现“与非”运算的电路称为与非门。
逻辑门电路是设计数字系统的最小单元。
2.1.1 与门“与”运算是一种二元运算,它定义了两个变量A和B的一种函数关系。
用语句来描述它,这就是:当且仅当变量A和B都为1时,函数F为1;或者可用另一种方式来描述数字电子技术2它,这就是:只要变量A 或B 中有一个为0,则函数F 为0。
“与”运算又称为逻辑乘运算,也叫逻辑积运算。
“与”运算的逻辑表达式为: F A B =⋅ 式中,乘号“.”表示与运算,在不至于引起混淆的前提下,乘号“.”经常被省略。
该式可读作:F 等于A 乘B ,也可读作:F 等于A 与B 。
逻辑与运算可用开关电路中两个开关相串联的例子来说明,如图2-1所示。
开关A 、B 所有可能的动作方式如表2-1a 所示,此表称为功能表。
如果用1表示开关闭合,0表示开关断开,灯亮时F =1,灯灭时F =0。
则上述功能表可表示为表2-1b 。
这种表格叫做真值表。
它将输入变量所有可能的取值组合与其对应的输出变量的值逐个列举出来。
它是描述逻辑功能的一种重要方法。
表2-1a 功能表由“与”运算关系的真值表可知“与”逻辑的运算规律为:00001100111⋅=⋅=⋅=⋅= 表2-1b “与”运算真值表图2-1 与运算电路第二章 逻辑门 3简单地记为:有0出0,全1出1。
数字电子技术基础 第二章 门电路1PPT课件
+VCC +12V 2 k
+ T 100uo
IBSICSVCRCcUCESVC RcC110202mA 0.06mA
因为 iB IBS 所以 T 饱和 uOUCE≤S0.3V
二、动态特性 三极管饱和程 t度 off
uI / V
3
0
-2
iC
0.9ICS 0.1ICS
0
uO / V ton
3
t
t t off
超大规模集成电路VLSI
> 10 000 门/片
(Very Large Scale Integration) 或 > 100 000 元器件/片
2. 2 半导体二极管 、三极管 和 MOS 管的开关特性
理想开关的开关特性
一、 静态特性
A
1. 断开
R OF F, IOF 0 F
2. 闭合 R O N0, U AK 0
< 10 门/片 或 < 100 元器件/片
中规模集成电路 MSI
10 ~ 99 门/片
(Medium Scale Integration) 或 100 ~ 999 元器件/片
大规模集成电路 LSI
(Large Scale Integration)
100 ~ 9 999 门/片 或 1 000 ~ 99 999 元器件/片
一、门电路
概述
实现基本逻辑运算和常用复合逻辑运算的电子电路
与与 门 或或 门 非非 门
与与非非门 或或非非门 与与或或非非门 异异或或门
二、逻辑变量与两状态开关
二值逻辑: 所有逻辑变量只有两种取值(1 或 0)。
数字电路: 通过电子开关 S 的两种状态(开或关)