第二章 逻辑代数及逻辑函数的
合集下载
逻辑函数的基本定律

数字电路与逻辑设计
第二章 逻辑函数及其简化 分配律: A ( B + C ) = AB + AC A ( B + C ) = AB + AC A + BC = ( A + B )( A + C ) A + ( B⊙C ) = (A + B ) ⊙(A + C )
(3) 特殊规律
重叠律: A+A=A A ·A = A A⊙A = 1 A+ A = 0
A + A = 1 A ·A = 0 (2) 交换律、结合律、分配律
交换律: A+B=B+A A ·B = B ·A A⊙B = B⊙A A +B = B +A
A⊙0 = A A⊙1 = A A⊙A = 0
A+1 = A A+0 = A A+A=1
结合律:
A + B + C = (A + B) + C A ·B ·C = (A ·B) ·C A⊙B⊙C = (A⊙B)⊙C A + B + C = (A + B) + C
第二章 逻辑函数及其简化
逻辑函数相等的概念 逻辑函数的基本定律 总结
数字电路与逻辑设计
第二章 逻辑函数及其简化
数字电路与逻辑设计
2.3逻辑函数的基本定律
1.逻辑函数相等
假设F 和G 都是变量A1、A2、···、An的逻辑函数,如果对应于A1、A2、···、 An 的任一组状态组合,F和G的值都相同,则F和G是相等的,记作F=G。
= A(B + B) + B( A + A) = A + B
第02讲 逻辑函数的化简:代数法

用与门、或门和非门进行逻辑综合
行号 0 1 2 3 x 0 0 1 1 y 0 1 0 1 f(x,y) 0 1 1 1
f xy xy xy
(1 16)
f x y
(1 17)
优化结果
f xy xy xy
(1 16)
f x y
(1 17)
公式法化简逻辑函数
f1 x2 x3
逻辑代数的基本规则(续)
反演规则:德·摩根定律的一般形式称为反 演规则
x n x n1 ... x i ... x 2 x 1 x n x n1 ... x i ... x 2 x 1
x n x n1 ... x i ... x 2 x 1 x n x n1 ... x i ... x 2 x 1
0 0
x2
0
x3
0 1 0 1
f0
1 0 1 1
x3
0 1 0 1 0 1 0 1
f 0
1 0 1 1 0 0 1 0
0 1 1
0
1 1 0 0
f 0 x2 x3 x2 x3 x2 x3
x1 x2
0
x3
0 1 0 1
f1
0 0 1 0
1
1 1
1
0 1 1
f x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3 x( x( 1 x2 x3 x2 x3 x2 x3 ) 1 x2 x3) x1 f 0 x1 f1
(配项法,式1 - 5b)
( 结合律,式1 7b ) ( 吸收率,式1 10b)
公式法化简逻辑函数(续)
2逻辑代数基础

(15)
五、德 摩根定理(反演律):表中8,18 (De Morgan) 证明: 1 AB A B 真值表法、 穷举法 2 A B AB
推广到多变量:
ABC A B C
A B C ABC
说明:两个(或两个以上)变量的与非(或非) 运算等于两个(或两个以上)变量的非或(非 与)运算。
(3)
§2.2
逻辑代数中的三种基本运算
基本逻辑运算:与 ( and )、或 (or ) 、 非 ( not )。 一、“与”逻辑 与逻辑:决定事件发生的各条件中,所有条件都 具备,事件才会发生(成立)。 规定:
A
E
B
C Y
开关合为逻辑“1” 开关断为逻辑“0”
灯亮为逻辑“1”
灯灭为逻辑“0”
(4)
A(BC) A(BC) A B C
注:代入定理还可以扩展其他基本定律 的应用范围!
(23)
2.4.2 反演定理
内容:将函数式F中所有的 + + (反函数) 新表达式: F
变量与常数均取反 显然: F F 规则: 1.遵循先括号 再乘法 后加法的运算顺序。 2.不是一个变量上的反号不动。 用处:实现互补运算(求反运算)。
(29)
2.5.2 逻辑函数的表示方法
真值表:将逻辑函数输入变量取值的不同组合 与所对应的输出变量值用列表的方式 一一对应列出的表格。
四 种 表 示 方 法 n个输入变量
2 种组合。
n
逻辑函数式 (逻辑表示式, 逻辑代数式)
Y AB AB
逻辑图: 波形图
A 1 & ≥1 B 1 &
Y
(30)
Y A B AB AB Y A B AB AB Y A B A B
第二章-逻辑函数及其简化

A 0 0 1 1
B 0 1 0 1
Y 1 0 0 1
例2 有X、Y、Z三个输入变量,当其中两个或两个以上取值 为1时,输出F为1;其余输入情况输出均为0。试写出描述此 问题的逻辑函数表达式。 解:三个输入变量有23=8种不同组合,根据已知条件可得真值表 如 下:
由真值表可知,使F=1的输入变量组合有4个,所以F的与—或 表达式为:
F XYZ X Y Z XY Z XYZ
2)逻辑函数的表示方法
(1)真值表 逻辑函数的真值表具有唯一性。逻辑函数有n个变量时, 共有2n个不同的变量取值组合。在列真值表时,变量取值 的组合一般按n位二进制数递增的方式列出。用真值表表 示逻辑函数的优点是直观、明了,可直接看出逻辑函数值 和变量取值之间的关系。
对偶关系
A(A+B)=AB
4)包含律
证明:
AB+AC+BC=AB+AC
AB+AC+BC =AB+AC+(A+A)BC =AB+AC+ABC+ABC =AB(1+C)+AC(1+B) =AB+AC
对偶关系
5) 关于异或和同或运算
对偶数个变量而言, 有 A1A2... An=A1 A2 ... An
对奇数个变量而言, 有 A1A2... An=A1 A2 ... An
异或和同或的其他性质:
A 0= A 1= A A= A (B C)=(A B ) C A (B C)=AB AC
A 1=A A 0 =A A A= 1 A (B C)=(A B) C A+(B C )=(A+B) (A+C)
第2章逻辑代数基础

同时,函数F的值为“0”。
便于获得逻辑电路图
逻辑表达式的简写:
1.“非”运算符下可不加括号,如
,
等。
2.“与”运算符一般可省略,如A·B可写成AB。
3.在一个表达式中,如果既有“与”运算又有“或”运 算,则按先“与”后“或”的规则进行运算,可省去括号,如 (A·B)+(C·D)可写为AB+CD。
注意:(A+B)·(C+D)不能省略括号,即不能写成A+B·C+D!
A
FA
1
FA
F
(a)我国常用传统符号
(b)国际流行符号 非门的逻辑符号
(c)国家标准符号
2.1.3 逻辑代数的复合运算
“与”、“或”、“非”三种基本逻辑运算按不同的方 式组合,还可以构成“与非”、“或非”、“与或非”、 “同或”、“异或”等逻辑运算,构成复合逻辑运算。对应 的复合门电路有与非门、或非门、与或非门、异或门和同或 门电路。
能实现基本逻辑运算的电路称为门电路,用基本的门电 路可以构成复杂的逻辑电路,完成任何逻辑运算功能,这些 逻辑电路是构成计算机及其他数字系统的重要基础。
实现“与”运算关系的逻辑电路称为“与”门。
A
A
A
&
B
F B
F B
F
(a)我国常用传统符号
(b)国际流行符号 与门的逻辑符号
(c)国家标准符号
2.1.2 逻辑代数的基本运算
2.逻辑值0和1是用来表征矛盾的双方和判断事件真伪 的形式符号,无大小、正负之分。
2.1.1 逻辑代数的定义
逻辑代数L是一个封闭的代数系统,它由一个逻辑变量集 K,常量0和1以及“或”、“与”、“非”三种基本运算所 构成,记为L={K,+,·,-,0,1}。该系统应满足下列公理。
数字逻辑基础2

2、吸收法 (1)利用公式A+AB=A,消去多余的项。 是另 项 是 F1 A B A BCD( E F ) A B 多外 的 另 运用摩根定律 余 一 因 外 如 的个 子 一 果 。乘 , 个 乘 F2 A B CD ADB A BCD AD B 积则乘积 项这积项 ( A AD) ( B BCD) A B (2)利用公式A+AB=A+B,消去多余的变量。 因项 的 F AB C A C D BC D 子 的 反 F AB A C B C 如 AB C C ( A B) D 是 因 是 果 多子 另 一 AB ( A B )C 余, 一 个 AB C ( A B) D 的则 个 乘 AB ABC AB C AB D 。这 乘 积 AB C 个积项 AB C D
A B C D
& ≥1 F
与或非门的逻辑符号
5、同或运算:逻辑表达式为:
F AB AB AB
A B 同或门的逻辑符号
A 0 0 1 1
B F 0 1 1 0 0 0 1 1 真值表
=
F
L=A+B
2.2.3逻辑函数及其表示法
一、逻辑函数的建立: 1、逻辑表达式:由逻辑变量和与、或、非3种运算符连 接起来所构成的式子。 输入逻辑变量:等式右边的字母A、B、C、D 输出逻辑变量:等式左边的字母F 原变量,反变量。 2、逻辑函数:如果对应于输入逻辑变量A、B、C、… 的每一组确定值,输出逻辑变量Y就有唯一确定的值,则称 F是A、B、C、…的逻辑函数。记为 F f ( A, B, C,) 注意:与普通代数不同的是,在逻辑代数中,不管是变 量还是函数,其取值都只能是0或1,并且这里的0和1只表示两 种不同的状态,没有数量的含义。
2 逻辑函数及其化简
1 1 1 1 1 1
AD
B
11
A 冗余项
AC
10
∴ F2 ( A, B, C, D) = AB + BC + AD
C
AB
例:用公式化简法得到下式,问是否最简, 若不是请化简之。
F3 ( A , B, C) = A B + AC + AB + BC
填项:
A
0 1
BC00
C
01 1 11 1 10
1
第二章 逻辑代数基础
§2.1 逻辑代数运算法则 §2.2 逻辑函数的化简 §2.3 卡诺图法
§2.1 逻辑代数运算法则
依据: 1.逻辑变量只取:0 、1两种状态。 2.与、或、非是三种最基本的逻辑运算。 与普通代数运算法则类似的:分配 律、结合律、交换律等。 与普通代数运算法则不同的: A•A=A A+A=A A = A (还原律)
= B + BD + ABD + ABCD
吸收消去
= B + BD
(长中含短,留下短)
吸收消去 (长中含反,去掉反) ∴F1 = B + D(最简与或式)
F2 = AD + AD + AB + AC + BD + ACEF+ BEF + DEFG
A
吸收消去 (长中含短,留下短)
(合并项)
= A + AC + BD + BEF + DEFG
ABD
D
01
( + C) C
直接填入
11
10
01 11
1
1
B A
数字电路第2章逻辑代数基础及基本逻辑门电路
AB+AC+ABC+ABC = = AB+ABC)+(AC+ABC) ( = AB+AC
(5)AB+A B = A (6)(A+B)(A+B )=A 证明: (A+B)(A+B )=A+A B+AB+0 A( +B+B) = 1 JHR A =
二、本章教学大纲基本要求 熟练掌握: 1.逻辑函数的基本定律和定理; 门、 2.“与”逻辑及“与”门、“或”逻辑及“或”
“非”逻辑及“非”门和“与”、“或”、“非” 的基本运算。 理解:逻辑、逻辑状态等基本概念。 三、重点与难点 重点:逻辑代数中的基本公式、常用公式、 基本定理和基本定律。
JHR
难点:
JHR
1.具有逻辑“与”关系的电路图
2.与逻辑状态表和真值表
JHR
我们作如下定义: 灯“亮”为逻辑“1”,灯“灭”为逻辑“0” 开关“通”为逻辑“1”,开关“断”为逻辑 “0” 则可得与逻辑的真值表。 JHR
3.与运算的函数表达式 L=A·B 多变量时 或 读作 或 L=AB L=A·B·C·D… L=ABCD… 1.逻辑表达式 2.逻辑符号
与非逻辑真值表
Z = A• B
3.逻辑真值表
逻辑规律:有0出1 全1 出0
JHR
A 0 0 1 1
B 0 1 0 1
Z 1 1 1 0
二、或非逻辑 1.逻辑表达式 2.逻辑符号
Z = A+ B
先或后非
3.逻辑真值表
JHR
三、与或非逻辑 1.逻辑表达式 2.逻辑符号
1.代入规则 在任一逻辑等式中,若将等式两边出现的同 一变量同时用另一函数式取代,则等式仍然成立。
JHR
代入规则扩大了逻辑代数公式的应用范围。例如摩 根定理 A+B = A ⋅ B 若将此等式两边的B用B+C 取代,则有
(5)AB+A B = A (6)(A+B)(A+B )=A 证明: (A+B)(A+B )=A+A B+AB+0 A( +B+B) = 1 JHR A =
二、本章教学大纲基本要求 熟练掌握: 1.逻辑函数的基本定律和定理; 门、 2.“与”逻辑及“与”门、“或”逻辑及“或”
“非”逻辑及“非”门和“与”、“或”、“非” 的基本运算。 理解:逻辑、逻辑状态等基本概念。 三、重点与难点 重点:逻辑代数中的基本公式、常用公式、 基本定理和基本定律。
JHR
难点:
JHR
1.具有逻辑“与”关系的电路图
2.与逻辑状态表和真值表
JHR
我们作如下定义: 灯“亮”为逻辑“1”,灯“灭”为逻辑“0” 开关“通”为逻辑“1”,开关“断”为逻辑 “0” 则可得与逻辑的真值表。 JHR
3.与运算的函数表达式 L=A·B 多变量时 或 读作 或 L=AB L=A·B·C·D… L=ABCD… 1.逻辑表达式 2.逻辑符号
与非逻辑真值表
Z = A• B
3.逻辑真值表
逻辑规律:有0出1 全1 出0
JHR
A 0 0 1 1
B 0 1 0 1
Z 1 1 1 0
二、或非逻辑 1.逻辑表达式 2.逻辑符号
Z = A+ B
先或后非
3.逻辑真值表
JHR
三、与或非逻辑 1.逻辑表达式 2.逻辑符号
1.代入规则 在任一逻辑等式中,若将等式两边出现的同 一变量同时用另一函数式取代,则等式仍然成立。
JHR
代入规则扩大了逻辑代数公式的应用范围。例如摩 根定理 A+B = A ⋅ B 若将此等式两边的B用B+C 取代,则有
第2章 逻辑代数基础 第3次课
A B C D
1.“与非”、“或非”、“与或非”运算
• “与非”运算就是“与”运算和“非”运算的组合。用逻辑函 数表示就是: F = A ⋅ B A F “与非”门逻辑符号 B
2014年9月17日 北京理工大学 信息科学学院 7
“与或非”门逻辑符号
F
2014年9月17日
北京理工大学 信息科学学院
8
数字电路——分析与设计
2014年9月17日 北京理工大学 信息科学学院 17 2014年9月17日 北京理工大学 信息科学学院 18
数字电路——分析与设计
第2章 逻辑代数基础
数字电路——分析与设计 “同或”运算的两个重要特性
第2章 逻辑代数基础
表 2.13 “异或”和“同或”运算公式 名称 1. A ⊕ 0 = A 基本运 算规律 2. A ⊕ 1 = A 3. A ⊕ A = 0 4. A ⊕ A = 1 交换律 结合律 分配律 5. 公 式 1.'A⊙1 = A 2.'A⊙0 = A 3.'A⊙A = 1 4.'A⊙ A = 0 5.'A⊙B = B⊙A 6.'A⊙(B⊙C ) = (A⊙B)⊙C 7.'A+(B⊙C ) = (A+B)⊙(A+C ) 类别
第2章 逻辑代数基础
(摩根定理) (摩根定理) (还原律) (分配律) (互补律) (自等律) (添加项定理)
作业2:2-9的(4),(5),(6),(7);2-10;
= A A + AB + A C + B C
= 0 + AB + A C + B C
= AB + A C + B C
= AB + A C
2014年9月17日 北京理工大学 信息科学学院 14
1.“与非”、“或非”、“与或非”运算
• “与非”运算就是“与”运算和“非”运算的组合。用逻辑函 数表示就是: F = A ⋅ B A F “与非”门逻辑符号 B
2014年9月17日 北京理工大学 信息科学学院 7
“与或非”门逻辑符号
F
2014年9月17日
北京理工大学 信息科学学院
8
数字电路——分析与设计
2014年9月17日 北京理工大学 信息科学学院 17 2014年9月17日 北京理工大学 信息科学学院 18
数字电路——分析与设计
第2章 逻辑代数基础
数字电路——分析与设计 “同或”运算的两个重要特性
第2章 逻辑代数基础
表 2.13 “异或”和“同或”运算公式 名称 1. A ⊕ 0 = A 基本运 算规律 2. A ⊕ 1 = A 3. A ⊕ A = 0 4. A ⊕ A = 1 交换律 结合律 分配律 5. 公 式 1.'A⊙1 = A 2.'A⊙0 = A 3.'A⊙A = 1 4.'A⊙ A = 0 5.'A⊙B = B⊙A 6.'A⊙(B⊙C ) = (A⊙B)⊙C 7.'A+(B⊙C ) = (A+B)⊙(A+C ) 类别
第2章 逻辑代数基础
(摩根定理) (摩根定理) (还原律) (分配律) (互补律) (自等律) (添加项定理)
作业2:2-9的(4),(5),(6),(7);2-10;
= A A + AB + A C + B C
= 0 + AB + A C + B C
= AB + A C + B C
= AB + A C
2014年9月17日 北京理工大学 信息科学学院 14
数字电子技术基础2第二版.ppt
名称 0-1 自等律 重叠律 互补律 交换律 结合律 分配律 反演律 (摩根定理)
还原律
表 2.2.1 逻辑代数的基本定律
公式 1 A+1=1 A+0=A A+A=A
A+ A =1
A+B=B+A (A+B)+C=A+(B+C) A+BC=(A+B)(B+C)
AB=AB
公式 2
A 0=0 A 1= A A A=A A A =0 A B=B A (A B) C=A (B C) A (B+C)=AB+AC
第2章 逻辑代数基础
名称 合并律 吸收律○1 吸收律○2 吸收律○3
公式 1
表 2.2.3 若干常用公式
公式 2
AB+A B =A
A+AB=A
(A+B)(A+ B )=A A (A+B)=A
A AB A B
A ( A +B)=A B
AB+ A C+BC=AB+ A C
(A+B)( A +C)(B+C)=(A+B)( A +C)
表2.2.2 反演律证明
AB
AB
AB AB
AB
00
1
1
1
1
01
1
1
0
0
10
1
1
0
0
11
0
0
0
0
第2章 逻辑代数基础
2.2.2 三个重要规则
1. 代入规则
任何一个逻辑等式,如果将等式两边所出现的某一变量都 代之以同一逻辑函数,则等式仍然成立,这个规则称为代入 规则。 由于逻辑函数与逻辑变量一样,只有0、1两种取值, 所以代入规则的正确性不难理解。运用代入规则可以扩大基 本定律的运用范围。