GMM高斯混合模型的EM算法参数估计matlab仿真
EM算法详解.一种参数估计的方法

EM算法种参数估计的方法一种参数估计的方法提纲⏹高斯混合模型⏹EM 算法的思想⏹EM 算法的应用⏹总结⏹参考文献高斯混合模型⏹混合模型(Mixed Model):其中,满足即混合模型由K 个成分组成,每个成分即合模个成分成每个成分的权重为⏹若混合模型中每个成分为高斯分布,则为高斯混合模型(Gaussian Mixture Model)()GMM 的例子⏹例1:一个班级每个学生的身高为假设男生和女生的身高分别服从高斯分布则其中为男生的比例,⏹问题:给定独立同分布(independent and identically (p ydistributed----IID)的数据,求参数),,,,,(222111σμασμα⏹混合模型的参数估计是EM(Expectation Maximization)算法最典型的应用GMM的例子例2:分布的随机数的直方图n = 10000;z = zeros(1,n);pw1 = 0.6;)1,3,4.0,2,2,6.0(),,,,,(222111-=σμασμαu1 = -2;std1 = 2;pw2=04;pw2 = 0.4;u2 = 3;std2 = 1;y1 = randn(1,floor(n*pw1))*std1 + u1;y2 = randn(1,floor(n*pw2))*std2 + u2;z(1,1:floor(n*pw1)) =y1;z(1,(floor(n*pw1)+1):n) = y2;提纲⏹高斯混合模型⏹EM 算法的思想⏹EM 算法的应用⏹总结⏹参考文献极大似然估计与EM 算法的关系⏹计算极大似然估计(maximum likelihood MLE)需要求似然函数的极值estimate ,MLE),需要求似然函数的极值o解析法:如求正态分布均值和方差的MLEo值计算:如高斯混合模型EM 算法()极大似然估计(MLE)⏹独立同分布(IID)的数据),,,(21n X X X Λ=X 其概率密度函数为)|(θx f n似然函数定义为log 似然函数定义为∏==X =X i iX f f L 1)|()|()|(θθθ)|(log )|(X =X θθL l ^⏹的极大似然估计为θθθθ)|(max arg X =L θθ)|(max arg X =l完整数据⏹观测数据:观测到的随机变量的IID 样X 本),,,(21n X X X Λ=X ⏹缺失数据:未观测到的随机变量的值Y ),,,(21n Y Y Y Λ=Y 在GMM 中,若来自第k 个成分,则i X k Y i =⏹完整数据:包含观测到的随机变量和未观测到的随机变量的数据,X Y ),(Y X =Z ))),(,),,((11n n Y X Y X K =Z完整似然函数若隐含变量的值已知,得),,,(21n Y Y Y Λ=Y 到完整数据的log 似然函数为:log θθL l Y X =Y X )|,(log),|(g ),|(θniiY X f ∏=)|,(log 1θiink Y X f ∑==))|(),|(log(1θθiiini Y f Y X f ∑==1i =iEM—Expectation ⏹观测数据X 已知,参数的当前值已知,在完整似然函数中缺失数据)tθ在完整似然函数中,缺失数据(隐含变量) Y 未知,完整log 似然函数对Y 求期望。
EM算法用于高斯混合模型

EM算法用于高斯混合模型高斯混合模型(Gaussian Mixture Model,简称GMM)是一种常用的概率密度估计方法,其基本思想是将数据分解为由多个高斯分布组成的混合模型。
每个高斯分布对应于数据中的一个潜在类别,而混合系数则表示每个类别的权重。
GMM的参数估计通常使用期望最大化(Expectation Maximization,简称EM)算法来进行。
EM算法是一种迭代优化算法,用于求解含有隐变量的最大似然估计问题。
GMM中,EM算法被用来最大化对数似然函数,从而估计GMM的参数。
EM算法的基本思想是,在每一次迭代中,先进行E步(Expectation),计算隐变量在给定参数下的后验概率。
然后进行M步(Maximization),通过极大化对数似然函数来估计参数。
重复执行E步和M步,直到收敛为止。
在GMM中,E步计算的是隐藏变量对应的后验概率,即每个样本属于每个高斯分布的概率。
这个概率可以使用贝叶斯公式计算得到。
假设有N个样本,K个高斯分布,那么对于每个样本i和高斯分布j,可以计算其后验概率:$$w_{ij} = \frac{\pi_j \cdot \mathcal{N}(x_i,\mu_j,\Sigma_j)}{\sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(x_i,\mu_k,\Sigma_k)}$$其中,$w_{ij}$表示样本i属于高斯分布j的后验概率,$\pi_j$表示高斯分布j的混合系数,$\mathcal{N}(x_i,\mu_j,\Sigma_j)$表示高斯分布j的概率密度函数。
在M步中,需要利用E步计算得到的后验概率,更新GMM的参数。
更新过程分两步进行:首先,根据后验概率的加权平均来更新混合系数,即每个高斯分布对应的权重;然后,根据后验概率的加权平均来更新高斯分布的均值和协方差矩阵。
混合系数的更新可以通过对每个高斯分布的后验概率求平均得到:$$\pi_j = \frac{1}{N} \sum_{i=1}^{N} w_{ij}$$高斯分布的均值和协方差矩阵的更新可以通过将样本加权平均来得到:$$\mu_j = \frac{1}{\sum_{i=1}^{N} w_{ij}} \sum_{i=1}^{N} w_{ij} \cdot x_i$$$$\Sigma_j = \frac{1}{\sum_{i=1}^{N} w_{ij}} \sum_{i=1}^{N}w_{ij} \cdot (x_i - \mu_j)(x_i - \mu_j)^T$$重复执行E步和M步,直到收敛为止。
机器学习算法总结(六)——EM算法与高斯混合模型

机器学习算法总结(六)——EM算法与⾼斯混合模型 极⼤似然估计是利⽤已知的样本结果,去反推最有可能(最⼤概率)导致这样结果的参数值,也就是在给定的观测变量下去估计参数值。
然⽽现实中可能存在这样的问题,除了观测变量之外,还存在着未知的隐变量,因为变量未知,因此⽆法直接通过最⼤似然估计直接求参数值。
EM算法是⼀种迭代算法,⽤于含有隐变量的概率模型的极⼤似然估计,或者说是极⼤后验概率估计。
1、经典的三硬币模型 引⼊⼀个例⼦来说明隐变量存在的问题。
假设有3枚硬币,分别记作A,B,C。
这些硬币正⾯出现的概率分别是π,p,q。
我们的实验过程如下,先投掷硬币A,根据其结果选出硬币B和硬币C,正⾯选B,反⾯选C;然后投掷选出的硬币,此时出现正⾯记作1,出现反⾯记作0。
在这个例⼦中我们观察到的变量只是B或者C的结果,⽽对A的结果并不知道,在这⾥A的结果也就是我们的隐变量。
A的结果对最终的结果是有影响的,因此在估计参数时必须将A的结果考虑进去。
1、EM算法 我们将观测变量表⽰为Y = (Y1,Y2,....,Y n),隐变量表⽰为Z = (Z1,Z2,....,Z n),则观测数据的似然函数可以表⽰为 在这⾥P(Y|θ) 是P(Y, Z|θ) 的边缘概率,通过转换后可以表⽰成右边的形式,我们将其转换成对数形式,这样便于求联合概率 然⽽对于这样的式⼦直接根据极⼤化求θ的值是很困难的,因为这⾥还存在隐变量Z,在这⾥引⼊EM算法,通过迭代求解,假设在第i 次迭代后θ的估计值为θ(i)。
我们希望新估计值能是L(θ)增加,通过迭代逐步的达到最⼤值。
为此我们考虑第i+1步迭代后两者的差: 利⽤Jensen不等式将上述式⼦展开并得到其下界(对数函数是凹函数): 令 则有 在这⾥B(θ, θ(i)) 是L(θ) 的⼀个下界,⽽且由的表达式可知 因此任何能使得B(θ, θ(i)) 增⼤的θ,也能使得L(θ) 增⼤。
因此求θ值使得B(θ, θ(i)) 增⼤就可以转变成求θ使得L(θ) 增⼤,即求 将上述式⼦展开可得(在这⾥去掉常数项,因为常数项不会影响最终的结果) 因此问题就演变成了求Q函数的极⼤化。
EM算法用于高斯混合模型

EM算法用于高斯混合模型EM算法(Expectation-Maximization algorithm)是一种迭代算法,用于估计含有隐变量的概率模型参数。
它被广泛应用于高斯混合模型(Gaussian Mixture Model,GMM)的参数估计。
GMM 是一种概率模型,它由若干个高斯分布组成,每个高斯分布对应数据的一个分量。
具体来说,EM算法包含两个步骤:E步骤(Expectation step)和M步骤(Maximization step)。
在E步骤中,给定当前参数估计,我们计算隐变量的期望值。
而在M步骤中,根据这些隐变量的期望值,我们重新估计参数。
这两个步骤会反复迭代,直到参数收敛为止。
首先,我们来看E步骤。
在GMM中,每个观测值都可以由多个高斯分布生成。
我们需要计算每个数据点属于每个高斯分布的后验概率。
这个后验概率可以表示为每个高斯分布生成一些数据点的概率除以所有高斯分布生成这个数据点的概率之和。
这个后验概率即为数据点属于每个高斯分布的权重。
计算后验概率的方法是使用贝叶斯公式。
然后,我们来看M步骤。
在M步骤中,我们根据E步骤计算得到的后验概率,重新估计高斯分布的参数。
具体来说,对于每个高斯分布,我们计算其均值和协方差矩阵。
均值可以通过将数据点乘以其对应的后验概率,再除以所有后验概率之和来计算。
协方差矩阵可以通过计算每个数据点与对应高斯分布的均值之间的差的外积,再乘以其对应的权重,最后除以所有权重之和来计算。
在每次迭代中,E步骤和M步骤会交替进行,直到算法收敛。
算法的收敛条件可以选择参数变化的很小或达到一定的迭代次数。
在每次迭代中,EM算法会逐渐提高对数据的拟合程度,也就是逐渐改善参数的估计。
EM算法有很多优点。
首先,它是一种通用的算法,适用于各种类型的概率模型估计。
其次,EM算法在估计参数时可以有很大的灵活性,可以根据需求自定义参数的个数和选择去模型每个分量的数据。
此外,EM 算法收敛到局部最优,而跳出局部最优通常需要全局优化方法。
高斯混合聚类及EM实现

⾼斯混合聚类及EM实现⼀、引⾔ 我们谈到了⽤ k-means 进⾏聚类的⽅法,这次我们来说⼀下另⼀个很流⾏的算法:Gaussian Mixture Model (GMM)。
事实上,GMM 和 k-means 很像,不过 GMM 是学习出⼀些概率密度函数来(所以 GMM 除了⽤在 clustering 上之外,还经常被⽤于 density estimation ),简单地说,k-means 的结果是每个数据点被 assign 到其中某⼀个 cluster 了,⽽ GMM 则给出这些数据点被 assign 到每个 cluster 的概率,⼜称作soft assignment。
给出⼀个概率有很多好处,因为它的信息量⽐简单的⼀个结果要多,⽐如,我可以把这个概率转换为⼀个 score ,表⽰算法对⾃⼰得出的这个结果的把握。
也许我可以对同⼀个任务,⽤多个⽅法得到结果,最后选取“把握”最⼤的那个结果;另⼀个很常见的⽅法是在诸如疾病诊断之类的场所,机器对于那些很容易分辨的情况(患病或者不患病的概率很⾼)可以⾃动区分,⽽对于那种很难分辨的情况,⽐如,49% 的概率患病,51% 的概率正常,如果仅仅简单地使⽤ 50% 的阈值将患者诊断为“正常”的话,风险是⾮常⼤的,因此,在机器对⾃⼰的结果把握很⼩的情况下,会“拒绝发表评论”,⽽把这个任务留给有经验的医⽣去解决。
⼆、归纳法 ⼀系列数据N要求对他拟合,如果不作要求的话,可以⽤⼀个N-1次多项式来完美拟合这N个点,⽐如拉格朗⽇插值,⽜顿插值等,或者如果不限制次数的话可以找到⽆穷个完美函数,但是往往咱们要求指数型或者线性,就是需要对信息有机结合,GMM就是这样,要求⽤⾼斯模型来拟合,当然了可以构造任意的混合模型,不过根据中⼼极限定理等⾼斯模型⽐较合适。
另外,Mixture Model 本⾝其实也是可以变得任意复杂的,通过增加 Model 的个数,我们可以任意地逼近任何连续的概率密分布。
混合高斯分布的em算法

混合高斯分布的em算法
混合高斯分布是一种常用的数据建模方法,它假设数据样本是由多个高斯分布的混合所组成。
EM算法是一种用于估计混合高斯分布参数的常用方法。
具体步骤如下:
1. 初始化混合系数、均值和协方差矩阵:随机初始化混合系数、均值和协方差矩阵来作为模型参数。
2. E步骤:计算每个样本点属于每个高斯分布的概率。
3. M步骤:基于E步骤中计算出的概率,分别计算每个高斯分布的混合系数、均值和协方差矩阵。
4. 重复执行E步骤和M步骤,直到似然函数收敛或达到指定的最大迭代次数。
5. 输出混合系数、均值和协方差矩阵作为混合高斯分布模型的参数。
EM算法的核心是通过E步骤计算样本点的概率,并通过M步骤更新混合高斯分布的模型参数。
这两个步骤交替执行,不断迭代,直到达到收敛条件。
最终得到的模型可以用于数据分类、聚类等应用中。
高斯混合模型的超参数估计

高斯混合模型的超参数估计高斯混合模型(Gaussian Mixture Model,简称GMM)是一种概率模型,用于描述多个高斯分布的混合体。
在机器学习和数据科学中,高斯混合模型常用于聚类、异常检测和密度估计等任务。
超参数是在模型训练之前需要设置的参数,而不是通过训练得到的参数。
对于高斯混合模型的超参数估计,通常使用EM(Expectation-Maximization)算法。
EM算法是一种迭代算法,用于在存在隐变量或缺失数据的情况下进行参数估计。
在高斯混合模型中,隐变量是各个数据点所属的簇(即类别),而缺失数据则是各个数据点对应的簇中心位置(即均值向量和高斯分布的协方差矩阵)。
在EM算法中,每一步迭代都包含两个步骤:期望(E)步骤和最大化(M)步骤。
在期望(E)步骤中,计算每个数据点属于各个簇的概率。
这些概率基于当前参数的估计值,包括各个簇的中心位置、协方差矩阵以及簇的先验概率。
然后,根据这些概率更新隐变量的状态,即每个数据点所属的簇。
在最大化(M)步骤中,根据隐变量的状态和当前参数的估计值,更新模型的参数。
具体来说,更新各个簇的中心位置和协方差矩阵,以及簇的先验概率。
这一步的目标是最大化似然函数,即数据的概率分布。
通过反复迭代EM算法,直到参数收敛或达到预设的最大迭代次数,就可以得到高斯混合模型的超参数估计值。
这些估计值包括各个簇的中心位置、协方差矩阵以及簇的先验概率。
值得注意的是,高斯混合模型的超参数估计也可以使用其他方法,如网格搜索、贝叶斯方法和启发式方法等。
不同的方法可能在不同的数据集和任务上表现不同,因此在实际应用中需要根据具体情况选择合适的方法。
高斯混合模型(GMM)参数优化及实现

∑αl N l ( xi ; Θ)
l
M
, 1 ≤ i ≤ n ,1 ≤ j ≤ M
(6)
注意:写代码实现公式(6)时,对于每个 SGM 分别用公式(4)计算每个样本点 xi 在该模型下的概率密度 值 N j ( xi ; Θ) ,对于所有样本,得到一个 n *1 的向量,计算 M 次,得到 n * M 的矩阵,每一列为所有点在该 模型下的概率密度值(PDF) ;实现 ∑α l N l ( xi ; Θ) 时,需要针对每个点计算在各个 SGM 的概率值总和。公
j =1 M
(3)
上式即称为 GMM, ∑α j = 1 ,其中
j =1
M
N j ( x; μ j , Σ j ) =
1 1 exp − ( x − μ j )T Σ − j ( x − μ j ) 2 (2π ) Σ j 1
m
(4)
表示第 j 个 SGM 的 PDF。 令 θ j = (α j , μ j , Σ j ) ,GMM 共有 M 个 SGM 模型,现在,我们就需要通过样本集 X 来估计 GMM 的所有 参数: Θ = (θ1 ,⋅⋅⋅,θ M )T 。样本 X 的概率公式为:
西南交通大学,信息学院,xgong@
资料整理
高斯混合模型(GMM)参数优化及实现
龚 勋 (2010-11-13)
1 高斯混合模型概述
高斯密度函数估计是一种参数化模型。有单高斯模型(Single Gaussian Model, SGM)和高斯混合模型 (Gaussian mixture model,GMM)两类。类似于聚类,根据高斯概率密度函数(PDF,见公式 1)参数的 不同,每一个高斯模型可以看作一种类别,输入一个样本 x ,即可通过 PDF 计算其值,然后通过一个阈值 来判断该样本是否属于高斯模型。很明显,SGM 适合于仅有两类别问题的划分,而 GMM 由于具有多个 模型,划分更为精细,适用于多类别的划分,可以应用于复杂对象建模。 下面以视频前景分割应用场景为例,说明 SGM 与 GMM 在应用上的优劣比较: l SGM 需要进行初始化,如在进行视频背景分割时,这意味着如果人体在前几帧就出现在摄像头前, 人体将会被初始化为背景,而使模型无法使用; l SGM 只能进行微小性渐变,而不可突变。如户外亮度随时间的渐变是可以适应的,如果在明亮的室 内突然关灯,单高斯模型就会将整个室内全部判断为前景。又如,若在监控范围内开了一辆车,并在 摄像头下开始停留。由于与模型无法匹配,车会一直被视为前景。当车过很长时间离去时,由于车停 留点的亮度发生了很大的变化,因此已经无法与先前的背景模型相匹配; l SGM 无法适应背景有多个状态,如窗帘,风吹的树叶。单高斯模型无法表示这种情况,而使得前背 景检测混乱,而 GMM 能够很好地描述不同状态; l 相对于单高斯模型的自适应变化,混合高斯模型的自适应变化要健壮的多。它能解决单高斯模型很多 不能解决的问题。如无法解决同一样本点的多种状态,无法进行模型状态转化等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GMM高斯混合模型的EM算法参数估计matlab仿真
1.算法仿真效果
matlab2022a仿真结果如下:
2.算法涉及理论知识概要
GMM,高斯混合模型,也可以简写为MOG。
高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。
GMMs已经在数值逼近、语音识别、图像分类、图像去噪、图像重构、故障诊断、视频分析、邮件过滤、密度估计、目标识别与跟踪等领域取得了良好的效果。
高斯混合模型(GMM) 是一种机器学习算法。
它们用于根据概率分布将数据分类为不同的类别。
高斯混合模型可用于许多不同的领域,包括金融、营销等等!这里要对高斯混合模型进行介绍以及真实世界的示例、它们的作用以及何时应该使用GMM。
高斯混合模型(GMM) 是一个概率概念,用于对真实世界的数据集进行建模。
GMM是高斯分布的泛化,可用于表示可聚类为多个高斯分布的任何数据集。
高斯混合模型是一种概率模型,它假设所有数据点都是从具有未知参数的高斯分布的混合中生成的。
高斯混合模型可用于聚类,这是将一组数据点分组为聚类的任务。
GMM 可用于在数据集中可能没有明确定义的集群中查找集群。
此外,GMM 可用于估计新数据点属于每个集群的概率。
高斯混合模型对异常值也相对稳健,这意味着即使有一些数据点不能完全适合任何集群,它们仍然可以产生准确的结果。
这使
得 GMM 成为一种灵活而强大的数据聚类工具。
它可以被理解为一个概率模型,其中为每个组假设高斯分布,并且它们具有定义其参数的均值和协方差。
GMM 由两部分组成——均值向量(μ) 和协方差矩阵(Σ)。
高斯分布被定义为呈钟形曲线的连续概率分布。
高斯分布的另一个名称是正态分布。
这是高斯混合模型的图片:它可以被理解为一个概率模型,其中为每个组假设高斯分布,并且它们具有定义其参数的均值和协方差。
GMM 由两部分组成——均值向量(μ) 和协方差矩阵(Σ)。
高斯分布被定义为呈钟形曲线的连续概率分布。
高斯分布的另一个名称是正态分布。
这是高斯混合模型的图片:
EM (Expectation Maximization)算法是由Dempster、Laind 和Rubin在1977年提出的一种求参数的极大似然估计方法,可以广泛地应用于处理缺损数据、截尾数据等带有噪声的不完整数据。
针对不完整数据集,EM算法主要应用于以下两种情况的参数估计:第一,由于观测过程中本身的错误或局限性导致的观测数据自身不完整;第二,数据没有缺失,但是无法得到似然函数的解析解,或似然函数过于复杂,难以直接优化分析,而引入额外的缺失参数能使得简化后的似然函数便于参数估计。
最大期望算法(Expectation-Maximization algorithm, EM),或Dempster-Laird-Rubin算法,是一类通过迭代进行极大似然估计(Maximum Likelihood Estimation, MLE)的优化算法,通常作为牛顿迭代法(Newton-Raphson method)的替代用于对包含隐变量(latent variable)或缺失数据(inplete-data)的概率模型进行参数估计。
EM算法的标准计算框架由E步(Expectation-step)和M步(Maximization step)交替组成,算法的收敛性可以确保迭
代至少逼近局部极大值。
EM算法是MM算法(Minorize-Maximization algorithm)的特例之一,有多个改进版本,包括使用了贝叶斯推断的EM算法、EM梯度算法、广义EM算法等。
由于迭代规则容易实现并可以灵活考虑隐变量,EM算法被广泛应用于处理数据的缺测值,以及很多机器学习(machine learning)算法,包括高斯混合模型(Gaussian Mixture Model, GMM)和隐马尔可夫模型(Hidden Markov Model, HMM)的参数估计。
3.MATLAB核心程序
z1 = gaussian2D(gridX, mu1, sigma1);
z2 = gaussian2D(gridX, mu2, sigma2);
Z1 = reshape(z1, gridSize, gridSize);
Z2 = reshape(z2, gridSize, gridSize);
[C, h] = contour(u, u, Z1);
[C, h] = contour(u, u, Z2);
axis([-6 6 -6 6])
title('Original Data and PDFs');
m = size(X, 1);
k = 2;
n = 2;
indeces = randperm(m);
mu = X(indeces(1:k), :);
sigma = [];
for (j = 1 : k)
sigma{j} = cov(X);
end
phi = ones(1, k) * (1 / k);
%Run Expectation Maximization
W = zeros(m, k);
for (iter = 1:1000)
%Expectation
pdf = zeros(m, k);
for (j = 1 : k)
pdf(:, j) = gaussian2D(X, mu(j, :), sigma{j}); end
pdf_w = bsxfun(@times, pdf, phi);
W = bsxfun(@rdivide, pdf_w, sum(pdf_w, 2));
%Maximization
prevMu = mu;
for (j = 1 : k)
phi(j) = mean(W(:, j), 1);
mu(j, :) = weightedAverage(W(:, j), X);
sigma_k = zeros(n, n);
Xm = bsxfun(@minus, X, mu(j, :));
for (i = 1 : m)
sigma_k = sigma_k + (W(i, j) .* (Xm(i, :)' * Xm(i, :)));
end
sigma{j} = sigma_k ./ sum(W(:, j));
end
if (mu == prevMu)
break
end
end
figure(2);
hold off;
plot(X1(:, 1), X1(:, 2), 'bo');
hold on;
plot(X2(:, 1), X2(:, 2), 'ro');。