(完整版)大学概率统计试题及答案

(完整版)大学概率统计试题及答案
(完整版)大学概率统计试题及答案

选择填空题(共80分, 其中第1-25小题每题2分,第26-353分) A 、B 是两个随机事件,P( A ) = 0.3,P( B ) = 0.4,且A 与B 相互独立, 则

()P A B U = B ;

(A) 0.7 (B) 0.58

(C) 0.82

(D) 0.12

A 、

B 是两个随机事件,P( A ) = 0.3,P( B ) = 0.4,且A 与B 互不相容,则

()P A B =U D ;

(A) 0 (B) 0.42

(C) 0.88

(D) 1

已知B,C 是两个随机事件,P( B | C ) = 0.5,P( BC ) = 0.4,则P( C ) = C ; (A) 0.4 (B) 0.5

(C) 0.8

(D) 0.9

袋中有6只白球,4只红球,从中抽取两只,如果作不放回抽样,则抽得的两个球

颜色不同的概率为: A ;

(A) 815 (B) 415

(C) 12

25

(D) 625

袋中有6只白球,4只红球,从中抽取两只,如果作放回抽样,则抽得的两个球颜

色不同的概率为: C ;

(A) 815 (B) 415

(C) 12

25

(D) 625

在区间[0,1]上任取两个数,则这两个数之和小于1

2

的概率为 C ;

(A) 1/2 (B) 1/4 (C) 1/8

(D) 1/16

在一次事故中,有一矿工被困井下,他可以等可能地选择三个通道之一逃生.1/2,通过第二个通道逃生成功的1/3,通过第三个通道逃生成功的可能性为1/6.请问:该矿工能成功逃

生的可能性是 C .

(A) 1 (B) 1/2

(C) 1/3

(D) 1/6

8.已知某对夫妇有四个小孩,但不知道他们的具体性别。设他们有Y 个儿子,如果生男孩的概率为0.5,则Y 服从 B 分布. (A) (01)- 分布 (B) (4,0.5)B (C) (2,1)N

(D)

(2)π

9.假设某市公安机关每天接到的110报警电话次数X 可以用泊松(Poisson)分布

()πλ来描述.已知{99}{100}.P X P X ===则该市公安机关平均每天接到

的110报警电话次数为 C 次. (A) 98 (B) 99

(C) 100

(D) 101

10.指数分布又称为寿命分布,经常用来描述电子器件的寿命。设某款电器的寿命(单位:小时)的密度函数为

则这种电器的平均寿命为 A 小时.

(A) 500 (B) 5000 (C) 250000

(D) 25000000

11.设随机变量X 具有概率密度

则常数k = B .

(A) 1 (B) 1

2

(C) 13

(D) 14

12.在第11小题中, {11}P X -≤≤= C .

(A) 0 (B) 1

2

(C) 14

(D) 18

13.抛掷两颗骰子,用X 和Y 分别表示它们的点数(向上的面上的数字),则这两颗骰子的点数之和(Z=X+Y)为7的概率为 B .

0.0020.002, 0()0,

t e t f t -?>=?

?其它,02,()0,

kx x f x ≤≤?=?

?其它.

(A) 112 (B) 16

(C) 1

3

(D) 12

14.抛掷两颗骰子,用X 和Y 分别表示它们的点数(向上的面上的数字),则这两颗骰子的最小点数(min{,}U X Y =)为1的概率为 B .

(A) 1236 (B) 1136

(C) 10

36

(D) 936

15.根据世界卫生组织的数据,全球新生婴儿的平均身长为50厘米,身长的标准差估计为2.5厘米。设新生婴儿的身长服从正态分布,则全球范围内大约有 D 新生婴儿身长超过52.5厘米. (A) 97.72% (B) 2.28% (C) 84.13%

(D) 15.87%

16. 在第15小题中,身长在48厘米到52厘米之间的新生婴儿大约占 A .

(A) 57.62% (B) 78.81% (C) 84.13%

(D) 15.87%

17.设随机变量X ~ N (20,16),Y ~ N (10,9),且X 与Y 相互独立,则X+Y 服从 D 分布.

(A) (30,16)N (B) (15,16)N (C) (30,9)N (D) (30,25)N

18. 在第17小题中,X –Y 服从 B 分布.

(A) (10,7)N (B) (10,25)N (C) (30,25)N (D) (30,7)N

19. 在第17小题中,P(X –Y>20) = B .

(A) 97.72% (B) 2.28% (C) 84.13% (D) 15.87%

20.已知(10,0.1)X B :,则E(X 2) = C .

(A) 1 (B) 0.9 (C) 1.9

(D) 1.81 21.已知E(X) = 1,D(X) = 2,E(Y) = 3,E( Y 2 )= 10,X 和Y 相互独立,则D(X+2Y+1) = C .

(A)

4 (B)

5 (C)

6 (D) 7

22.已知E(X) = 1,D(X) = 2,E(Y) = 3,E( Y 2 )= 10,X 和Y 的相关系数

6XY ρ=.则D(2X+Y) = B .

(A) 193 (B) 233

(C) 293 (D) 313

23.设随机向量(X,Y)具有联合密度函数

(,)f x y =(2), 0,0,

0, x y ke x y -+?>>?

?其它.

则密度函数中的常数k = A .

(A)

2 (B)

3 (C) 4

(D) 5

24. .设随机变量X ,Y 的概率密度分别为:

=)(x f X 2, 01,

0, x x ≤≤???

其它, =

)(y f Y 23, 01,

0 , y y ?≤≤?

?

其它. 已知随机变量X 和Y 相互独立.则概率{}0P Y X -< B .

(A) 15 (B) 25 (C) 35 (D) 4

5

25.设X 1,X 2,X 3是来自总体X 的简单随机样本,则下列统计量

1123212331231111111,(),2443234

T X X X T X X X T X X X =++=++=++

中, A 是总体均值的无偏估计量.

(A) 12T T 和 (B) 13T T 和 (C) 23T T 和 (D) 123,T T T 和 26.在第25小题中,属于无偏估计的统计量中最有效的一个为 B . (A) 1T (B) 2T (C) 3T (D) 12,T T 27.已知随机变量X 与Y 相互独立,且2~(20)X χ,2~(40)Y χ,则Y X /2服从分布 B . (A)

2(60)χ (B) (20,40)F (C) (19,39)F (D) 2(80)χ

28.设201,...,X X 是总体)10,20(N 的容量为20的一个样本,这个样本的样本均值记为X .则X 服从分布 B .

(A) (20,10)N (B) 1(20,)2N (C) 1

(1,)2

N (D) (1,10)N

29.设201,...,X X 及301,...,Y Y 分别是总体)10,20(N 的容量为20和30的两个独立样本,这两组样本的样本均值分别记为Y X ,.Y X -服从分布 D .

(A) 2(0,)5N (B) 2(20,)5N (C)

5(20,)6

N (D)

5(0,)6

N 30.在第29小题中

, {P X Y -<

= B . (A) 57.62% (B) 78.81% (C) 84.13% (D) 15.87%

31.在第29小题中,20

2

1

()10

i

i X

X =-∑服从分布 B .

(A)

2(20)χ (B) 2(19)χ (C) (19)t (D) (20)t

32. 设总体X 在区间(0,)θ上服从均匀分布,参数θ末知, 12,,,n X X X L 是来自总体X 的样本,则θ的矩估计量为 B .

(A) ?X θ

= (B) ?2X θ= (C) ?3X θ= (D) ?4X θ= 33.设总体2

(,),X N μσ:参数2

σ已知,

μ末知,12,,,n X X X L 是来自总体

X

的样本,则μ的极大似然估计量为 A .

(A) ?X μ

= (B) ?2X μ= (C) ?3X μ= (D) ?1/X μ= 34.假设检验的第一类错误(弃真)是指: B

(A) 0H 为真且接受0H (B) (A) 0H 为真但拒绝0H (C) 0H 为假但接受0H (D) 0H 为假且拒绝0H 35.两个正态总体的方差的假设检验中选择的检验统计量为 D .

(A) X Z =

(B) X t =

(C) 2

2

2

(1)n S χσ-=

(D) 2

122

S F S =

二、计算题(共20分)

1.欲调查某地居民每月用于食品的消费支出.随机抽取了16户家庭进行调查,发现平均每户家庭每月用于食品的消费支出为810元,标准差为80元.假设该地区每户家庭每月用于食品的消费支出服从正态分布.

(1) 以90%的置信度构造该地区平均每户家庭每月用于食品的消费支出的置

信区间(5分).

(2) 以95%的置信度构造该地区平均每户家庭每月用于食品的消费支出的置

信区间(5分).

(3) 从以上两个置信区间找出置信度与置信区间宽度的定性关系(1分). 解:(1)

(2)

(3)置信度越高,区间宽度越宽。置信度越低,区间宽度越窄.

2.随机抽取某班25名学生的概率统计课程的成绩,算得他们的平均成绩为70分标准差为5分.假定该班的学生成绩近似服从正态分布,请解答下列问题:

(1) 取0.05的显著性水平检验“该班学生的平均成绩是75分”这一命题能

否接受.(5分)

(2) 显著性水平为0.05α=,问该班学生的成绩的方差2σ是否为30. (4分)

其中20.025

(24)39.364,χ=20.975(24)12.401χ=,2

0.05(24)36.415χ=. 解:(1)

1)提出假设,:0H 该班学生的平均成绩等于75分,

0.02580(1)810 2.13154(81042.63)(767.37,852.63);x t n -=±?=±=()(

)0.0580

(1)810 1.75314(81035.062)(774.938,845.062)

x t n -=±?=±=()()

:1H 该班学生的平均成绩不等到于75分.

1分

2) 检验统计量为:

x t =

; 1分 3) 0.025(24) 2.0639,t =拒绝域为{: 2.0639, 2.0639}.t t t ><- 1分

4)将样本值代入统计量算出统计量的实测值

:

5.x t =

==- .1分 所以拒绝原假设. 1分 (2)

1)提出假设,:0H 2σ=30,:1H 2σ不等于30; 1分 2) 检验统计量为:

2

220

(1)n S χσ-=

; 1分

3)2

0.025(24)39.364,χ=20.975(24)12.401χ=,

拒绝域为22{12.401}{39.364}.χχ<>及

1分 4)将样本值代入统计量算出统计量的实测值:

2

2

2

(1)24

.2520.30

n S χσ-=

== . 所以接受原假设. 1分

概率论与数理统计复习 第一章 概率论的基本概念 一.基本概念 随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集. 必然事件(S):每次试验中一定发生的事件. 不可能事件(?):每次试验中一定不会发生的事件. 二. 事件间的关系和运算 ?(事件B 包含事件A )事件A 发生必然导致事件B 发生. ∪B (和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A-B(差事件)事件A 发生而B 不发生. 5. AB=? (A 与B 互不相容或互斥)事件A 与B 不能同时发生. 6. AB=?且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德?摩根律 B A B A I Y = B A B A Y I = 三. 概率的定义与性质 1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ; (3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…), P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质 (1) P(?) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,

概率论与数理统计期末复习题一 一、填空题(每空2分,共20分) 1、设X 为连续型随机变量,则P{X=1}=( 0 ). 2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ). 3、若随机变量X 的分布律为P{X=k}=C(2/3)k ,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ). 5、已知随机变量X ~N(μ,σ2 ),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6 且X 与Y 相互独立。 则A=( 0.35 ),B=( 0.35 ). 7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ). 二、计算题(每题12分,共48分) 1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率. 解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(3 1 =?+?+?== ∑=i i i A B P A P B P (2)21.049.0/)3.035.0()|(2=?=B A P 2、已知随机变量X 的概率密度为 其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1). ?? ?? ?<≥=-0 00)(2x x e A x f x λλ

概率论与数理统计作业 班级 姓名 学号 任课教师 第三章 多维随机变量及其分布 教学要求: 一、了解多维随机变量的概念,了解二维随机变量的分布函数; 二、了解二维离散型随机变量分布律的概念,理解二维连续型随机变量概率密度的概念; 三、理解二维随机变量的边缘概率分布; 四、理解随机变量的独立性概念; 五、会求两个独立随机变量的简单函数的分布(和、极大、极小). 重点:二维离散型随机变量的联合分布律及二维连续型随机变量的边缘概率密度,随机变 量的独立性. 难点:边缘分布,随机变量的独立性,随机变量的函数的分布. 练习一 二维随机变量及其分布 1.填空题 (1)设二维随机变量),(Y X 的分布函数为),(y x F ,且d c b a <<,,则 =≤}{a X P ()+∞,a F ; =≥}{d Y P ()d F ,1∞+-; =≤<≤<},{d Y c b X a P ),(),(),(),(c a F c b F d a F d b F +--. (2)设二维连续型随机变量),(Y X 的概率密度为),(y x f ,则其分布函数),(y x F = ?? +∞∞-+∞ ∞ -dxdy y x f ),(;若G 是xoy 平面上的区域,则点),(Y X 落在G 内的概率,即 }),{(G Y X P ∈??=G dxdy y x f ),( (3)若二维随机变量),(Y X 的概率密度为 ) 1)(1(),(22y x A y x f ++= )0,0(>>y x , 则系数A = ,4 2 π= <}1{X P 2 1. (4)设二维随机变量),(Y X 的分布函数(),3arctan 2arctan ,?? ? ??+??? ? ?+=y C x B A y x F

中国计量学院2011 ~ 2012 学年第 1 学期 《 概率论与数理统计(A) 》课程考试试卷B 开课二级学院: 理学院 ,考试时间: 2011 年 12_月26 日 14 时 考试形式:闭卷√、开卷□,允许带 计算器 入场 考生姓名: 学号: 专业: 班级: 1.某人射击时,中靶的概率为4 3 ,若射击直到中靶为止,则射击次数为3的概率为( ). (A) 43412?)( (B) 343)( (C) 41432?)( (D) 34 1)( 2.n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布并且a X E i =)(,b X Var i =)(,则这些随机变量的算术平均值∑= =n i i X n X 1 1的数学期望和方差分别为( ). (A ) a ,2n b (B )a ,n b (C)a ,n b 2 (D )n a ,b 3.若100张奖券中有5张中奖,100个人分别抽取1张,则第100个人能中奖的概率为( ). (A) 01.0 (B) 03.0 (C) 05.0 (D) 0 4. 设 )(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是( ). (A) )()(21x f x f (B))()(212x F x f (C))()(21x F x f (D) )()()()(1221x F x f x F x f + 5.已知随机变量X 的概率密度函数为?????≤>=-0,00 ,)(22 22x x e a x x f a x ,则随机变量X Y 1 = 的期望 =)(Y E ( ).

任课教师 专业名称 学生姓名 学号 密 封 线 X X 工业大学概率统计B 期末考试试卷(A 卷) } 分 分 108

求:(1)常数k ,(2)P(X<1,Y<3) (3) P(X<1.5); (4) P(X+Y ≤4) 解:(1)由()1)6(1 )(20 4 =--=???? +∞∞-+∞ ∞ -dx dy y x k dxdy xy f 即 解得24 1 = k 2分 (2)P(X<1,Y<3)=()dx dy y x )6241(1030--??=2 1 4分 (3) P(X<1.5)=()16 13 )6241(5.1040=--??dx dy y x 7分 (4)P(X+4≤Y ) =()9 8 21616241)6241(2202040=+-=--???-dx x x dx dy y x x 10分 4. 已知随机变量)3,1(~2N X ,)4,0(~2N Y ,且X 与Y 相互独立,设 2 3Y X Z += (1) 求)(Z E ,)(Z D ; (2) 求XZ ρ 解:(1)??? ??+=23)(Y X E Z E )(21)(3 1 y E X E += 021131?+?= 3 1 = 2分 =??? ??+=23)(Y X D Z D ()()2 2 22)23(23?? ? ??+-??? ??+=-Y X E Y X E EZ Z E =22 2)2 3()439( EY EX Y XY X E +-++ = 9 1 4392 2 -++EY EXEY EX 又因为()10192 2=+=+=EX DX EX 16016)(22=+=+=EY DY EY 所以DZ= 59 1 416910=-+ 6分 (2)),(Z X Cov ) ,(1 1Y X X Cov += =EX( 23Y X +)-EXE(23Y X +) EXEY -EX -EXEY +EX =21 )(31213122 233 1 ?==3 则XZ ρ= ()DZ DX Z X Cov ,= 5 5 5 33= 10分 5. 设二维随机变量),(Y X 的概率密度为 ?????≤≤≤≤=其它, 00,20,163),(2x y x xy y x f (1) 求X 的数学期望EX 和方差DX (2) 求Y 的数学期望EY 和方差DY 解:(1)dx x xf X E X )()(? ∞ +∞ -= ()()xyd dy y x f x f x x ? ? ==∞ +∞ -20 16 3 ,y dx x xf X E X )()(? ∞ +∞ -= = 分 27 12)163(2 2 =? ?dx xydy x x () ()分 549 3)712( 33)16 3 (22 2 22 2 22 =-====EX EX -EX =???∞ +∞ -DX dx xydy x dx x f x DX x X () ()分 72)16 3 (),()()(24 02====?? ???+∞∞ -+∞ ∞ -∞ +∞ -dy xydx y dy dx y x yf dy y yf Y E y Y ()()5 24 4323)163(),()(4034 02 2 22 2 =-====?????? +∞ ∞ -+∞∞ -∞ +∞-dy y y dy xydx y dy dx y x f y dy y f y EY y Y DY=()分 105 4452422 =-=EY -EY 6. 设随机变量X 的概率密度为) 1(1 )(2 x x f X += π,求随机变量 31X Y -=的概率密度函数。 ()()( )( ) ()() ( ) ()()()() ()()()()( )() ()() 分 分 解:10111311311315)1(111)1(16 2 3 2 2 33 3 3 3y y y f y y y f dy y dF y f y F y X y X y X y Y y F X X Y Y X Y -+-= --=----== ∴ --=-

《概率论》期末 A 卷考试题(免费) 一 填空题(每小题 2分,共20 分) 1.甲、乙两人同时向一目标射击,已知甲命中的概率为0.7,乙命中的概率为0.8,则目标被击中的概率为( ). 2.设()0.3,()0.6P A P A B == ,则()P A B =( ). 3.设随机变量X 的分布函数为??? ? ? ????> ≤≤<=2,120,sin 0,0)(ππx x x a x x F ,则=a ( ), ()6 P X π > =( ). 4.设随机变量X 服从参数为2=λ的泊松分布,则=-)1(2 X E ( ). 5.若随机变量X 的概率密度为2 36 ()x X p x -= ,则(2)D X -=( ) 6.设Y X 与相互独立同服从区间 (1,6)上的均匀分布,=≥)3),(max(Y X P ( ). 7.设二维随机变量(X,Y )的联合分布律为 X Y 1 2 ?i p 0 a 12 1 6 1 1 3 1 b 则 ( ), ( ).a b == 8.设二维随机变量(X,Y )的联合密度函数为? ? ?>>=--其它 00,0),(2y x ae y x f y x ,则 =a ( ) 9.若随机变量X 与Y 满足关系23X Y =-,则X 与Y 的相关系数X Y ρ=( ). 10.设二维随机变量)0,4,3,2,1(~),(N Y X ,则=-)52(Y X D ( ). 二.选择题(每小题 2分,共10 分) 1.设当事件C B 和同时发生时事件A 也发生,则有( ).

) ()()(1 )()()()(1)()()()() ()()(C B P A P d C P B P A P c C P B P A P b BC P A P a =-+≤-+≥= 2.假设事件B A 和满足1)|(=B A P ,则( ). (a ) B 是必然事件 (b )0)(=-A B P (c) B A ? (d ) 0)|(=B A P 3.下列函数不是随机变量密度函数的是( ). (a )sin 0()20 x x p x π? <=( ). 1 11() 1 () () ()4 28 a b c d 三、解答题(1-6小题每题9分,7-8小题每题8分,共70分) 1.某工厂有甲、乙、丙三车间,它们生产同一种产品,其产量之比为5:3:2, 已知三 车间的正品率分别为0.95, 0.96, 0.98. 现从全厂三个车间生产的产品中任取一件,求取到一件次品的概率。 2.设10件产品中有3件次品,从中不放回逐一取件,取到合格品为止.(1)求所需取件次数X 的概率分布 ;(2)求X 的分布函数()F x . 3.设随机变量X 的密度函数为(1) 01()0 A x x f x -<. 4.设随机变量X 的密度函数为sin 0()20 x x f x π? <

《概率论和数理统计》笔记 一、课程导读 “概率论和数理统计”是研究随机现象的规律性的一门学科 在自然界,在人们的实践活动中,所遇到的现象一般可以分为两类: 确定性现象随机现象 确定性现象 在一定的条件下,必然会出现某种确定的结果.例如,向上抛一枚硬币,由于受到地心引力的作用,硬币上升到某一高度后必定会下落.我们把这类现象称为确定性现象(或必然现象).同样,任何物体没有受到外力作用时,必定保持其原有的静止或等速运动状态;导线通电后,必定会发热;等等也都是确定性现象. 随机现象 在一定的条件下,可能会出现各种不同的结果,也就是说,在完全相同的条件下,进行一系列观测或实验,却未必出现相同的结果.例如,抛掷一枚硬币,当硬币落在地面上时,可能是正面(有国徽的一面)朝上,也可能是反面朝上,在硬币落地前我们不能预知究竟哪一面朝上.我们把这类现象称为随机现象(或偶然现象).同样,自动机床加工制造一个零件,可能是合格品,也可能是不合格品;射击运

动员一次射击,可能击中10环,也可能击中9环8环……甚至脱靶;等等也都是随机现象. 统计规律性 对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面 朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性. ●使用例子 摸球游戏中谁是真正的赢家 在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,8个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”: 结果(比数) A (8:0) B (7:1) C (6:2) D (5:3) E (4:4) 奖金(元)10 1 0.5 0.2 -2 注:表中“-2”表示受罚2元

关于经典寓言的概率分析模型 班级:电13 姓名:苗键强 学号:2011010645 摘要: 经典寓言故事中往往隐含了与数学相关的知识,本文就经典寓言故事《狼来 了》中置信概率的变化做相关分析,通过搭建的几个不同模型来对于实际问题做理 论解释? 关键词: 贝叶斯公式概率估计 引言: 伊索寓言《狼来了》向我们讲述了这样一个故事: 从前,有个放羊娃,每天都去山上放羊? 一天,他想了个捉弄大家寻开心的主意?他向着山下正在种田的村民大声 喊:“狼来了!狼来了!救命啊!”村民气喘吁吁地赶到山上帮忙,然而却发现被骗了? 第二天,放羊娃故伎重演,又欺骗了村民一次? 过了几天,狼真的来了?放羊娃再次呼救,然而村民再也不理他了。问题分析:

在这个故事中我们可以看到放羊娃的言语在村民心中的置信度是随着他说谎 的次数增加而逐渐降低的,因此本文就此构建与之相关的几个模型来对此进行相应 的解释? 模型构建: 模型一:(无视小孩模型) 记事件A为“小孩说谎”,事件B为“小孩可信”,假设村子中有N个村民(N 视为一个很大的数)? 在此模型中不考虑小孩的说谎的概率与其言语可信度之间的关系,且认为村民 之间相互不交流,其对于小孩的印象仅取决于他的初始印象和是否上过小孩的当?假 设初始状态下,村民对孩子的印象为P1(B)=0.8?同时若某一名村民上过小孩的当, 则他对于小孩的印象下降至P2(B)=0.2,若他上过两次当,则再也不会相信该小孩了? 则当小孩第一次说谎时,村民去帮忙的期望值为E1=0.8N 同时这这些村民对小孩的印象下降为P2(B)=0.2,而其余的0.2N 的村民对小 孩的印象不变? 同理可得,小孩第二次说谎时,村民去帮忙的期望值为 E2=0.8N*0.2+0.2N*0.8=0.32N,即小孩的置信度下降为0.32? 小孩第三次说谎时,村民去帮忙的期望值为 E3=(0.8*0.8+0.2*0.8)N*0.2+0.04N*0.8=0.192N,即小孩的置信度下降为0.192? 所以在此模型中,小孩说过一次谎后,村民对他的印象下降最大(E1-E2=0.48, 下降一半以上),此后则逐步下降? 模型二:(书本模型)

第一章 概率论的基本概念 1 随机试验 1.对随机现象的观察、记录、试验统称为随机试验. 2.随机试验E 的所有结果构成的集合称为E 的样本空间,记为{}S e =, 称S 中的元素e 为基本事件或样本点. 3.可以在相同的条件下进行相同的实验;每次实验的可能结果不止一个,并且能事先明确试验的所有可能结果;进行一次试验之前不能确定哪一个结果会实现. 2.样本空间、随机事件 1.对于随机试验,尽管在每次试验之前不能预知试验结果,但试验的所有可能结果组成的集合是已知的.我们将随机试验E 的所有可能结果组成的集合称为E 的样本空间,记为S 样本空间的元素,即E 的每个结果称为样本点. 2.一般我们称S 的子集A 为E 的随机事件A ,当且仅当A 所包含的一个样本点发生称事件A 发生.如果将S 亦视作事件,则每次试验S 总是发生,故又称S 为必然事件。为方便起见,记φ为不可能事件,φ不包含任何样本点. 3.若A B ?,则称事件B 包含事件A ,这指的是事件A 发生必导致事件的发生。若A B ?且B A ?,即A B =,则称事件A 与事件B 相等.

, 4.和事件{}A B x x A x A A B =∈∈或:与至少有一发生. 5.当AB φ=时,称事件A 与B 不相容的,或互斥的.这指事件A 与事件 B 不能同时发生.基本事件是两两互不相容的. ,{ ,{ ,,A A S A A S A A A B AA AB ===? =? 的逆事件记为若则称互逆,互斥. 6. ,A B A B A B AB 当且仅当同时发生时,事件发生.也记作. ,A B A B A B AB 当且仅当同时发生时,事件发生,也记作. 7. 事件 A 的对立事件:设 A 表示事件 “A 出现”, 则“事件 A 不出现”称为事件 A 的对立事件或逆事件. 事件间的运算规律:,,, A B C 设为事件则有 ,A B B A AB BA ==(1)交换律: ()(),A B C A B C =(2)结合律:()()AB C A BC = ()()()A B C A C B C AC BC ==(3)分配律: ,de Morgan A B A B A B A B ==(4)律: ^ 3.频率和概率 1.记()A n n f A n = ()A n A f A A n --其中n 发生的次数(频数);n 总试验次数. 称为在这次试验中发生的频率. 频率 反映了事件A 发生的频繁程度. 2.频率的性质: ()n f A

《概率论与数理统计》期末考试试题(A) 专业、班级: 姓名: 学号: 十二总成绩 、单项选择题(每题3分共18分) 1. D 2 . A 3 . B 4 . A 5 . (1) (2)设随机变量X其概率分布为X -1 0 1 2 P 则 P{X 1.5}() (A) (B) 1 (C) 0 (D) 设事件A与A同时发生必导致事件A发生,则下列结论正确的是( (A) P (A) P(A I A2) (B) P(A) P(A i) P(A2) (C) P(A) P(A1 A2) (D) P(A) P(A i) P(A2) 设随机变量X~N( 3, 1), Y ?N(2, 1),且X 与Y相互独 7,贝y z~(). (A) N(0, 5); (B) N(0, 3); (C) N(0, 46); (D) N(0, 54).

(5)设 X1X2, 未知,贝U( n (A) X i2 i 1 ,X n为正态总体N(, )是一个统计量。 (B) (C) X (D) (6)设样本X i,X2, 为H o: (A)U (C) 2)的一个简单随机样本,其中2, ,X n来自总体X ~ N( 0( 0已知) (n 1)S2 2 二、填空题(每空3分 xe x 1. P(B) 2. f(x) 0 (1) 如果P(A) 0, P(B) H1 : (B) (D) 共15分) 0, P(A B) 设随机变量X的分布函数为 F(x) 则X的密度函数f(x) 3e P(A) n (X i ) i 1 2), 2未知。统计假设 则所用统计量为( 3 . 1 4. 则P(BA) 0, 1 (1 x)e x, x 0, 0. n (X i 1 P(X 设总体X和丫相互独立,且都服从N(0,1) , X1,X2, 样本,丫1,丫2, Y9是来自总体丫的样本,则统计量 服从分布(要求给出自由度)。t(9 ) 2) )2 X9是来自总体X的 X1 U肩

概率论与数理统计期中考试试题 考试时间: 2009年4月18日 9:50-11:50 一、单项选择题(18分,每题2分),请将正确答案对应的字母填在指定横线处。 1. 任何一个事件和它的对立事件之间_______________。 (A) 相容 (B) 互不相容 (C) 独立 (D) 不独立。 2. 随机变量X 的分布律:,i a a i X P )21(2}{?==L ,2,1,0=i 。则常数_______。 =a (A) 3 (B) 2 (C) 21 (D) 3 1 3. 设随机变量X 服从标准正态分布,则随机变量X Y 2=的概率密度函数是_____。 (A) )0(2182>?y e y π (B) )(24||R y e y ∈?π (C) )0(2 82 >?y e y π (D) )0(21 4 | |>?y e y π 4. 事件A,B 相互独立,且9 2)(= B A P ,)()(AB P B A P =,,则__。 )()(B P A P ≥=)(A P (A) 21 (B) 52 (C) 94 (D) 3 2 5. 如果,则+∞<<)Var(0X =??? ??????)(Var )(Var X X E X _______________。 (A) 1 (B) 0 (C) )(1X Var (D) )(X Var 6. 随机变量()2,~σμN X ,则(=?μX E )_____________。 (A) 0 (B) πσ2 (C)σ (D) 2σ7. Laplace 分布的密度函数为()x e x p ?= 21,R x ∈,其期望等于____________。 (A) 0 (B) 1 (C) e (D) 不存在 8. 假设连续型随机变量在Y X ,10,10<<<

2007级经管类《概率统计》期末试卷 一、1设B A ,是两随机事件,且()0.3,P A B -=(1)若B A ,互不相容,求()P A ;(2)若(|)0.4P B A =,求()P A ;(3)若()0.7P A B ?=,求)(B P 。 2.钥匙掉了,掉在宿舍里、掉在教室里、掉在路上的概率分别为40%、35%、25%,而掉在上述三处地方被找到的概率分别为、和. (1)求找到钥匙的概率;(2)找到了钥匙,求它恰是在宿舍找到的概率 二、1.随机变量 X ~?? ? ??≤<-≤≤=他其,021,21 0,)(x x x x x f 求:(1) X 的分布函数)(x F ;(2)(0.25)P X > 2. 袋装食盐每袋净重为随机变量,规定每袋标准重量为500克,标准差为10克,一箱装100袋.求一箱食盐净重超过50250克的概率. 三、1. 随机向量),(Y X 的联合分布如下表所示,求: (1)关于X 、Y 的边缘分布; (2)ov(,)0.08,()C X Y D X Y =-已知求 . 2 设随机变量X 服从[1,2]上的均匀分布,Y 服从(5,4)N ,且X 与Y 相互独立。(1)写出随机变量X 的密度函数)(x f X 与Y 的密度函数)(y f Y ;(2)写出随机向量()Y X ,的联合密度函数(,)f x y ;(3) ()1,5P X Y >> 四、 1. 已知总体X 的概率密度函数为

?? ?<<=-其他 1 0),(1 x x x f θθθ 其中θ为未知参数,对给定的样本观察值n x x x ,...,,21,求θ的最大似然估计。 2. 某洗涤剂厂有一台瓶装洗涤精的罐装机,在正常生产时,每瓶洗涤精的净重服从正态分布),(2 σμN ,均值454g μ=,标准差g 12=σ,为检查近期机器是否正常,从生产的产品中随机抽出16瓶,称得其净重的平均值456.64X g =.假定总体的标准差σ没有变化,试在显著性水平05.0=α下检验罐装机是否正常。 五、1、总体X ~),(2 σμN ,321,,X X X 是取自总体的简单随机样本。∑==3 1 131?i i X μ ,;414121?3212X X X ++=μ 32135 1 5152?X X X ++=μ,3411?4i i X μ==∑为总体均值μ的四个估计量.其中哪些是μ的无偏估计量,哪一个较有效,为什么 2、用机器自动包装某种产品总体服从正态分布,要求每盒重量为100克,今抽查了9盒,测得平均重量102克,样本标准差为4克,求总体方差2 σ 的95%的置信区间 六、为确定价格与销售量的关系的统计资料如下表: 数据分析结果为 回归统计 Multiple R R Square Adjusted R Square 标准误差 观测值 9 方差分析 df SS MS F Significanc

《概率论与数理统计》期末试题 一、填空题(每小题 3 分,共 15 分) 1.设事件A, B仅发生一个的概率为,且 P( A) P(B) 0.5 ,则 A, B 至少有一个不发生的概率为 __________. 答案: 解: P( AB AB)0.3 即 0.3 P( AB ) P( AB) P(A) P( AB) P(B) P( AB) 0.52P( AB) 所以 P( AB) 0.1 P(A B) P( AB) 1 P(AB) 0.9. 2.设随机变量X服从泊松分布,且P ( X 1) 4P(X 2) ,则P(X 3) ______. 答案: 1 e1 6 解答: 2 P( X 1) P( X 0) P( X 1) e e , P( X 2) e 2 2e 2 由 P(X 1) 4P( X 2) 知 e e 即 2 2 1 0 解得1,故 1 P(X 3) e 1 6 3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y X 2在区间(0,4) 内的概率密度为 f Y ( y) _________. 答案: 1 1 , 0 y 4, f Y ( y) F Y ( y) f X ( y ) 4 y y 2 0 , 其它. 解答:设 Y 的分布函数为F Y( y), X 的分布函数为 F X (x) ,密度为 f X (x) 则 F Y (y) P(Y y) P(X 2 y) P( y X y ) F X ( y) F X ( y ) 因为 X ~U(0, 2) ,所以F X( y ) 0 ,即 F Y ( y) F X ( y )

故 1 1 , 0 y 4, f Y ( y) F Y ( y) 4 y f X ( y ) 2 y 0 , 其它 . 另解在 (0, 2) 上函数 y x2严格单调,反函数为h( y) y 所以 1 1 , 0 y 4, f Y ( y) f X ( y) 4 y 2 y , 其它 . 4.设随机变量X ,Y 相互独立,且均服从参数为的指数分布,P( X 1) e 2,则_________,P{min( X ,Y) 1} =_________. 答案: 2 ,P{min( X ,Y) 1} 1 e-4 解答: P( X 1) 1 P( X 1) e e 2,故 2 P{min( X ,Y ) 1} 1 P{min( X ,Y ) 1} 1 P( X 1)P(Y 1) 1 e 4. 5.设总体X的概率密度为 ( 1) x , 0 x 1, f ( x) 1 . 0, 其它 X1 , X 2 , , X n是来自X的样本,则未知参数的极大似然估计量为 _________. 答案: $ 1 1 n 1 ln x i n i 1 解答: 似然函数为 n 1)n ( x1 ,L , x n ) L( x1 ,L , x n ; ) ( 1)x i ( i 1 n ln L n ln( 1) ln x i i 1 d ln L n n ln x i @0 d 1 i 1 解似然方程得的极大似然估计为

模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:,0 ()1/4, 020,2 x Ae x x x x ??为未知参数,12,,,n X X X L 为其样本,1 1n i i X X n ==∑为 样本均值,则θ的矩估计量为: 。 9、设样本129,,,X X X L 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它

求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4,||,02,(,)0, y x x x y ?<<??

07级《概率论》期末考试试题A 卷及答案 一、 填空题(满分15分): 1.一部五卷的文集,按任意次序放到书架上,则“第一卷及第五卷出现在旁边”的概率为 10 1 。 解答:10 1 !5!321=?= p 2.设,)(,)(,)(r B A P q B P p A P =?==则=)(B A P q r - 。 解答:q r B P B A P B B A P B A P B A P -=-?=-?=-=)()()])[()()( 3.设随机变量ξ的分布列为 ,...2,1,0,3)(===k a k X P k 则a = 3 2 . 解答:32233 111310 =?=-?== ∑ ∞ =a a a a k k 4.设随机变量为ξ与η,已知D ξ=25,D η=36,4.0,=ηξρ, 则D(ξ-η)= 37 . 解答: 37 4.065236252)(),cov() ,cov(2)(,,=???-+=-+=-= -+=-ηξηξρηξηξηξη ξηξρηξηξηξD D D D D D D D D D 5. 设随机变量ξ服从几何分布,...2,1,)(1 ===-k p q k P k ξ。则ξ的特征函数 =)(t f ξ 。 ()() .1)(:1 1 1 1 it it k k it it k k itk it qe pe qe pe p q e e E t f -====∑∑∞ =--∞ =ξ ξ解 二、 单项选择题(满分15分): 1.设.A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示“三个事件至多一个发生”为( ④ ). ① C B A ??. ② C B A C B A C B A ++ ③ ABC -Ω. ④ C B A C B A C B A C B A +++

目录 第一章概率论的基本概念 (1) 1 随机试验 (1) 2.样本空间、随机事件 (1) 3.频率和概率 (2) 4.等可能概型(古典概型) (3) 5.条件概率 (4) 6.独立性 (5) 第二章随机变量及其分布 (5) 1. 随机变量 (5) 2. 离散型随机变量及其分布律 (6) 3.随机变量的分布函数 (7) 4.连续型随机变量及其概率密度 (8) 5.随机变量的函数分布 (9) 第三章多维随机变量及其分布 (9) 1.二维随机变量 (9) 2.边缘分布 (11) 3.条件分布 (11) 4.相互独立的随机变量 (13) 5.两个随机变量函数的分布 (13)

第四章随机变量的数字特征 (14) 1. 数学期望 (14) 2. 方差 (16) 3. 协方差及相关系数 (17) 4.矩、协方差矩阵 (18) 第五章大数定律和中心极限定理 (19) 1. 大数定律 (19) 2.中心极限定理 (20) 第六章样本及抽样分布....................................... 错误!未定义书签。第七章参数估计 .................................................. 错误!未定义书签。第八章假设检验 .................................................. 错误!未定义书签。第九章回归分析 .................................................. 错误!未定义书签。参考文献 ................................................................ 错误!未定义书签。

清华大学2000年概率统计研究生入学考试试题 一、设(|)0.5P A B =,(|)0.4P B A =,()0.6P A =。求()P A B ?,并问事件A 与事件B 是否独立,为什么? 二、设随机向量(,)X Y 服从二维正态分布2 2 1212(,,,,)N a a σσρ。试证明:U X Y =+和 V X Y =-独立。 三、设(12,,,n X X X )是正态总体2 (,)X N μσ 的一个简单样本,X 为样本均值,求 1 (||)n i i E X X =-∑。 四、设12,,,n X X X 是总体X 的简单样本,而总体101X q r p -?? ? ?? ( 表示遵从),其中01,01,1p q p q r <<<<++=, 1) 求12,,,n X X X 最大值M 的分布。 2) 设0r =。当n 充分大时,利用极限定理求样本均值X 的近似分布。 五、设总体X 的概率密度函数为 (),()0, x e x f x λμλμμ --?>=? ≤?x 。 这里μ和λ(>0)都是参数。又设12,,,n X X X 为该总体的简单样本,而12,,,n x x x 为其样本观察值。 1) 设λ已知,求μ的极大似然估计 L μ 2) 设μ已知,求λ的矩估计 M λ 。 六、设网络中在(0,]t 时段内到某个网站访问的次数(0,]t ξ,0t ≥,是强度为λ(>0)的 Poisson 流。 (1)试求第k 次访问次网站的时间k η的分布,k 为正整数; (2)求比 1 2 ηη的分布和120(|)E t ηη=,00t >;

(3)利用Poisson 流的性质,证明Poisson 的可加性,即若随机变量1X ,2X 独立,且()i i X p λ (服从参数为i λ的Poisson 分布),1,2i =。则12X X +12()P λλ+ 。 清华大学2001年概率统计研究生入学考试试题 一、某项福利彩票的抽奖活动中有n 个号码(1,,n ),中奖的号码定为k 个,采用无放回 随机抽样。求k 个中奖号码算术平均值的期望。 二、12,,,n X X X 为独立2 (,)N μσ分布样本,X 为样本均值, 1) 求(||)i E X X -; 2) 用 1 ||n i i c X X σ==-∑作为σ的估计,确定c 使得次估计是无偏的。 三、1212,,;,,X X Y Y ,为两串随机变量序列。 1) 设当n →∞,n Y 依分布收敛到常数a ,证明n Y 依概率收敛到a 。 2) 设当n →∞,n X 依概率收敛到随机变量X ,n Y 依概率收敛到随机变量Y ,证明 n n X Y +依概率收敛到X Y +。 四、设X 和Y 为两个独立的随机变量,都服从期望值为θ的指数分布。 (1)求在已知X Y t +=的条件下,Y 的条件分布; (2)求 Y X Y +的分布。 五、12,,,n X X X 为独立(,1)N μ分布随机变量,记12(,,,)T n X X X X = ,A 为n 阶对 称矩阵。证明,当下列的三条件: (1)2 A A = (2)()tr A k = (3)AI =0,其中I 为所有元素为1的n 阶向量,0为所有元素为0的n 阶向量 全部满足时,T X AX 服从自由度为k 的2 χ分布。

07级《概率论》期末考试试题A 卷及答案 一、 填空题(满分15分): 1.一部五卷的文集,按任意次序放到书架上,则“第一卷及第五卷出现在旁边”的概率为 10 1 。 解答:10 1 !5!321=?= p 2.设,)(,)(,)(r B A P q B P p A P =?==则=)(B A P q r - 。 解答:q r B P B A P B B A P B A P B A P -=-?=-?=-=)()()])[()()( 3.设随机变量ξ的分布列为 ,...2,1,0,3)(===k a k X P k 则a = 3 2 . 解答:32233 1113 10 =?=-?== ∑ ∞ =a a a a k k 4.设随机变量为ξ与η,已知D ξ=25,D η=36,4.0,=ηξρ, 则D(ξ-η)= 37 . 解答: 37 4.065236252)(),cov() ,cov(2)(,,=???-+=-+=-= -+=-ηξηξρηξηξηξη ξηξρηξηξηξD D D D D D D D D D 5. 设随机变量ξ服从几何分布,...2,1,)(1 ===-k p q k P k ξ。则ξ的特征函数 =)(t f ξ 。 ()() .1)(:1 1 1 1 it it k k it it k k itk it qe pe qe pe p q e e E t f -====∑∑∞ =--∞ =ξ ξ解 二、 单项选择题(满分15分): 1.设.A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示“三个事件至多一个发生”为( ④ ). ① C B A ??. ② C B A C B A C B A ++

相关文档
最新文档