第1章 电磁场的基本定律

合集下载

(完整版)工程电磁场基本知识点

(完整版)工程电磁场基本知识点

第一章矢量剖析与场论1 源点是指。

2 场点是指。

3 距离矢量是,表示其方向的单位矢量用表示。

4 标量场的等值面方程表示为,矢量线方程可表示成坐标形式,也可表示成矢量形式。

5 梯度是研究标量场的工具,梯度的模表示,梯度的方向表示。

6 方导游数与梯度的关系为。

7 梯度在直角坐标系中的表示为u 。

8 矢量 A 在曲面 S 上的通量表示为。

9 散度的物理含义是。

10 散度在直角坐标系中的表示为 A 。

11 高斯散度定理。

12 矢量 A 沿一闭合路径l的环量表示为。

13 旋度的物理含义是。

14 旋度在直角坐标系中的表示为 A 。

15 矢量场 A 在一点沿e l方向的环量面密度与该点处的旋度之间的关系为。

16 斯托克斯定理。

17 柱坐标系中沿三坐标方向 e r , e , e z的线元分别为,,。

18 柱坐标系中沿三坐标方向 e r , e , e 的线元分别为,,。

19 1 ' 1 12 e R12 e 'RR R R R20 1 'g 1 0 ( R 0)g '4 ( R) ( R 0)R R第二章静电场1 点电荷 q 在空间产生的电场强度计算公式为。

2 点电荷 q 在空间产生的电位计算公式为。

3 已知空间电位散布,则空间电场强度 E= 。

4 已知空间电场强度散布 E,电位参照点取在无量远处,则空间一点P 处的电位P = 。

5 一球面半径为 R,球心在座标原点处,电量Q 平均散布在球面上,则点R,R,R处的电位等于。

2 2 26 处于静电均衡状态的导体,导体表面电场强度的方向沿。

7 处于静电均衡状态的导体,导体内部电场强度等于。

8 处于静电均衡状态的导体,其内部电位和外面电位关系为。

9 处于静电均衡状态的导体,其内部电荷体密度为。

10 处于静电均衡状态的导体,电荷散布在导体的。

11 无穷长直导线,电荷线密度为,则空间电场 E= 。

12 无穷大导电平面,电荷面密度为,则空间电场 E= 。

电磁三大定律

电磁三大定律

电磁三大定律全文共四篇示例,供读者参考第一篇示例:电磁学是物理学中一个重要的分支,研究电荷和电流之间相互作用的规律。

在电磁学的研究中,电磁三大定律是最基础的定律,它们建立了电磁学的基本框架,指导着电磁场的研究和应用。

电磁三大定律分别是库仑定律、安培定律和法拉第电磁感应定律。

让我们来认识一下库仑定律。

库仑定律是描述带电物体之间相互作用的定律。

它是电动力学中的一个基本定律,由英国物理学家库仑在18世纪提出。

库仑定律表明,电荷之间的相互作用力与它们之间的距离成反比,与它们的电荷量的乘积成正比。

具体来说,两个带电粒子之间的电荷相互作用力的大小等于它们电荷量的乘积除以它们之间距离的平方,并且方向沿着连接两个电荷的直线。

库仑定律的数学表达式为F=k*q1*q2/r^2,其中F是电荷之间的相互作用力,q1和q2分别是两个电荷的大小,r是它们之间的距离,k是库仑常数。

库仑定律是解释静电相互作用的基础,也是电磁学的基石之一。

接下来是安培定律,安培定律是描述电流和电磁场之间相互作用的定律。

安培定律是由法国物理学家安培在19世纪初提出的,它表明电流元产生的磁场与电流元和观测点之间的位置有关,其方向符合右手定则。

安培定律的数学表达式为B=k*i/r^2,其中B是观测点处的磁感应强度,i是电流元的大小,r是电流元与观测点之间的距离,k是安培常数。

安培定律不仅适用于直流电路中的电磁场,也适用于交流电路和各种复杂的电磁场。

安培定律对于理解电磁场的产生和传播具有重要意义。

最后是法拉第电磁感应定律,法拉第电磁感应定律描述了磁场对电荷运动产生的电动势。

这个定律是由英国物理学家法拉第在19世纪提出的,它表明磁场和电路之间的相互作用是通过感应电动势来实现的。

法拉第电磁感应定律的数学表达式为ε=-dΦB/dt,其中ε是感应电动势,ΦB是磁通量,t是时间。

根据法拉第电磁感应定律,当磁场相对于一个闭合回路变化时,产生一个感应电动势,从而产生感应电流。

谢处方版《电磁场与电磁波》第1章

谢处方版《电磁场与电磁波》第1章
电磁场与电磁波
谢处方等编著
高教出版社
引言 电磁模型 一、基础知识 电磁学是研究静止或运动电荷作用效应的。
电荷有正、负电荷。电场是由正或负电荷产生的。 而运动电荷形成电流,它产生磁场。 建立在理想模型上的理论需要三个基本步骤:
第一,与研究项目有关的一些基本量的定义;第二, 规定这些基本量的运算规则;第三,一些基本关系 的假定。
向 、 和z增加的方向,且满足右旋关系
a a az a az a a z a a 8
矢量A和B的圆柱坐标分量及其代数运算
A a A a A a z Az a B a B a B a z Bz b A B a ( A B ) a ( A B ) a z ( Az Bz 20 A B a A a A a z Az a B a B a z Bz A B A B Az Bz 21 A B a A a A a z Az a B a B a z Bz a ( A Bz Az B ) a ( Az B A Bz ) a z ( A B A B a a a z A A Az B B Bz 22
图1.2 矢量加法
矢量加法服从交换律和结合律 A B = B A
(1.2) (1.3 )
( A B) + C = A ( B C )
图1.3表示借助于矢量加法可以实现矢量减法
A ( B) = A B
(1.4)
图1.3 矢量减法
2.矢量乘法 图1.4表示矢量A和B的点积(或标积)为两个矢量相互 投影之值
2、电荷守恒定律: 电荷体密度

大学物理电磁场的基本理论

大学物理电磁场的基本理论

大学物理电磁场的基本理论电磁场是物质世界中最基本的物理现象之一,也是大学物理课程的重要内容之一。

电磁场理论的研究,对于揭示物质世界的运动规律和电磁波的传播机制具有重要意义。

本文将介绍大学物理中关于电磁场的基本理论,包括电场、磁场的概念与本质、电磁场的相互作用以及电磁波的特性。

一、电场的概念与本质电场是由电荷所产生的一种物理量,它描述了在电荷存在的空间中,其他电荷所受到的力的情况。

电场的概念最早由法拉第提出,通过他的实验肯定了电场的存在。

根据库伦定律,电场强度 E 的大小与电荷 q 之间成正比,与距离 r的平方成反比。

即 E ∝ q/r^2。

这意味着电场是一种场量,它在空间中的分布由电荷的性质和位置确定。

在电场中,电荷会受到力的作用,力的大小与电场的强度有关,方向则与电荷的性质有关。

电场的本质是电荷之间的相互作用。

二、磁场的概念与本质磁场是由磁荷或运动电荷所产生的一种物理量,它描述了在磁荷存在的空间中,其他运动电荷所受到的力的情况。

磁场的概念最早由奥斯特瓦德提出,通过他的实验证实了磁场的存在。

磁场的表现形式有磁感应强度 B 和磁场强度 H。

磁感应强度 B 描述了磁场对运动电荷的作用,磁场强度 H 描述了磁场对磁荷的作用。

根据洛伦兹力定律,运动电荷在磁场中会受到洛伦兹力的作用。

磁场的本质是磁荷之间的相互作用和运动电荷在磁场中受到的洛伦兹力。

三、电磁场的相互作用电场和磁场之间存在着紧密的联系,它们是相互依存的物理量。

当电流通过导线时,周围会形成磁场,这种现象被称为安培环路定律。

根据安培环路定律,通过一条闭合回路的磁场强度与这条回路内通过的电流成正比。

根据法拉第电磁感应定律,变化的磁场可以感应出电场。

即当磁场通过一个闭合回路时,会在回路上产生感应电动势和电流。

这种现象被称为法拉第电磁感应。

电磁感应的经典实验是法拉第的环路实验,通过改变磁场的强度或方向,可以观察到感应电流的变化。

四、电磁波的特性电磁波是由电场和磁场相互耦合形成的一种能量传播的方式。

电磁场与电磁波教材

电磁场与电磁波教材

电磁场与电磁波摘要:电磁场与电磁波课程与电气专业息息相关,是我们电气专业学生必须学习的,这学期我们进行了电磁场与电磁波的学习。

主要讲解了矢量分析,电磁场的基本定律,时变电磁场,简述了静态电磁场极其边值问题的解。

第一章:矢量分析是研究电磁场在空间分布和变化规律的基本数学工具之一。

第二章以大学物理(电磁学)为基础,介绍电磁场的基本物理量和基本规律,第三章分别介绍了静电场、恒定电场和恒定磁场的分析方法。

第四章主要讨论时变电磁场的普遍规律。

一、矢量分析电磁场是是分布在三维空间的矢量场,矢量分析是研究电磁场在空间的分布和变化规律的基本教学工具之一。

1:标量和矢量(1) 标量:一个只用大小描述的物理量。

矢量:一个既有大小又有方向特性的物理量,常用黑体字母或带箭头的字母表示。

矢量一旦被赋予“物理单位”,则成为一个具有物理意义的矢量,如:电场强度矢量E 、磁场强度矢量H 、作用力矢量F 、速度矢量v 等。

(2) 两个矢量A 与B 相加,其和是另一个矢量D 。

矢量D=A+B 可按平行四边形法则得到:从同一点画出矢量A 与B ,构成一个平行四边形,其对角线矢量即为矢量D 。

两个矢量A 与B 的点积是一个标量,定义为矢量A 与B 的与它们之间较小的夹角的余弦之积。

(3) 两个矢量A 与B 的叉积是一个矢量,它垂直于包含矢量A 和B 的平面,大小定义为矢量A 与B 的与它们之间较小的夹角的正弦之积,方向为当右手四个手指从矢量A 到B 旋转时大拇指的方向。

2:标量场的梯度(1)等值面: 标量场取得同一数值的点在空间形成的曲面,形象直观地描述了物理量在空间的分布状态。

对任意给定的常数C ,方程C z y x u ),,(就是等值方程。

(2)梯度的概念:标量场u 在点M 处的梯度是一个矢量,它的方向沿场量u 变化率最大的方向,大小等于其最大变化率,并记作grad u,即 grad u= e l |max直角坐标系中梯度的表达式为grad u=,标量场u 的梯度可用哈密顿算符表示为grad u=().u =(3)标量场的梯度具有以下特性:①标量场u 的梯度是一个矢量场,通常称▽u为标量场u 所产生的梯度场;②标量场u (M )中,再给定点沿任意方向l 的方向导数等于梯度在该方向上的投影;③标量场u (M )中每一点M 处的梯度,垂直于过该点的等值面,且指向u (M )增加的方向。

电磁场电磁波复习重点

电磁场电磁波复习重点

电磁场电磁波复习重点(共13页) -本页仅作为预览文档封面,使用时请删除本页-电磁场电磁波复习重点第一章矢量分析1、矢量的基本运算标量:一个只用大小描述的物理量。

矢量:一个既有大小又有方向特性的物理量,常用黑体字母或带箭头的字母表示。

2、叉乘点乘的物理意义会计算3、通量源旋量源的特点通量源:正负无旋度源:是矢量,产生的矢量场具有涡旋性质,穿过一曲面的旋度源等于(或正比于)沿此曲面边界的闭合回路的环量,在给定点上,这种源的(面)密度等于(或正比于)矢量场在该点的旋度。

4、通量、环流的定义及其与场的关系通量:在矢量场F中,任取一面积元矢量dS,矢量F与面元矢量dS的标量积定义为矢量F穿过面元矢量dS的通量。

如果曲面 S 是闭合的,则规定曲面的法向矢量由闭合曲面内指向外;环流:矢量场F沿场中的一条闭合路径C的曲线积分称为矢量场F沿闭合路径C的环流。

如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无旋场,又称为保守场。

如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为有旋矢量场,能够激发有旋矢量场的源称为旋涡源。

电流是磁场的旋涡源。

5、高斯定理、stokes定理静电静场高斯定理:从散度的定义出发,可以得到矢量场在空间任意闭合曲面的通量等于该闭合曲面所包含体积中矢量场的散度的体积分,即散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁理论中有着广泛的应用。

Stokes定理:从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即斯托克斯定理是闭合曲线积分与曲面积分之间的一个变换关系式,也在电磁理论中有广泛的应用。

6、亥姆霍兹定理若矢量场在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则当矢量场的散度及旋度给定后,该矢量场可表示为亥姆霍兹定理表明:在无界空间区域,矢量场可由其散度及旋度确定。

第二章电磁场的基本规律1、库伦定律(大小、方向)说明:1)大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;2)方向沿q1 和q2 连线方向,同性电荷相排斥,异性电荷相吸引;3)满足牛顿第三定律。

《电磁场与电磁波》习题参考答案


况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。

电磁场与电磁波基础知识总结

电磁场与电磁波总结第一章一、矢量代数 A ∙B =AB cos θA B ⨯=AB e AB sin θA ∙(B ⨯C ) = B ∙(C ⨯A ) = C ∙(A ⨯B )()()()C A C C A B C B A ⋅-⋅=⨯⨯二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++le e e d x y z矢量面元=++Se e e x y z d dxdy dzdx dxdy体积元d V = dx dy dz 单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ体积元dz d d dVϕρρ=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系 矢量线元d l = e r d r e θr d θ+e ϕr sin θd ϕ矢量面元d S = e r r 2sin θd θd ϕ体积元ϕθθd drd r dVsin 2=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A SSd Φ0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γmaxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x z A A A x y z11()z A A A z ϕρρρρρϕ∂∂∂∇=++∂∂∂⋅A 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕxy z∂∂∂∇⨯=∂∂∂e e e A x y z x y zA A A 1zzzA A A ρϕρϕρρϕρ∂∂∂∇⨯=∂∂∂e e e A 21sin sin r r zr r A r A r A ρϕθθθϕθ∂∂∂∇⨯=∂∂∂e e e A4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SVd dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u ll 0cos cos cos ∂∂∂∂=++∂∂∂∂P u u u ulx y zαβγcos ∇⋅=∇e l u u θgrad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u u u x y z 1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A2. 无旋场()0∇⨯∇=u -u =∇F 六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zyyyx x x z z z x y zu u uu A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第二章一、麦克斯韦方程组 1. 静电场 真空中:001d ==VqdV ρεε⋅⎰⎰SE S (高斯定理) d 0⋅=⎰l E l 0∇⋅=E ρε0∇⨯=E 场与位:3'1'()(')'4'V dV ρπε-=-⎰r r E r r r r ϕ=-∇E 01()()d 4πV V ρϕε''='-⎰r r |r r |介质中:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ0∇⨯=E极化:0=+D E P εe 00(1)=+==D E E E r χεεεε==⋅P e PS n n P ρ=-∇⋅P P ρ2. 恒定电场 电荷守恒定律:⎰⎰-=-=⋅Vsdv dtd dt dq ds J ρ0∂∇⋅+=∂J tρ传导电流与运流电流:=J E σρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0⋅=⎰J l l 0∇⋅=J 0∇⨯J =3. 恒定磁场 真空中:0 d ⋅=⎰B l lI μ(安培环路定理) d 0⋅=⎰SB S 0∇⨯=B J μ0∇⋅=B场与位:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ=∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μm 00(1)=+B H =H =H r χμμμμm =∇⨯J M ms n =⨯J M e4. 电磁感应定律() d d in lC dv B dl dt ⋅=-⋅⨯⋅⎰⎰⎰SE l B S +)(法拉第电磁感应定律∂∇⨯=-∂B E t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S lSt∂∇⨯=+∂DH J t 位移电流:d=DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S lS l SS V Sl tl t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t t ρ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m eme e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H DB H J E J D B D B t t&tt ρρm e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B t t ρρ 三、边界条件1. 一般形式12121212()0()()()0n n S n Sn σρ⨯-=⨯-=→∞⋅-=⋅-=()e E E e H H J e D D e B B2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n S n S n ρ12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第三章一、静电场分析 1. 位函数方程与边界条件 位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qCφ两导体间的电容:=C q /U 任意双导体系统电容求解方法:3. 静电场的能量N 个导体:112ne i i i W q φ==∑连续分布:12e VW dV φρ=⎰电场能量密度:12ω=⋅D E e二、恒定电场分析1.位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E lE l J S E SSSU R G I d d σ(L R =σS ) 4.静电比拟法:G C —,σε—2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析 2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε1. 位函数微分方程与边界条件矢量位:2∇=-A J μ12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇=211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A lSlL IIIψ0=+i L L L3. 恒定磁场的能量N 个线圈:112==∑Nmj j j W I ψ连续分布:m 1d 2=⋅⎰A J V W V 磁场能量密度:m 12ω=⋅H B第四章一、边值问题的类型(1)狄利克利问题:给定整个场域边界上的位函数值()=f s φ (2)纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ(3)混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ (4)自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。

第一章 电磁现象的普遍规律习题课

第一章 电磁现象的普遍规律要求掌握§1—§6,其中重点是§3—§5。

具体要求是:1. 需要掌握的主要数学公式 (1) 矢量代数公式:cb a bc a c b a b a c a c b c b a)()()()()()(⋅-⋅=⨯⨯⨯⋅=⨯⋅=⨯⋅ (2) 梯度、散度和旋度定义及在直角坐标和球坐标中的表达式。

(3) 矢量场论公式AB B A A A A A A⨯∇⋅∇±∇==⨯∇=⨯∇⋅∇=∇⨯∇∇-⋅∇∇=⨯∇⨯∇=,可引入=若,可引入若000)(0)()(2ϕϕ(4)复合函数“三度”公式:dudf uu f ∇=∇)(du A d u u A⋅∇=⋅∇)(duA d u u A⨯∇=⨯∇)((5)有关x x r '-=的一些常用公式:为常数矢量)a a r a r rr r r r r r r r r rr()(0),0(0,10,3,333=⋅∇=⨯∇≠=⋅∇-=∇=⨯∇=⋅∇=∇(6)积分变换公式:Sd A A l d A V d A s d SLVS⋅⨯∇=⋅⋅∇=⋅⎰⎰⎰⎰)(2. 麦克斯韦方程组建立的主要实验定律和假定电磁感应定律:⎰-=B dt d εS d⋅(实质:变化磁场激发电场)电荷守恒定律:0=∂∂+⋅∇t J ρ位移电流假定:tEJ D ∂∂=0ε(实质:变化电场可以激发磁场)感生电场i E : 0,=⋅∇∂∂-=⨯∇i i E tBE3. 真空中的麦克斯韦方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂+=⨯∇∂∂-=⨯∇00000B E t E J B t B E ερμεμ4.介质中的电磁性质方程仅讨论均匀介质:E P 00εχ=, p m H M ρχ,==P ⋅∇-,tE J H B E D t P J M J D P m ∂∂===∂∂=⨯∇=0,,,,εμε5.介中的麦克斯韦方程组微分方程⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂+=⨯∇∂∂-=⨯∇0,B D t D J H t B Eρ 积分方程⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=⋅⋅+=⋅⋅-=⋅⎰⎰⎰⎰⎰⎰s S LL s S d B Q S d D Sd D dtd I l d H S d B dt d l d E 0 其中M BH P E D-=+=00,με6. 洛伦兹力公式:B J E f⨯+=ρ(适用于电荷分布情况)B v e E e F⨯+=(适用于单个带电粒子)7. 电磁场的边值关系⎪⎪⎩⎪⎪⎨⎧=-⨯=-⨯=-⋅=-⋅0)()(0)()(12121212E E n H H n B B n D D n f fασ其它有用的边值关系:12)(εσσP f E E n +=-⋅, P P P n σ-=-⋅)(12,tJ J n f ∂∂-=-⋅σ)(128. 电磁场的能量能流密度矢量H E S⨯=及其意义;均匀介质中的能量密度 )(21H B D E w⋅+⋅=;能量在场中传递,传递方向为S的方向三、 练习题(一) 单选题(在题干后的括号内填上正确选项前的序号,每题1分) 1.高斯定理→→⎰⋅E S d s=εQ中的Q 是 ( 4 )① 闭合曲面S 外的总电荷 ② 闭合曲面S 内的总电荷 ③ 闭合曲面S 外的自由电荷 ④ 闭合曲面S 内的自由电荷 2.高斯定理→→⎰⋅E S d s=0εQ中的E是 ( 3 )① 曲面S 外的电荷产生的电场强度 ② 曲面S 内的电荷产生的电场强度③ 空间所有电荷产生的电场强度 ④ 空间所有静止电荷产生的电场强度 3.下列哪一个方程不属于高斯定理 (3 )①→→⎰⋅E S d s=εQ②→→⎰⋅E S d S=V d V'⎰ρε01② ▽→⨯E =-tB∂∂→④→⋅∇E =ερ4.静电场方程▽→⨯E = 0 ( 1 )① 表明静电场的无旋性 ② 适用于变化电磁场 ③ 表明静电场的无源性 ④ 仅对场中个别点成立5.对电荷守恒定律下面哪一个说法成立 ( 3 )① 一个闭合面内总电荷保持不变 ② 仅对稳恒电流成立 ③ 对任意变化电流成立 ④ 仅对静止电荷成立6.在假定磁荷不存在的情况下,稳恒电流磁场是 ( 4 ) ① 无源无旋场 ② 有源无旋场 ③有源有旋场 ④ 无源有旋场7.下面哪一个方程适用于变化电磁场 ( 3 )① ▽→⨯B =→J 0μ ②▽→⨯E =0 ③→⋅∇B =0 ④ →⋅∇E =08.下面哪一个方程不适用于变化电磁场 ( 1 )① ▽→⨯B =→J 0μ ②▽→⨯E =-t B ∂∂→③▽•→B =0 ④ ▽•→E =0ερ 9.通过闭合曲面S 的电场强度的通量等于 ( 1 )① ⎰⋅∇VdV E )( ②⎰⋅⨯∇L l d E )( ③ ⎰⨯∇V dV E )( ④⎰⋅∇SdS E )(10.电场强度沿闭合曲线L 的环量等于 ( 2 )① ⎰⋅∇VdV E )( ② ⎰⋅⨯∇SS d E )( ③⎰⨯∇VdV E )( ④⎰⋅∇SdS E )(11.磁感应强度沿闭合曲线L 的环量等于 ( 2 )① l d B L⋅⨯∇⎰)( ② ⎰⋅⨯∇SS d B )( ③⎰⨯SS d B ④⎰⋅∇VdV B )(12. 位置矢量r的散度等于 ( 2 )①0 ②3 ③r1④r 13.位置矢量r的旋度等于 ( 1 )①0 ②3 ③r r ④3rr14.位置矢量大小r 的梯度等于 ( 3 )①0 ② r 1 ③ r r ④3rr15.)(r a⋅∇=? (其中a 为常矢量) ( 4 )① r ② 0 ③ rr④a16.r1∇=? ( 2 )① 0 ② -3rr ③ r r④ r17.⨯∇ 3rr=? ( 1 )① 0 ② r r③ r ④r118.⋅∇ 3rr=?(其中r ≠0) ( 1 )①0 ② 1 ③ r ④r119.)]sin([0r k E ⋅⋅∇ 的值为(其中0E和k 为常矢量) ( 3 )①)sin(0r k k E ⋅⋅②)cos(0r k r E ⋅⋅③)cos(0r k k E ⋅⋅④)sin(0r k r E⋅⋅20.对于感应电场下面哪一个说法正确 ( 4 )①感应电场的旋度为零 ②感应电场散度不等于零③感应电场为无源无旋场 ④感应电场由变化磁场激发21.位移电流 ( 4 )①是真实电流,按传导电流的规律激发磁场 ②与传导电流一样,激发磁场和放出焦耳热 ③与传导电流一起构成闭合环量,其散度恒不为零 ④实质是电场随时间的变化率22.麦氏方程中tBE ∂∂-=⨯∇ 的建立是依据哪一个实验定律 ( 3 )①电荷守恒定律 ②安培定律 ③电磁感应定律 ④库仑定律23.麦克斯韦方程组实际上是几个标量方程 ( 2 )①4个 ②6个 ③8个 ④10个24.从麦克斯韦方程组可知变化电场是 ( 2? )①有源无旋场 ②有源有旋场 ③无源无旋场 ④无源无旋场25.从麦克斯韦方程组可知变化磁场是 ( 3 4 )①有源无旋场 ②有源有旋场 ③无源无旋场 ④无源无旋场26.束缚电荷体密度等于 ( 3 )①0 ②P ⨯∇ ③-P⋅∇ ④)(12P P n-⋅27.束缚电荷面密度等于 ( 4 )①0 ②P ⨯∇ ③-P ⋅∇ ④-)(12P P n -⋅28.极化电流体密度等于 ( 4 )①0 ②M ⋅∇ ③M ⨯∇ ④tP∂∂29.磁化电流体密度等于 ( 1 )①M ⨯∇ ②M ⋅∇ ③tM ∂∂④)(12M M n -⋅30.对于介质中的电磁场 ( 3 )①(E,H )是基本量,(D ,B )是辅助量②(D ,B )是基本量,(E,H )是辅助量 ③(E,B )是基本量,(D ,H )是辅助量 ④(D ,H )是基本量,(E,B )是辅助量31. 电场强度在介质分界面上 ( )①法线方向连续,切线方向不连续 ②法线方向不连续,切线方向不连续③法线方向连续,切线方向连续 ④法线方向不连续,切线方向连续32.磁感应强度在介质分界面上 ( )①法线方向连续,切线方向不连续 ②法线方向不连续,切线方向不连续③法线方向连续,切线方向连续 ④法线方向不连续,切线方向连续33.玻印亭矢量S( )①只与E垂直 ②H 垂直 ③与E 和H 均垂直 ④与E 和H均不垂直(二)填空题(在题中横线上填充正确的文字或公式)1.连续分布的电荷体系)(/x ρ产生的电场强度=)(x E ___________________。

电磁场与电磁波第5版王家礼答案

电磁场与电磁波第5版王家礼答案电磁场与电磁波第5版王家礼答案第一章电磁场和电磁波的基本概念1.1 什么是电磁场?电磁场是描述电荷运动影响的物理场。

它可以被看作是一种对空间的划分,并且在各个空间区域内具有不同的物理状态。

1.2 电磁场的基本方程式是哪些?电磁场的基本方程式包括:麦克斯韦方程组、库仑定律、法拉第电磁感应定律、安培环路定律等。

1.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象。

它具有电场和磁场的相互作用,且在真空和各种介质中都能传播。

第二章静电场和静磁场2.1 什么是静电场?静电场是指当电荷分布不随时间变化、不产生磁场时,所产生的电场。

2.2 静电场的基本定律有哪些?静电场的基本定律包括库仑定律、电场线、电势能和电势。

2.3 什么是静磁场?静磁场是指当电荷分布不随时间变化,但产生了磁场时,所产生的磁场。

2.4 静磁场的基本定律有哪些?静磁场的基本定律包括安培环路定律、比奥萨伐尔定律和洛伦兹力定律。

第三章时变电磁场和电磁波的基本概念3.1 什么是时变电磁场?时变电磁场是指电荷分布随时间变化,且产生了磁场时,所产生的电磁场。

3.2 时变电磁场的基本方程式是哪些?时变电磁场的基本方程式是麦克斯韦方程组,包括麦克斯韦-安培定律、麦克斯韦-法拉第定律、法拉第感应定律和电场定律等。

3.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象,它具有电场和磁场的相互作用,可以在真空和各种介质中传播。

3.4 电磁波的基本特征有哪些?电磁波的基本特征包括电场和磁场垂直于传播方向、具有可见光、红外线、紫外线、X射线和γ射线等不同频率和能量等。

第四章电磁波在真空和介质中的传播4.1 电磁波如何在真空中传播?电磁波在真空中传播速度等于光速,即299792458m/s。

4.2 介质是如何影响电磁波传播的?介质对电磁波的传播速度、方向和振动方向都有影响,介质内的电磁波速度取决于介质的介电常数和磁导率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 电磁场的基本定律
§1.1、1.2电场与高斯定律
1 库仑定律:A 平方反比。B 介电系数

2 电场强度E:电荷为q的载流子受到的电场力为:EqF
点电荷限制的意义:A 不扰动被测对象,操作意义。B 最小电荷量与最小载流子 量子电动
力学与宏观电动力学研究对象的不同。
3 电场的计算:
1) 点电荷:条件是线性媒质
2) 多个点电荷;叠加原理成立,意味着求和

3) 场点),,(zyxP、r与源点),,(zyxP、r:带撇与不带撇

从源点到场点的矢径:0RRrrR
其中222)()()(zzyyxxR
4) 连续分布电荷:A 概念:三种电荷密度、B计算方法:求和变为积分

3 电力线:及其重要。静电场:始于正电荷或无穷远,终于负电荷或无穷远。
时变场:环,电力线环套着磁力线环,磁力线环套着电力线环。

4 高斯定律:1)通量:面积分与矢量点乘sdEdE
sd

方向的定义:闭合曲面与非闭合曲面

2)电通量密度:ED:仅适用于线性、各向异性媒质

3)高斯定律:A 关于E与D两种:后者于媒质无关。

nkksqsdE1

1



nkksqsdD1


4)用高斯定律计算电场:对称性的要求,高斯面。
5.静电场的环路积分:0CldE

§1.3、1.4 磁场、毕澳-沙伐尔定律、安培环路定律
1.磁感应强度:1)速度为v的运动电荷在磁感应强度为B的磁场中受到的磁场力Fd
BvdqFd
2)载流导体:lIdlddtdqdtlddqvdq
2.毕澳-沙伐尔定律:24ralIdBdr
其中r为ld(源点)到场点的距离,ra为ld(源点)到场点的单位矢量。
电流I与电流密度J:dVJdsdlJldsdJlId)(

则有dVraJBdr24
3 磁通连续性原理(关于磁场的面积分):1)磁力线;任何情况下是闭合环形
2)磁通量(磁通):sdBd
3)磁通连续性原理:ssdB0 该原理可以由毕澳-沙伐尔定律证明。
4 安培环路定律(关于磁场的线积分)
1)skkCsdJIldB

电流与闭合曲线方向的规定;右手螺旋法则。
2)磁场强度:HB
适用于线性、各向异性的媒质。skkCsdJIldH
3) 安培环路定律求解磁场:利用对称性。
5麦克斯韦对安培环路定律的推广-全电流定律:
i. 推广线索:A 电容器充放电回路(参考教科书或普通物理)B 对称性的
要求:磁场生电场(法拉第电磁感应定律),电场为何不能生磁场。来而
不往非礼也,非礼则不能长久。只能磁生电,最后只剩电了。
ii. 麦克斯韦磁场环路定律

sdtDsdJldHssC

iii. 全电流:
传导电流密度 EJc(欧姆定律)

运流电流密度 vJv

位移电流密度 tD
§1.5 电磁感应定律
1. 法拉第电磁感应定律

一个闭合导电回路的感应电动势ssdBdtddtd
方向参考教科书16页图1.5.1
磁通的变化可以仅仅由磁场变化引起,也可以仅仅由导电回路的变化引起,也可以是两
者皆有。
2. 法拉第电磁感应定律的意义:

感应电动势CldE

我们知道对于由电荷产生的电场-静电场的环路积分为零:0CldE
故环路积分不为零说明一定有其它类型的源产生了电场,并且这种电场的性质不同于静
电场。
也就是电场的源除了电荷外,还有变化的磁通。即磁能生电。
3. 麦克斯韦对法拉第电磁感应定律的推广:不但适用于闭合导电回路,也适用于任意
空间的任何回路(不需要导电)

§1.6电磁场(麦克斯韦)方程的积分形式
1. 第一积分方程: csvcsdtDJJldH)(

第二积分方程: cssdtBldE
第三方程: sVdVsdD
第四方程: ssdB0
几点注解:1)偏导数代替了全导数,2)第二方程为什么有个负号?若正号会发生
什么。
补充内容:矢量场的数学性质
1.如果一个矢量场的散度和旋度已知,则该矢量场被唯一的确定。
2.任何矢量场最多只有两种源:散度源和旋度源

3.散度与闭合面积分通量有关: sVdVDsdD)(-高斯定理

旋度与闭合回路线积分有关: CssdEldE)(-斯托克斯定理

§1.7电磁场方程的微分形式
1. 为什么需要微分形式:需要知道每一点的情况。
2. 如何从积分形式得到微分形式:利用高斯定理和斯托克斯定理

如CssdEldE)(
由麦克斯韦第二方程有cssdtBldE
由于闭合环路及上面的曲面是任意的,故有

tBE




同理我们可以导出其它三个微分方程。
3.麦克斯韦方程的微分形式

tDJH






tBE





D

0B

4.电荷守恒定律:单位时间内由任意闭合曲面内流出电荷量ssdJ应等于曲面内的电荷减
少量dVtdtdqV。
积分形式: dVtdtdqsdJsV
微分形式: tJ
5.由于存在电荷守恒定律,麦克斯韦方程组中后两个散度方程可以从前两个旋度方程导出,
故不是独立的。

6.总共有三个独立的矢量方程,JHBED,,,,五个矢量,一个标量,还缺两个矢量方程
-状态方程。
7.状态方程:

)(EfDorED

)(HfBorHB

)(EfJorEJcc

由此可以对媒质进行分类(作业)。
三个状态方程是否多一个?第一、第三指不同的媒质。
§1.8 电磁场的边界条件
1.为什么需要边界条件:1)描述媒质分界面两侧电磁场的变化情况,由于媒质和场量不连
续,微分不存在,所以微分方程不能用。2)从数学上讲,用麦克斯韦微分方程求解电磁场
时必须有边界条件才能有确定解。用积分方程求解不需要边界条件,事实上积分方程就包含
了边界条件。我们正是用积分方程导出边界条件的。
2.1)分界面上磁场的切向分量(推导参考教科书第23-24)页:

推导中几点注解;
§1.9 电磁场能量关系—坡印亭矢量
1.可以导出(教科书26、27页作业)
dVBHDEtdVEJsdHEsVV2121)(
各项的物理意义;
1)dVBHDEtV2121

DE21和BH
2

1
分别是电场和磁场能量密度。故dVBHDEtV2121表示体积

V
内电磁场能量单位时间内的减少量。

2)VdVEJ


VVVdVEvdVEdVEJ



2

上式右边第一项表示体积V内单位时间内传导电流的热损耗、第二项表示体积V内单位时
间内电场能转换为运动电荷的动能。

3)ssdHE

由此可以看出ssdHE为单位时间内由体积V的表面S流出(不是流进)的电磁场能
量。故我们假设坡印亭矢量HES为单位时间内垂直通过单位面积的电磁场能量,即功
率流密度矢量。

2.坡印亭定理的物理意义:当体积内无其它能源时,单位时间内体积内电磁场能量的减少
等于体积中的功率损耗与经体积表面流出的功率流之和。
例:从太阳日照角度与气候的冷暖的关系,解释坡印亭矢量和通量的概念

3.静态场的情况:sVdVEJsdS(“-”的意义)
说明能量由外面空间(不是经导体内部)传递。

相关文档
最新文档