信号的时域运算及系统冲激响应

合集下载

信号与系统课后题解第二章

信号与系统课后题解第二章


对⑺式求一阶导,有:
de(t ) d 2 i 2 (t ) di (t ) du (t ) =2 +2 2 + c 2 dt dt dt dt de(t ) d 2 i2 (t ) di (t ) =2 + 2 2 + 2i1 (t ) + 2i 2 (t ) 2 dt dt dt

将⑸式代入⑻式中,有:
λ 2 + 2λ + 1 = 0
可解得特征根为 微分方程齐次解为
λ1, 2 = −1
y h (t ) = C1e −t + C2 te− t
由初始状态为 y (0 ) = 1, y ' (0 ) = 0 ,则有:
C1 = 1 − C 1 + C 2 = 0
由联立方程可得 故系统的零输入响应为:
由联立方程可得 故系统的零输入响应为:
A1 = 2, A2 = −1
y zi (t ) = 2e − t − e −2 t
(2)由原微分方程可得其特征方程为
λ 2 + 2λ + 2 = 0
可解得特征根为 微分方程齐次解为
λ1, 2 = −1 ± i
y h (t ) = e −t (C1 cos t + C2 sin t )
(− 3C1 + 3C2 )δ (t ) + (C1 + C2 )δ ' (t ) − (− 2C1 + C 2 )δ (t ) = δ (t )
(
(
( + C e )δ (t ) + (C e
2 1
)
−2 t
+ C2 e t δ ' (t )

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第2章 连续时间系统的时域分析【圣才

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第2章 连续时间系统的时域分析【圣才

Ri(t) v1(t) e(t)
Ri(t)
1 C
t
i(
)d
v1 (t )
e(t)
vo (t) v1(t)
消元可得微分方程:
6 / 59
圣才电子书
十万种考研考证电子书、题库视频学习平

1

C
d
dt
vo (t)
1 R
vo (t)
R
e(t)
2-2 图 2-2-2 所示为理想火箭推动器模型。火箭质量为 m1,荷载舱质量为 m2,两 者中间用刚度系数为 k 的弹簧相连接。火箭和荷载舱各自受到摩擦力的作用,摩擦系数分 别为 f1 和 f2。求火箭推进力 e(t)与荷载舱运动速度 v2(t)之间的微分方程表示。
M
di1 (t ) dt
Ri2 (t)
0
化简方程组可得微分方程:
(L2
M
2
)
d4 dt 4
vo
(t)
2RL
d3 dt 3
vo
(t)
2L C
R2
d2 dt 2
vo
(t)
2R C
d dt
vo
(t)
1 C2
vo
(t)
MR
d2 dt 2
e(t)
(3)由图 2-2-1(c)所示列写电路方程,得:
C
dv1 (t ) dt
b.自由响应由两部分组成,其中,一部分由起始状态决定,另一部分由激励信号决 定,二者都与系统的自身参数有关;当系统 0-状态为零,则零输入响应为零,但自由响应 可以不为零。
c.零输入响应在 0-时刻到 0+时刻不跳变,此时刻若发生跳变,可能为零状态响应分 量。

信号与系统分析第二章 连续时间系统的时域分析

信号与系统分析第二章 连续时间系统的时域分析

第二章 连续时间系统的时域分析
2.1.1
对系统进行分析时, 首先要建立系统的数学模型。 对于电的系统, 只要利用理想的电路元件, 根据基尔霍 夫定律, 就可以列出一个或一组描述电路特征的线性 微分方程。 现举例来说明微分方程的建立方法。
第二章 连续时间系统的时域分析
例2.1 图2.1所示为RLC串联电路, 求电路中电流i(t) 与激励e(t)之间的关系。
第二章 连续时间系统的时域分析
(3)
y(t) C 1 e t C 2 e 6 t5 2c 0 1o 2 t)s 5 3 (s0i2 n t) (
D(p)y(t)=N(p)f(t)
y(t) N(p) f (t) D(P)
式(2.15)中的 N ( p ) 定义为转移算子, 用H(p)表示,
D (P)
(2.14) (2.15)
H (p ) N D ( (P p ) ) b a m n p p m n a b n m 1 1 p p n m 1 1 a b 1 1 p p a b 0 0 (2.16)
t0
解 (1) 齐次解。 由例2.4 yh (t)=C1e-t+C2e-6t
第二章 连续时间系统的时域分析
(2) 特解。 查表2.2, yp(t)=B1cos (2t)+B2sin(2t)
-14B1+2B2-6=0 2B1+14B2=0
于是,
B15201,
B2530
yp(t)5 20 c 1o2ts) (530 si2 nt)(
第二章 连续时间系统的时域分析
3. 用算子符号表示微分方程, 不仅书写简便, 而且在建 立系统的数学模型时也很方便。 把电路中的基本元件R、 L、 C的伏安关系用微分算子形式来表示, 可以得到相应 的算子模型, 如表2.1所示。

陈后金《信号与系统》(第2版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(上册)

陈后金《信号与系统》(第2版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(上册)

图2-2
3.有一离散时间信号
(1)画出
(2)求序列 学]
使之满足
解:(1)
又 比较上述两式可得: 故如图2-3所示。
[电子科技大
图2-3
4.已知 如图2-4(a),画出

的波形。[北
京理工大学]
解:将 反转得 如图2-4(b)所示,将它们相加、减得 ,波形如图2-4(c)、(d)所示。
图2-4 5.已知f(t)的波形如图2-5所示,令r(t)=tu(t)。
大学]
图1-2 解:因为:
故:
y2(t)的波形如图1-3所示。
图1-3 3.将如图1-4(a)、(b)所示的连续信号展成如下形式:
给出信号
最简单的解析表达形式。[北京航空航天大学]
图1-4
解:(a)该信号可分为两段:

可化简为

,即:
(b)该信号可分为三段: 可化简为 故
,即
4.求
的值。[北京航空航天大学2006研]
,应该与齐次解有关,即系统的特征根为-1和-3,故特征方程应为 ,即a0=4,a1=3。
(2)设系统对激励 rzs(t),则
的零输入响应和零状态响应分别为rzi(t)和
由于
,则由线性时不变系统的微分特性可知
同时,设系统的单位冲激响应为h(t),则由线性时不变系统的叠加性 可知
由式(1)、式(2),并设
陈后金《信号与系统》(第2版)配 套模拟试题及详解
第一部分 名校考研真题 第1章 信号与系统分析导论 一、选择题
1.方程 天大学2007研] A.线性时不变 B.非线性时不变 C.线性时变 D.非线性时变 E.都不对 【答案】B
描述的系统是( )。[北京航空航

《信号与系统》中冲激函数δ(t)的教学探讨

《信号与系统》中冲激函数δ(t)的教学探讨

《信号与系统》中冲激函数δ(t)的教学探讨作者:陈光红来源:《电脑知识与技术》2011年第25期摘要:通过对冲激函数δ(t)的工程定义、性质及由其引起的冲激响应h(t)等的分析,举例说明了与冲激函数相关的知识点及在运用时需注意的问题,并用三种方法求解冲激响应。

关键词:冲激函数δ(t);冲激响应h(t);傅立叶变换;拉普拉斯变换中图分类号:G642文献标识码:A文章编号:1009-3044(2011)25-6264-02Teaching Discussion of Dirac Delta Function in Information and SystemCHEN Guang-hong(Department of Electronic Information Engineering, Suzhou Vocational University, Suzhou 215104, China)Abstract: Definition and property of Dirac delta function is analyzed. Impulse response caused by Dirac delta function is introduced. Some examples are used to explain the notice. Three methods are used to solve the impulse response.Key words: Dirac delta function; impulse response; Fourier transform; Laplace transform信号与系统是通信技术和电子信息技术专业的一门核心课程。

冲激函数δ(t)是信号与系统中的重要信号,此信号本身有采样性质、偶对称性质等,由其衍生出的卷积性质、冲激响应等都是信号与系统中的重要知识点。

§2.2++冲激响应和阶跃响应及卷积(1)

§2.2++冲激响应和阶跃响应及卷积(1)
第 4页
冲激响应求解举例1 冲激响应求解举例
d2 y(t)
求系统 dt 2 解:将f(t)→δ(t), → ,
+4
d y(t) d f (t) + 3y(t) = + 2 f (t) dt dt
的冲激响应。 的冲激响应。
y(t)→h(t) →
d2 h(t ) d h(t ) dδ (t ) +4 + 3h(t ) = + 2δ (t ) 2 dt dt dt
∫0

第 13 页
§2.6 卷积积分
• 信号的时域分解与卷积积分 信号的时域分解与 • 卷积的图解法
第 14 页
一、信号的时域分解与卷积积分
1.信号的时域分解 信号的时域分解
• 预备知识
f1(t)
问 f1(t) = ? p(t) 直观看出
p(t)
1 ∆
A
t

f1 (t) = A ∆ p(t)

∆ 2
δ (tห้องสมุดไป่ตู้)
h(t )
T {0}
第 2页
2.系统冲激响应的求解
•冲激响应的数学模型
对于LTI系统,可以用一n阶微分方程 阶微分方程表示 对于LTI系统,可以用一 阶微分方程表示 LTI系统
dn y(t) dt n bm + an−1 dn−1 y(t) d t n−1 +L+ a1 d y(t) + a0 y(t) = dt d f (t) + b0 f (t) dt
h′ (t) = C1e−t + C2e−3t δ (t) + − C1e−t − 3C2e−3t ε (t)
−t −3t 1 2 1 2

信号与系统知识要点

《信号与系统》知识要点第一章 信号与系统1、 周期信号的判断 (1)连续信号思路:两个周期信号()x t 和()y t 的周期分别为1T 和2T ,如果1122T N T N =为有理数(不可约),则所其和信号()()x t y t +为周期信号,且周期为1T 和2T 的最小公倍数,即2112T N T N T ==。

(2)离散信号思路:离散余弦信号0cos n ω(或0sin n ω)不一定是周期的,当 ①2πω为整数时,周期02N πω=;②122N N πω=为有理数(不可约)时,周期1N N =; ③2πω为无理数时,为非周期序列注意:和信号周期的判断同连续信号的情况。

2、能量信号与功率信号的判断 (1)定义连续信号 离散信号信号能量:2|()|k E f k ∞=-∞=∑信号功率: def2221lim ()d T T T P f t t T →∞-=⎰ /22/21lim|()|N N k N P f k N →∞=-=∑⎰∞∞-=t t f E d )(2def(2)判断方法能量信号: P=0E <∞, 功率信号: P E=<∞∞, (3)一般规律①一般周期信号为功率信号;②时限信号(仅在有限时间区间不为零的非周期信号)为能量信号;③还有一些非周期信号,也是非能量信号。

例如:ε(t )是功率信号; t ε(t )3、典型信号① 指数信号: ()at f t Ke =,a ∈R② 正弦信号: ()sin()f t K t ωθ=+tt4、信号的基本运算 1) 两信号的相加和相乘 2) 信号的时间变化 a) 反转: ()()f t f t →- b) 平移: 0()()f t f t t →± c)尺度变换: ()()f t f at →3) 信号的微分和积分注意:带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度。

正跳变对应着正冲激;负跳变对应着负冲激。

冲激响应和阶跃响应


2e(t)
解: 将 e(t)→(t), r(t)→h(t)
d2 h(t ) dt2
4
d h(t) dt
3h(t )
d (t) dt
2
(t)
求特征根 2 4 3 0 1 1, 2 3
n 2, m 1, n m
ht 中不包含冲激项
冲激响应
h(t ) ( A1et A2e3t )u带(t )u(t)
1 2
hˆ(t ) 1 et e3t u(t )
2
则由系统的线性时不变特性
h(t) dhˆ(t) 2hˆ(t) dt
ht 1 et 3 e3t u(t ) 1 et 1 e3t (t ) et e3t u(t )
2
2
2
2
1 et e3t u(t) 2
系统框图
e RC u t
方法 2:奇异函数项相平衡原理
已知方程
RC
d
vC (t) dt
vC
(t)
(t)
冲激响应
t
vC (t) Ae RC u(t)
求导
d vC (t) A (t)
A
1t
e RC u(t )
dt
RC
注意其中 (t) 项!
RC
1
t
Ae RC
u(t )
RCA
(t)
t
Ae RC
u(t )
(t)
奇异函数项相平衡原理已知方程冲激响应求导注意其中rcrcrcrcrc整理方程左右奇异函数项系数相平衡波形注意其中时有一冲激这就是电容电压突变的原因3n阶系统的冲激响应1冲激响应的数学模型对于线性时不变系统可以用一高阶微分方程表示响应及其各阶导数最高阶为n2ht解答的形式由于时都为零因而方程式右端的自由项恒等于零这样原系统的冲激响应形式与齐次解的形式相同

实验1阶跃响应与冲激响应

实验1 阶跃响应与冲激响应一、实验目的1.观察和测量RLC串联电路的阶跃响应与冲激响应的波形和有关参数,并研究其电路元件参数变化对响应状态的影响;2.掌握有关信号时域的测量方法。

二、几个概念与解释1、系统的定义:系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

从数学角度,也可理解为:系统也可定义为实现某种功能的运算。

2、响应:将输入信号(又称激励)作用于系统,得到的输出信号就称为响应。

3、零输入响应:没有外加激励信号的作用,只是由初始状态(初始时刻系统的储能)所产生的响应。

4、零状态响应:不考虑初始状态系统的储能作用(初始状态为零)由系统的外部激励信号所产生的作用。

5、冲激响应:将冲激信号作用于系统得到的输出信号就叫冲激响应。

6、阶跃响应:将阶跃信号作用于系统得到的输出信号就叫阶跃响应。

7、单位冲激响应:单位冲激信号作为激励,在系统中产生的零状态响应,就称为单位冲激响应。

8、单位阶跃响应:单位阶跃信号作为激励,在系统中产生的零状态响应,称为单位阶跃响应。

四、实验原理说明实验如图1-1所示为RLC 串联电路的阶跃响应与冲激响应的电路连接图图1-1(a )为阶跃响应电路连接示意图图1-1(b )为冲激响应电路连接示意图图1-1 (a) 阶跃响应电路连接示意图图1-1 (b) 冲激响应电路连接示意图其响应有以下三种状态:(1) 当电阻R >2 L C 时,称过阻尼状态;(2) 当电阻R = 2 L C时,称临界状态; (3) 当电阻R <2 L C 时,称欠阻尼状态。

以上两个电路的输出信号可以工作在:欠阻尼、临界和过阻尼三种状态下,可根据不同的需要进行选择。

根据电路中的参数计算出临界状态状态下的电阻值为R = 2 L C当:R =630.5Ω时,输出处于临界状态。

冲激信号是阶跃信号的导数,所以对线性时不变电路冲激响应也是阶跃响应的导数。

为了便于用示波器观察响应波形,实验用中用周期方波代替阶跃信号。

阶跃响应和冲激响应实验报告总结

阶跃响应和冲激响应实验报告总结一、实验目的本次实验的主要目的是通过对阶跃响应和冲激响应的测试,来了解系统的动态特性和时域响应特性,并掌握信号处理中常用的阶跃响应和冲激响应测试方法。

二、实验原理1. 阶跃响应阶跃响应是指在输入信号为单位阶跃函数时,系统输出的时间响应。

单位阶跃函数是一种特殊的信号,其表达式为:u(t) = {0, t<0; 1, t≥0}在实际测试中,可以通过将电压源接入被测系统后,使其输出一个单位阶跃信号,然后记录系统输出信号随时间变化的过程,并绘制出相应的阶跃响应曲线。

2. 冲激响应冲激响应是指在输入信号为单位冲击函数时,系统输出的时间响应。

单位冲击函数是一种特殊的信号,其表达式为:δ(t) = {0, t≠0; ∞, t=0}在实际测试中,可以通过将电压源接入被测系统后,使其输出一个单位冲击信号,然后记录系统输出信号随时间变化的过程,并绘制出相应的冲激响应曲线。

三、实验步骤1. 阶跃响应测试(1)将电压源连接到被测系统的输入端口。

(2)调节电压源输出为一个单位阶跃信号。

(3)记录系统输出信号随时间变化的过程,并绘制出相应的阶跃响应曲线。

2. 冲激响应测试(1)将电压源连接到被测系统的输入端口。

(2)调节电压源输出为一个单位冲击信号。

(3)记录系统输出信号随时间变化的过程,并绘制出相应的冲激响应曲线。

四、实验结果与分析1. 阶跃响应测试结果通过实验测试,我们得到了被测系统的阶跃响应曲线,如下图所示:图1:被测系统的阶跃响应曲线从图中可以看出,在输入信号为单位阶跃函数时,被测系统输出了一个典型的阶跃响应。

可以看到,在初始状态下,输出信号为0;当输入信号达到0时刻后,输出信号迅速上升并逐渐趋于稳定状态。

这种现象说明了被测系统具有较好的动态特性和稳态特性。

2. 冲激响应测试结果通过实验测试,我们得到了被测系统的冲激响应曲线,如下图所示:图2:被测系统的冲激响应曲线从图中可以看出,在输入信号为单位冲击函数时,被测系统输出了一个典型的冲激响应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号的时域运算及系统冲激响应一、实验目的1、掌握信号的基本时域变换和时域运算;2、用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MA TLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的常用基本性质;基本要求:掌握用MA TLAB实现各种信号的时域变换和运算,并且以图形的方式再现各种信号的波形。

掌握线性时不变连续系统的时域数学模型用MATLAB描述的方法,掌握卷积运算、线性常系数微分方程的求解编程。

二、实验原理1. 信号的时域变换与时域运算1.1 信号的时移信号的时移可用下面的数学表达式来描述:设一个连续时间信号为x(t),它的时移y(t) 表示为:y(t) = x(t - t0)其中,t0为位移量。

若t0为正数,则y(t)等于将x(t)右移t0秒之后的结果。

反之,若t0为负数,则y(t)等于将x(t)左移t0秒之后的结果。

在MA TLAB中,时移运算与数学上习惯表达方法完全相同。

程序Program 1_5对给定一个连续时间信号x(t) = e-0.5t u(t),对它分别左移2秒钟和右移2秒钟得到信号x1(t) = e-0.5(t+2)u(t+2)和x2(t) = e-0.5(t-2)u(t-2)。

% Program1_5% This program is used to implement the time-shift operation% on a continuous-time signal and to obtain its time-shifted versions% and to draw their plots.clear,close all,t = -5:0.01:5;x = exp(-0.5*t).*u(t); % Generate the original signal x(t)x1 = exp(-0.5*(t+2)).*u(t+2); % Shift x(t) to the left by 2 second to get x1(t)x2 = exp(-0.5*(t-2)).*u(t-2); % Shift x(t) to the right by 2 second to get x2(t)subplot(31 1)plot(t,x) % Plot x(t)grid on,title ('Original signal x(t)')subplot (312)plot (t,x1) % Plot x1(t)grid on,title ('Left shifted version of x(t)')subplot (313)plot (t,x2) % Plot x2(t)grid on,title ('Right shifted version of x(t)')xlabel ('Time t (sec)')1.2 信号的时域反褶对一个信号x[n]的反褶运算在数学上表示为y[n] = x[-n]这种反褶运算,用MATLAB实现起来也是非常简单的。

有多种方法可以实现信号的反褶运算。

方法一,修改绘图函数plot(t,x)和stem(n,x)中的时间变量t和n,即用-t和-n替代原来的t 和n,这样绘制出来的图形,看起来就是原信号经时域反褶后的版本。

方法二,直接利用原信号与其反褶信号的数学关系式来实现。

这种方法最符合信号反褶运算的实际意义。

方法三,使用M ATLAB内部函数fliplr()来实现信号的反褶运算。

其用法如下:y = fliplr(x):其中x为原信号x(t)或x[n],而y则为x的时域反褶。

需要说明的是,函数fliplr()对信号作时域反褶,仅仅将信号中各个元素的次序作了一个反转,这种反转处理是独立于时间变量t和n的。

因此,如果信号与其时间变量能够用一个数学函数来表达的话,那么建议将时间变量t和n的范围指定在一个正负对称的时间区间即可。

1.3 信号的时域尺度变换信号x(t)的时域尺度变换在数学描述为y(t) = x(at),其中a为任意常数。

根据a的不同取值,这种时域尺度变换对信号x(t)具有非常不同的影响。

当a = 1时,y(t) = x(t);当a = -1时,y(t) = x(-t),即y(t)可以通过将x(t)反褶运算而得到;当a > 1时,y(t) = x(at),y(t)是将x(t)在时间轴上的压缩而得到;当0 < a < 1时,y(t) = x(at),y(t)是将x(t)在时间轴上的扩展而得到;当-1 < a < 0时,y(t) = x(at),y(t)是将x(t)在时间轴上的扩展同时翻转而得到;当a < -1时,y(t) = x(at),y(t)是将x(t)在时间轴上的压缩同时翻转而得到;由此可见,信号的时域尺度变换,除了对信号进行时域压缩或扩展外,还可能包括对信号的时域反褶运算。

实际上,MA TLAB完成式1.5的运算,并不需要特殊的处理,按照数学上的常规方法即能完成。

1.4周期信号在《信号与系统》课程中,周期信号是一类非常重要的信号。

给定一个信号x(t)或x[n],如果满足x(t) = x(t+kT)x[n] = x[n+kN]则该信号叫做周期信号。

其中,k为任意整数,T和N为常数,通常称为信号的基本周期或最小周期。

周期信号可以看作是一个时限的非周期信号经过周期延拓之后形成的。

在数字信号处理中,周期延拓这一信号处理方法非常重要。

下面的程序段,就是将一个非周期信号x1(t) = e-2t[u(t)-u(t-1)]经过周期延拓之后而得到一个周期信号:clear, close all;t = -6:0.001:6;T = 2; x = 0;for k = -2:2;x = x+exp(-2*(t-k*T)).*(heaviside(t-k*T)-heaviside(t-1-k*T));end仔细阅读该程序,可以发现其算法就是:∑∞-∞=-=kkTtxtx)()(1由于k无法计算到无穷,而是以有限值加以替代,反映到有限宽度图形窗口中得到的效果完全符合要求。

2 LTI系统的时域描述2.1线性时不变系统在分析LT I系统时,有关LTI系统的两个重要的性质是必须首先掌握和理解的。

这就是线性性(Linearity)和时不变性(Time-invariance)。

所谓线性性就是指系统同时满足齐次性和叠加性。

这可以用下面的方法来描述。

假设系统在输入信号x1(t)作用时的响应信号为y1(t),在输入信号x2(t)作用时的响应信号为y2(t),给定两个常数a和b,如果当输入信号为x(t)时系统的响应信号为y(t),且满足x(t) = x1(t) + x2(t)y(t) = y1(t) + y2(t)则该系统具有叠加性(Additivity)。

如果满足x(t) = ax1(t)y(t) = ay1(t)则该系统具有齐次性(Homoge neity)。

一个系统如果是线性系统的话,那么这个系统必须同时具有叠加性和齐次性。

又假设系统在输入信号x(t)作用时的响应信号为y(t),对一个给定时间常数t0,如果当输入信号为x(t-t0)时,系统的响应信号为y(t-t0)的话,则该系统具有时不变性。

同时具有线性性和时不变性的系统,叫做线性时不变系统,简称LTI系统。

LTI系统有连续时间LTI系统和离散时间LTI系统之分。

连续时间系统的输入和输出信号都必须是连续时间信号,而离散时间系统的输入和输出信号都必须是离散时间信号。

2.2 LTI系统的单位冲激响应和卷积模型给定一个连续时间LTI系统,在系统的初始条件为零时,用单位冲激信号δ(t)作用于系统,此时系统的响应信号称为系统的单位冲激响应(Unit impulse response),一般用h(t)来表示。

需要强调的是,系统 的单位冲激响应是在激励信号为δ(t)时的零状态响应(Zero-state response )。

离散时间LTI 系统的单位冲激响应的定义与连续时间LTI 系统的单位冲激响应相同,只是离散时间单位冲激函数δ[n]的定义有所不同。

系统的单位冲激响应是一个非常重要的概念,对于一个系统,如果我们知道了该系统的单位冲激响应,那么,该系统对任意输入信号的响应信号都可以求得。

也就是说,系统的输入信号x(t)、x[n]和输出信号y(t)、y[n]之间的关系可以用一个数学表达式来描述,这个数学表达式为∑∞-∞=-=k k n h k x n y ][][][ 这个表达式就是 LTI 系统的卷积模型,它是根据系统的线性性和时不变性以及信号可以分解成单位冲激函数经推理得到的。

这个表达式实际上告诉了我们一个重要的结论,那就是,任意LTI 系统可以完全由它的单位冲激响应h(t)/h[n]来确定。

由于系统的单位冲激响应是零状态响应,故按照上式求得的系统响应也是零状态响应。

上式中的积分运算叫做卷积积分,求和运算叫做卷积和,是描述连续时间系统输入输出关系的一个重要表达式。

2.3卷积的计算卷积的计算通常可按下面的五个步骤进行(以卷积积分为例):1. 该换两个 信号波形图中的横坐标,由t 改为τ,τ变成函数的自变量;2. 把其中一个信号反褶,如把h(τ)变成h(-τ);3. 把反褶后 的信号做移位,移位量是t ,这样t 是一个参变量。

在τ坐标系中,t > 0时图形右移, t < 0时图形左移。

4. 计算两个信号重叠部分的乘积x(τ)h(t-τ);5. 完成相乘后图形的积分。

对于两个时限信号 (Time-limited signal ),按照上述的五个步骤,作卷积积分运算时,关键是正确确定不同情况下的积分限。

只要正确地确定了积分限都能得到正确定积分结果。

尽管如此,在时域中计算卷积积分,总体上来说是一项比较困难的工作。

程序convlution_demo 用来演示上述作卷积积分运算的五个步骤。

本程序较为复杂,不建议读者读懂该程序,只需执行这个程 序,观看程序执行过程中有关卷积积分的运算过程,以便于理解这五个步骤。

借助MATLAB 的内部函数conv()可以很容易地完成两个信号的卷积积分运算。

其语法为:y = conv(x,h)。

其中x 和h 分别是两个作卷积运算的信号,y 为卷积结果。

为了正确地运用这个函数计算 卷积,这里有必要对conv(x,h)做一个详细说明。

conv(x,h)函数实际上是完成两个多项式的乘法运算。

例如,两个多项式p 1和p 2分别为:432231+++=s s s p 和 1234232+++=s s s p这两个多项式在MATLAB 中是用它们的系数构成一个行向量来表示的,如果用x 来表示多项式p 1,h 表示多项式p 2,则x 和h 分别为x = [1 2 3 4]h = [4 3 2 1]在MA TLAB 命令窗口依次键入>> x = [1 2 3 4];>> h = [4 3 2 1];>> y=conv(x,h)在屏幕上得到显示结果:y = 4 11 20 30 20 11 4这表明,多项式p 1和p 2的乘积为:411203020114234563++++++=s s s s s s p正如前所述,用MATLAB 处理连续时间信号时,独立时间变量t 的变化步长应该是很小的,假定用符号dt 表示时间变化步长,那么,用函数conv()作两个信号的卷积积分时,应该在这个函数之前乘以时间步长方能得到正确的结果。

相关文档
最新文档