浅谈数控车床刀尖补偿

浅谈数控车床刀尖补偿
浅谈数控车床刀尖补偿

浅谈数控车床刀尖圆弧半径加工带圆弧锥轴类零件

一、教学背景

刀尖圆弧半径是影响零件的加工精度因素之一,本课题通过带圆锥轴类零件的加工,让学生掌握刀具刀尖圆弧半径补偿的基本原理及基本操作,以保证加工零件的加工精度。

本课题完成课时为4学时,学生人数为24人,分4人/组,每组完成一个工件。

教学目标:通过本课题的学习使学生掌握刀尖圆弧半径的补偿原理和方法,及补偿参数的设置,提高零件的加工精度。

时间资源:课前,课后和课内的设计和安排

材料资源:45#材料

信息资源:网络技术,多媒体技术,工具书,手册

人员资源:双师型工作团队。1位专业教师2位培训师。学生小组和组长。

设备资源:华中系统数控车床2—3人,台;外圆粗、精车刀、螺纹车刀、切槽刀每台机床各1把;刀架扳手、卡盘扳手、划线盘、角度样板每台机床1付,垫铁若干;游标卡尺、千分尺、螺纹环规、粗糙度样板每台机床各1把。

环境资源:数控实训车间、数控仿真机房

二、课程的实施

(一)复习导入新课

老师:同学们,见过外圆车刀吗?在哪见过?

学生:见过,在普车实习时,就见过,而且也用过

老师:不错,学过的知识没忘记。车刀的刀尖是尖吗?

学生:是,但不是绝对尖。

老师:答得好。请看下图,a图是理论刀尖,b图是实际刀尖。这就是我们今天要讲的新课知识,刀尖圆弧半径补偿。

(a) (b)

图1 圆头刀假想刀尖

(二)提出问题,探究新课

老师:看图回答问题。请大家思考,下图是用一假设带了刀尖的圆头刀在数控车床上加工的路径,两种刀具切削会带来什么影响?刀尖圆弧半径对加工零件的精度有影响吗?

学生:车圆锥面有影响

老师:答得好,观察能力强。那么有何影响?

学生:在切圆柱面时无影响;切圆锥面时,圆头刀切得浅一些,有尖定的切得深一些。

老师:分析得非常正确。请同学们看下图讨论的刀尖圆弧半径在数控加工中的影响。

学生:刀尖圆弧半径对圆柱没影响,对圆锥和圆弧有影响并产生了误差。

老师:很对。因为编制数控车床加工程序时,理论上是将车刀刀尖看成一个点,如图1a所示的P点就是理论刀尖。但为了提高刀具的使用寿命和降低加工工件的表面粗糙度,通常将刀尖磨成半径不大的圆弧(一般圆弧半径R是0.4—1.6之间),如图1b所示X向和Z向的交点P称为假想刀尖,该点是编程时确定加工轨迹的点,数控系统控制该点的运动轨迹。然而实际切削时起作用的切削刃是圆弧的切点A、B,它们是实际切削加工时形成工件表面的点。很显然假想刀尖点P与实际切削点A、B是不同点,所以如果在数控加工或数控编程时不对刀尖圆角半径进行补偿,仅按照工件轮廓进行编制的程序来加工,势必会产生加工误差。

如果不进行刀尖圆弧半径补偿,在加工过程中,会产生什么现象呢?(请看下图)

学生:图的右边产生了少切,左边产生的过切。

老师:答得非常好,棒极了。这就是在数控加工中产生的过切和少切现象。在编程过程中如何实现刀具圆弧半径补偿,这是这次课的重点内容。

(三)知识学习

1.在实际加工过程中可以使用刀尖圆弧是0吗?这样做的目的是激发学生的求知欲,可以适当的提问一些后进生,

2.分组进一步渐进式找规律:

(1)刀尖圆弧半径与工件已加工圆弧之间有何关系?

()加工圆锥会是什么样子?

1.编程指令及编程格式

学生课堂看书(5分钟)

老师:请学生到黑板上写出编程指令的格式

学生:G41/G42 G00 /G01 X_ Z_;

G40 G00/G01 X_ Z_;

老师:请学生说出指令中各指令及地址符的含义。

学生:其中G41、G42为刀具半径左右补偿;G40为取消刀具半径补偿;X、Z为建立/取消刀具半径补偿直线段的终点坐标。

老师解释:刀具半径补偿的过程分为三步(如图)所示,刀补的建立,实现刀补和取消刀补。

注意事项

(1)G41刀具左补偿,即沿刀具运动方向看刀具在工件的左侧;同理,G42刀具右补偿;G40取消补偿。G41/G42不能连续使用,要想变换必须先用G40取消,再更换。

(2)G41/G42指令建立或取消必须在含有G00/G01指令的程序段中才有效。

(3)因为刀具偏置需要一定的时间,所以刀尖圆弧半径补偿必须在加工指令前建立,加工完成后取消。以防因为调用刀补不当引起零件加工误差。

(4)不要与TXXXX混淆,TXXXX后两位是通过对刀建立的刀尖位轩补偿,要想正确使用刀尖圆弧半径补偿还必须在R对应位置输入刀尖圆弧半径值;

(5)还应输入假想刀尖相对于圆头刀中心的位置,如图所示。

学生编程

O2222;

G54G90G40;

M03S800;

G00X20Z2;

G42G01X20Z0F0.5;

Z-20;

X40Z-40;

G40G01X80Z-40;

G00X100Z100;

M05;

M02;

刀尖圆弧半径补偿在复合循环指令中的应用

在实际加工中,数控车床工件的毛坯常用棒料或铸、锻件,加工余量较大,需要多次切削,华中系统提供了不同形式的固定循环功能,例如粗车循环指令G71、仿形粗车循环指令G73、精加工指令G70等,大大简化了程序,减少所占内存。

下面将结合刀尖圆弧半径补偿功能,利用G71、G70指令进行实例加工。零件如图所示。

程序:O1111;

G54G90G40;

G00X22Z2;

G71U2R1;

G71P10Q20U0.4W0F0.3;

N10G42G00X0F0.1;

G03X8W-4R4;

G01Z-8;

X11;

X15Z-14;

Z-17;

G02X15W-14R14;

G01W-3;

X18;

N20Z-38;

G70P10Q20

G40G00X100Z100;

M05;

M30;

注意事项:

刀尖半径补偿功能只在精加工过程中产生作用。若将刀尖圆弧半径补偿指令放在粗车循环指令之前,例如:“…G42G00X22Z2;G71U2R1;…”则会出现#34报警。

三、教学反思

1. 在刀具刃是尖利时,切削进程按照程序指定的形状执行不会发生问题。不过,真实的刀具刃是由圆弧构成的(刀尖半径) 就像右图所示,在圆弧插补和攻螺纹的情况下刀尖半径会带来误差。

2. 偏置功能

补偿的原则取决于刀尖圆弧中心的动向,它总是与切削表面法向里的半径矢量不重合。因此,补偿的基准点是刀尖中心。通常,刀具长度和刀尖半径的补偿是按一个假想的刀刃为基准,因此为测量带来一些困难。

把这个原则用于刀具补偿,应当分别以X 和Z 的基准点来测量刀具长度刀尖半径R,以及用于假想刀尖半径补偿所需的刀尖形式数(0-9)。

这些内容应当事前输入刀具偏置文件。“刀尖半径偏置” 应当用G00 或者G01功能来下达命令或取消。不论这个命令是不是带圆弧插补,刀不会正确移动,导致它逐渐偏离所执行的路径。因此,刀尖半径偏置的命令应当在切削进程启动之前完成;并且能够防止从工件外部起刀带来的过切现象。反之,要在切削进程之后用移动命令来执行偏置的取消过。命令切削位置刀具路径

G40 取消刀具按程序路径的移动

G41 右侧刀具从程序路径左侧移动

G42 左侧刀具从程序路径右侧移动

3、假想刀尖的轨迹分析与偏置值计算

用圆头车刀进行车削加工时,实际切削点A和B分别决定了X向和Z向的加工尺寸。如图2所示,车削圆柱面或端面(它们的母线与坐标轴Z或X平行)时,P点的轨迹与工件轮廓线重合;车削锥面或圆弧面(它们的母线与坐标轴Z或X不平行)时,P点的轨迹与工件轮廓线不重合,因此下面就车削锥面和圆弧面进行讨论:

图2 刀尖圆弧半径的影响

1、加工圆锥面的误差分析与偏置值计算

如图3a所示,假想刀尖P点沿工件轮廓CD移动,如果按照轮廓线CD编程,用圆角车刀进行实际切削,必然产生CDD1C1的残留误差。因此,实际加工时,圆头车刀的实际切削点要移至轮廓线CD,沿CD移动,如图3b所示,这样才能消除残留高度。这时假想刀尖的轨迹C2D2与轮廓线CD在X向相差ΔX,Z向相差ΔZ。设刀具的半径为r,可以求出:

图3 圆头车刀加工圆锥面

2、加工圆弧面的误差分析与偏置值计算

圆头车刀加工圆弧面和加工圆锥面基本相似。如图4是加工1/4凸凹圆弧,CD为工件轮廓线,O点为圆心,半径为R,刀具与圆弧轮廓起点、终点的切削点分别为C和D,对应假想刀尖为C1和D1。对图4a所示凸圆弧加工情况,圆弧C1D1为假想刀尖轨迹,O1

点为圆心,半径为(R+r);对图4b所示凹圆弧加工情况,圆弧C2D2为假想刀尖轨迹,其圆心是O2点,半径为(R-r)。如果按假想刀尖轨迹编程,则要以图中所示的圆弧C1D1或C2D2(虚线)有关参数进行程序编制。

图4 圆头车刀加工90°凸凹圆弧

4、刀尖圆角半径补偿方法

现代数控系统一般都有刀具圆角半径补偿器,具有刀尖圆弧半径补偿功能(即G41左补偿和G42右补偿功能),对于这类数控车床,编程员可直接根据零件轮廓形状进行编程,编程时可假设刀具圆角半径为零,在数控加工前必须在数控机床上的相应刀具补偿号输入刀具圆弧半径值,加工过程中,数控系统根据加工程序和刀具圆弧半径自动计算假想刀尖轨迹,进行刀具圆角半径补偿,完成零件的加工。刀具半径变化时,不需修改加工程序,只需修改相应刀号补偿号刀具圆弧半径值即可。需要注意的是:有些具有G41、G42功能的数控系统,除了输入刀头圆角半径外,还应输入假想刀尖相对于圆头刀中心的位置,这是由于内、外圆车刀或左、右偏刀的刀尖位置不同。

当数控车床的数控系统具有刀具长度补偿器时,直接根据零件轮廓形状进行编程,加工前在机床的刀具长度补偿器输入上述的ΔX和ΔZ的值,在加工时调用相应刀具的补偿号即可。

对于有些不具备补偿功能经济型数控系统的车床可直接按照假想刀尖的轨迹进行编程,即在编程时给出假想刀尖的轨迹,如图3b和图4所示的虚线轨迹进行编程。如果采用手工编程计算相当复杂,通常可利用计算机绘图软件(如AutoCAD、CAXA电子图版等)先画出工件轮廓,再根据刀尖圆角半径大小绘制相应假想刀尖轨迹,通过软件查出有关点的坐标来进行编程;对于较复杂的工件也可以利用计算机辅助编程(CAM),如用CAXA数控车软件进行编程时,刀尖半径补偿有两种方式:编程时考虑半径补偿和由机床进行半径补偿,对于有些不具备补偿功能数控系统应该采用编程时考虑半径补偿,根据给出的刀尖半径和零件轮廓会自动计算出假想刀尖轨迹,通过软件后置处理生成假想刀尖轨迹的加工程序。对于这类数控系统当刀具磨损、重磨、或更换新刀具而使刀尖半径变化时,需要重新计算假想刀尖轨迹,并修改加工程序,既复杂烦琐,又不易保证加工精度。

四、结束语

以上通过车刀刀尖半径对加工工件的影响的分析可知,要保证零件加工精度,在数控加工尤其精加工一定要进行车刀刀尖半径补偿。由于目前数控系统的功能参差不齐,针对不同类型数控系统,在实际应用中采取方法也不同,有些在编程时就要考虑半径补偿,有些可在机床中进行半径补偿。

五、加工例图:

----------沈理祥

2014年02月22日

数控机床认知心得体会

篇一:《数控心得体会》 心得体会 为期一周的课程设计已经结束,在这一周的时间里,是我更全面、更深刻的认识到数控加工工艺和数控编程的基本内容。意识到了理论学习和实践操作之间的明显的差异,“纸上得来终觉浅”。通过这次课程设计我们真正学会了自主学习、动手操作,、、实践与理论相结合,更加通过小组团队之间的合作培养了相互协调、相互合作的意识,这是不管对现在还是将来都是非常重要的。这次的任务是加工出一个有直线、圆弧、锥面等综合性的加工方式的工件,是运用数控机床实际操作的一次综合性练习。随着课设的一步一步的完成,使我们对数控这门课程也加深了印象。 我们这个小组,是一个新组建的团队,每个成员都在尽自己最大的努力来尽可能完美的完成这次课程设计的任务。为了解决技术上的问题,我们不断的去查阅相关的资料,向有经验的人请教。在这个过程中,我们体会到了原先所没有的收获,学到了很多在书本上学不到的东西,受益匪浅。 在这次的课程设计过程中,最让人头疼的莫过于对加工程序的编写。毕竟先前只是在理论上学习过,而没有亲自动手编过程序,加之对数控加工程序指令的

不是很熟悉,我们在编程这一步确实耽误了不少时间。让人欣慰的是,皇天不负有心人,我们终于在再三检查无误后,把加工需要的程序编出来了,费心费力之余,我们也收获良多。我想如要加快编程速度,除了对各编程指令的熟练掌握之外,还需要你掌握零件工艺方面的知识。对于夹具的选择、切削参数的设定我们必须十分清楚。在上机操作时,我们只有不断地练习各个功能指令的作用,才能在编程时得心应手。 再说在最后加工工件的过程中,本以为程序编好后只等着所有的程序走完就能得到想要的工件,现在想想真是大意。在加工过程中,每一次的对刀都要认真仔细,严格控制进给速度,这样才能使加工出来的工件更精确,使加工过程之中避免出现不必要的故障。对我们来说,数控加工实习是一次很好的学习、锻炼的机会,甚至是我们生活态度的教育的一次机会!在这次实训中,让我体会最深的是理论联系实际,实践是检验真理的唯一标准。理论知识固然重要,可是无实践的理论就是空谈。真正做到理论与实践的相结合,将理论真正用到实践中去,才能 更好的将自己的才华展现出来。我以前总以为看书看的明白,也理解就得了,经过这次的实训,我现在终于明白,没有实践所学的东西就不属于你的。俗话说“尽信书则不如无书”我们要读好书,而不是读死书。任何理论和知识只有与实习相结合,才能发挥出其作用。而作为思想可塑性大的我们,不能单纯地依靠书本,还必须到实践中检验、锻炼、创新;去培养科学的精神,良好的品德,高尚的情操,文明的行为,健康的心理和解决问题的能力。

数控机床加工中的刀具补偿工艺

数控机床加工中的刀具补偿工艺 一、刀具补偿的提出: 用立铣刀在数控机床上加工工件,可以清楚看出刀具中心运动轨计与工件轮廓不重合,这是因为工件轮廓是立铣刀运动包络形成的。立铣刀的中心称为刀具的刀位点(4、5坐标数控机床称为刀位矢量),刀位点的运动轨计即代表刀具的运动轨迹。在数控加工中,是按工件轮廓尺寸编制程序,还是按刀位点的运动轨迹尺寸编制程序,这要根据具体情况来处理。 数控机床立铣刀加工 在全功能数控机床中,数控系统有刀具补偿功能,可按工件轮廓尺寸进行编制程序,建立、执行刀补后,数控系统自动计算,刀位点自动调整到刀具运动轨迹上。直接利用工件尺寸编制加工程序,刀具磨损,更换加工程序不变,因此使用简单、方便。 经济型数控机床结构简单,售价低,在生产企业中有一定的拥有量。在经济型数控机床系统中,如果没有刀具补偿功能,只能按刀位点的运动轨迹尺寸编制加工程序,这就要求先根据工件轮廓尺寸和刀具直径计算出刀位点的轨迹尺寸。因此计算量大、复杂,且刀具磨损、更换需重新计算刀位点的轨迹尺寸,重新编制加工程序。 二、全功能数控机床系统中刀具补偿: 1.数控车床刀具补偿 数控车床刀具补偿功能包括刀具位置补偿和刀具圆弧半径补偿两方面。在加工程序中用T功能指定,T***X中前两个XX为刀具号,后两个XX为刀具补偿号,如T0202。如果刀具补偿号为00,则表示取消刀补。 (1)刀具位置补偿刀具磨损或重新安装刀具引起的刀具位置变化,建立、执行刀具位置补偿后,其加工程序不需要重新编制。办法是测出每把刀具的位置并输入到指定的存储器内,程序执行刀具补偿指令后,刀具的实际位置就代替了原来位置。 如果没有刀具补偿,刀具从0点移动到1点,对应程序段是N60 G00 C45 X93 T0200,如果刀具补偿是X=+3,Z=+4,并存入对应补偿存储器中,执行刀补后,刀具将从0点移动到2点,而不是1点,对应程序段是N60 G00 X45 Z93 T0202。 (2)刀具圆弧半径补偿编制数控车床加工程序时,车刀刀尖被看作是一个点(假想刀尖P点),但实际上为了提高刀具的使用寿命和降低工件表面粗糙度,车刀刀尖被磨成半径不大的圆弧(刀尖AB圆弧),这必将产生加工工件的形状误差。另一方面,刀尖圆弧所处位置,车刀的形状对工件加工也将产生影响,而这些可采用刀具圆弧半径补偿来解决。车刀的形状和位置参数称为刀尖方位,用参数0~9表示,P点为理论刀尖点。 (3)刀补参数每一个刀具补偿号对应刀具位置补偿(X和Z值)和刀具圆弧半径补偿(R和T值)共4个参数,在加工之前输入到对应的存储器,CRT上显示。在自动执行过程中,数控

数控机床加工中的刀具补偿

龙源期刊网 https://www.360docs.net/doc/e08608979.html, 数控机床加工中的刀具补偿 作者:王晓晓 来源:《读与写·上旬刊》2018年第06期 摘要:随着数字化控制机床的产生,许多机械加工的工艺也变得越来越简便。本论文通过对数控机床中刀具补偿的作用和方法的分析,阐述如何利用这一功能来提高工件的尺寸精准,优化刀具的性能,减少生产费用,为车间生产工作提供操作数据与积累经验。 关键词:数控车床;刀具补偿;位置补偿;加工生产 中图分类号:G718 文献标识码:B文章编号:1672-1578(2018)16-0246-02 引言 機床的价格与型号不同,就会拥有着不一样的配置,例如刀具补偿这个配置在经济机床上就不具有,需要重复多次的对刀。此种人工操作的方式不仅操作麻烦且容易出现尺寸偏差;而数控车床则能对刀具的外形与大小进行智能计算,自动对刀调控工件至合适位置,而且获得的精度也高。这两种车床在生产中有明显的质量和效率差距。所以,数控车床成为大多数技工院校和企业的选择。 1.刀具补偿 1.1 刀具补偿的重要性。 数控机床在前期需要编程,通常会将各刀位点设置在刀架的固定位置上,理论上每次设定的刀位点都是相同的。但在具体执行当中,因为刀具的尺寸与形状偏差问题,通常是无法将刀尖保持一致的。尤其在换刀过程中,由于刀具的磨损和人工操作的误差,新安装刀具的刀位点也很难与前一个刀具的刀位点完全重合,误差就这样轻易的出现了。为了改善这些因素造成的误差而带来的数值偏差,必须进行刀具补偿,需要使用刀具补偿,不然生产出的产品会与图纸要求产生一定的形状和尺寸上的差异。 1.2 刀具补偿的作用。 在数控机床加工工件时,由于刀具磨损或重新安装刀具引起的刀具位置变化以及刀具刀尖被磨成半径不大的圆弧,这必将产生加工工件位置误差和形状误差。这样一方面可以将在加工时所用的刀具和设计时所使用的刀具之间的数值偏差降到最低,另一方面确保了加工零件的精确度。 1.3 刀具补偿表示方法。

数控机床刀具补偿功能

刀具补偿功能 (实际生产步骤) 在数控编程过程中,一般不考虑刀具的长度与刀尖圆弧半径,而只考虑刀位点与编程轨迹重合。但在实际加工过程中,由于刀尖圆弧半径与刀具长度各不相同,在加工中会产生很大的误差。因此,实际加工时必须通过刀具补偿指令,使数控机床根据实际使用的刀具尺寸,自动调节各坐标轴的移动量,确保实际加工轮廓和编程轨迹完全一致。数控机床根据刀具实际尺寸,自动改变机床坐标轴或刀具刀位点位置,使实际加工轮廓和编程轨迹完全一致的功能,称为刀具补偿功能。1.刀具半径补偿:(G40,G41,G42) G40:取消半径刀补 G41:刀具左补偿(沿着刀具前进的方向看,刀具在工件的左边) G42:刀具右补偿(·································右边) 数控机床加工时以刀具中心轴的坐标进行 走刀,依据G41或G42使刀具中心在原来 的编程轨迹的基础上伸长或缩短一个刀具 半径值,即刀具中心从与编程轨迹重合过 渡到与编程轨迹偏离一个刀具半径值,如图 刀具补偿指令是模态指令,一旦刀具补偿建立后一直有效,直至刀具补偿撤销。在刀具补偿进行期间,刀具中心轨迹始终偏离编程轨迹一个刀具半径值的距离。 刀具半径补偿仅在指定的2D 坐标平面内进行。而平面由G 指令代码

G17( xy平面)、G18( zx平面)、G19( yz平面)确定。刀具半径值则由刀具号H(D)确定 2.刀具长度补偿 所谓刀具长度补偿,就是把工件轮廓按刀具长度在坐标轴(车床为x、z轴)上的补偿分量平移。对于每一把刀具来说,其长度是一定的,它们在某种刀具夹座上的安装位置也是一定的。因此在加工前可预先分别测得装在刀架上的刀具长度在x和z方向的分量,即Δx刀偏和Δz 刀偏。通过数控装置的手动数据输入工作方式将Δx和Δz 输入到CNC 装置,从CNC 装置的刀具补偿表中调出刀偏值进行计算。数控车床需对x轴、z轴进行刀具长度补偿计算,数控铣床只需对z轴进行刀具长度补偿计算。

对数控的认识

重庆科技学院 数控加工技术 题目:对数控车床及加工技术的认识 学院:机械与动力工程学院专业班级: 机设15-6 学生姓名:杨泽松学号: 2015441709 指导教师评语: 成绩(五级记分制): 指导教师(签字):

摘要 数控(英文名字:Numerical Control 简称:NC)技术是指用数字、文字和符号组成的数字指令来实现一台或多台机械设备动作控制的技术。数控车床是目前使用最广泛的数控机床之一。数控车床主要用于加工轴类、盘类等回转体零件。通过数控加工程序的运行,可自动完成内外圆柱面、圆锥面、成形表面、螺纹和端面等工序的切削加工,并能进行车槽、钻孔、扩孔、铰孔等工作。 数控车床种类较多,但主体结构都是由:车床主体、数控装置、伺服系统三大部分组成。 NC编程就是将加工零件的加工顺序、刀具运动轨迹的尺寸数据、工艺参数(主运动和进给运动速度、切削深度)以及辅助操作(换刀、主轴正反转、冷却液开关、刀具夹紧、松开等)加工信息,用规定的文字、数字、符号组成的代码,按一定格式编写成加工程序。 数控机床程序编制过程主要包括:分析零件图纸、工艺处理、数学处理、编写零件程序、程序校验。 机床夹具的种类很多,按使用机床类型分类,可分为车床夹具、铣床夹具、钻床夹具、镗床夹具、加工中心夹具和其他夹具等。按驱动夹具工作的动力源分类,可分为手动夹具、气动夹具、液压夹具、电动夹具、磁力夹具和自夹紧夹具等。 关键词:数控,车床,编程,加工 正文 数控机床是数字控制机床(Computer numerical control machine tools)的简称,是一种装有程序控制系统的自动化机床。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,并将其译码,从而使机床动作并加工零件。 数控机床种类繁多,由数控系统通过伺服驱动系统去控制各运动部件的动作,主要用于轴类和盘类回转体零件的多工序加工,具有高精度、高效率、高柔性化等综合特点,适合中小批量形状复杂零件的多品种、多规格生产。 数控机床的操作和监控全部在这个数控单元中完成,它是数控机床的大脑。与普通机床相比,数控机床有如下特点:加工精度高,具有稳定的加工质量;可

我对数控专业的认知

目录 摘要........................................................... 第一章数控机床的概述………………………. 第二章数控机床的分类………………….. 第三章数控技术的应用与发展………… 第四章数控车间培训……………………. 第五章数控机床加工程序的编写………………….. 第六章加工程序的编写………… 第七章数控机床的伺服驱动及控制………………………第八章结论……………………….. 参考文献……………………………….. 后记………………………………..

摘要 数控机床就是运用计算机队机床的机械加工过程进行数字化的自动控制。数控系统、伺服系统、主传动系统、强点控制柜、机床本体和各类辅助装置组成一台数控机床。我们从这些系统中学习,了解各各细微和基础。 关键词:数控系统、伺服系统、主传动系统、强点控制柜、机床本体 第一章数控机床的概述 一、数控机床的特点 数控机床就是运用计算机队机床的机械加工过程进行数字化的自动控制。具体来说:数控机床是通过将机床的各种动作、工件的形状尺寸以及机床的其它功能编制程序,精确控制机床运动部件的位移量,并且按加工的动作顺序要求自动控制机制各个部件的动作(如:主轴转速、进给速度、换刀、工件夹紧放松、工件交换、冷却液开关等)来完成机械加工工件的。它是一种集中了传统的自动(专用)机床、精密机床和万能机床三者的优点,即中和了专用机床的高效率、精密机床的高精度、万能机床的高柔性的新型机床。 数控机床一般由数控系统、伺服系统、主传动系统、强点控制柜、机床本体和各类辅助装置组成。

1数控系统 它是机床实现自动加工的核心。主要由操作系统、主控制系统、可编程控制器、各种输入输出接口等组成。其中操作系统由显示器和操纵键盘组成,显示器有数码管、crt、液晶等多种形式。主控制系统与计算机主板有所类同,主要由CPU、存储器、控制器等部分组成。数控系统所控制的一般对象是位置、角度、速度等机械量和温度、压力、流量等物理量,其控制方式又可分为数据运算处理控制和时序逻辑控制两大类。 2伺服系统 它是数控系统与机床本体之间的电传动联系缓解。主要由伺服电动机、驱动控制系统及位置检测反馈装置等组成。伺服电动机是系统的执行元件,驱动控制系统则是伺服电动机的动力源。数控系统发出的指令信号与位置检测反馈信号比较后作为位移指令,再经驱动控制系统功率放大后,驱动电动机运转,从而通过机械传动装置拖动工作台或刀架运动。 3主传动系统 它是机床切削加工时传递扭矩的主要部件之一。一般分为齿轮有级变速和电器无级调速两种类型。但较高档的数控机床都要求实现无极调速,以满住各种加工工艺的要求。它主要由主轴驱动控制系统。主轴电动机以及主轴机械传动机构等组成。 4强电控制柜

1-7刀具补偿功能

1-7刀具补偿功能

福建省鸿源技工学校课时授课计划 (2013 —2014 学年度第2学期) 课程名称:数控机床编程与操作任课教师:王公海章节内容1-7刀具补偿功能 授课班级12数控授课日期 授课方式讲授作业练习习题册对应部分 目的要求掌握刀具补偿功能原理 重点难点G40/G41/G42 复习题巩固上节课知识点 仪器教具粉笔黑板 审批意见 审批人:20 年月日 讲授内容和过程方法与指导一、数控车床用刀具的交换功能 1.刀具的交换 指令格式一:T0101; 该指令为FANUC系统转刀指令,前面的T01表示换1号刀,后 面的01表示使用1号刀具补偿。 福建省劳动和社会保障厅制

课时授课计划(副页) 第页 讲授内容和过程方法与指导二、刀具补偿功能 1.刀具补偿功能的定义 定义:数控机床根据刀具实际尺寸,自动改变机床坐标轴或刀 具刀位点位置,使实际加工轮廓和编程轨迹完全一致的功能。 分类:刀具偏移(也称为刀具长度补偿)、刀尖圆弧半径补偿。 2.刀位点的概念 概念:指编制程序和加工时,用于表示刀具特征的点,也是对 刀和加工的基准点。 数控车刀的刀位点 三、刀具偏移补偿 1.刀具偏移的含义 含义:用来补偿假定刀具长度与基准刀具长度之长度差的功 能。车床数控系统规定X轴与Z轴可同时实现刀具偏移。 分类:刀具几何偏移、刀具磨损偏移。 刀具偏移补偿功能示例

课时授课计划(副页) 第页 讲授内容和过程方法与指导 数控车床的对刀过程 (3)利用刀具几何偏移进行对刀操作的实质 利用刀具几何偏移进行对刀的实质就是利用刀具几何偏 移使工件坐标系原点与机床原点重合。 3.刀具偏移的应用 利用刀具偏移功能,可以修整因对刀不正确或刀具磨损等原因 造成的工件加工误差。 例加工外圆表面时,如果外圆直径比要求的尺寸大了0.2mm, 此时只需将刀具偏移存储器中的X值减小0.2,并用原刀具及 原程序重新加工该零件,即可修整该加工误差。同样,如出现 Z方向的误差,则其修整办法相同。 四、刀尖圆弧半径补偿(G40、G41、G42) 1.刀尖圆弧半径补偿的定义 为确保工件轮廓形状,加工时不允许刀具刀尖圆弧的圆心运动 轨迹与被加工工件轮廓重合,而应与工件轮廓偏移一个半径 值,这种偏移称为刀尖圆弧半径补偿。圆弧形车刀的刀刃半径 偏移也与其相同。 2.假想刀尖与刀尖圆弧半径 在理想状态下,我们总是将尖形车刀的刀位点假想成一个点, 该点即为假想刀尖(图中的A点)。 假想刀尖示意图

840D系统补偿功能汇总

840D系统补偿功能汇总 数控机床的的几何精度,定位精度一方面受到机械加工母机的精度限制,另一方面更受到机床的材料和机械安装工艺的限制,往往不能够达到设计精度要求。而要在以上诸多方面来提高数控机床的几何精度,定位精度需要投入大量的人力物力。在机械很难提高精度的情况下,通过数控电气补偿能够使数控机床达到设计精度。 一、反向间隙补偿 机床反向间隙误差是指由于机床传动链中机械间隙的存在,机床执行件在运动过程中,从正向运动变为反向运动时,执行件的运动量与目标值存在的误差,最后反映为叠加至工件上的加工精度。 机床反向间隙是机床传动链中各传动单元的间隙综合,如电机与联轴器的间隙,齿轮箱中齿轮间隙,齿轮与齿条间隙,滚珠丝杠螺母副与机床运动部件贴合面的间隙等等。 反向间隙直接影响到数控机床的定位精度和重复定位精度。在半闭环下,由伺服电机编码器作为位置环反馈信号。机械间隙无法由编码器检测到,在机械调整到最佳状态下需要进行反向间隙补偿。在全闭环下,直线轴一般采用光栅尺作为位置环反馈信号,旋转轴一般采用外接编码器或圆光栅作为位置环反馈信号。由于是直接检测运动部件的实际位移,理论上讲全闭环下无反向间隙。但是由于光栅尺或圆光栅本身精度的限制和安装工艺的限制等等,使得全闭环下也具有“反向间隙”,这在激光干涉仪下能很明显看出来,一般在0.01mm

左右。 西门子840D数控系统反向间隙补偿的方法如下: 测得反向间隙值后在轴机床数据输入反向差值,单位为mm。 MD32450 BACKLASH [0] MD32450 BACKLASH [1] 其中[0]为半闭环,[1]为全闭环。输入后按下Reset键,回参考点后补偿生效。可以在诊断→服务显示→轴调整→绝对补偿值测量系统中看到补偿效果。 反向间隙补偿能够在较大程度上提高数控机床的定位精度、重复定位精度,但是它的值是固定的,不能适用于机床的整个行程,这就需要另一种电气补偿手段,螺距误差补偿。两者结合能使数控机床达到较高的定位精度和重复定位精度。 二、螺距误差补偿 重型数控机床的传动机构,一般为滚珠丝杠传动或齿轮齿条传动。受到制造精度的影响丝杠上的螺距和齿条齿轮的齿距都有微小的误差,对于半闭环数控机床,这将直接影响其定位精度与重复定位精度。而对于全闭环,由于受到光栅尺自身的精度,光栅尺安装的直线度、挠度的影响也会产生“螺距误差”。 西门子840D数控系统螺距误差补偿原理如下图所示:

数控车床刀尖半径补偿的原理和应用介绍

数控车床刀尖半径补偿的原理和应用分析 (2011-11-07 19:39:41) 分类:工程技术 标签: 杂谈 摘要:分析了数控车削中因刀尖圆弧产生误差的原因,介绍了纠正误差的思路及半径补偿的工作原理,明确了半径补偿的概念。结合实际,系统介绍了刀具半径补偿的应用方法,及使用中的注意事项。 Abstract: Analyzed the error's reason in numerical control turning because of arc of cutting tool , introduced the correction error's mentality and the radius compensation principle of work, cleared about the radius compensation concept. Union reality, introduced the cutting tool radius compensation application method, and in use matters needing attention.. 关键词:数控车床;假想刀尖;半径补偿;程序轮廓;原理;应用; Key word: CNC lathe;immaginary cutting tool point; radius compensation; procedure outline; principle; using 1、前言 在数控车床的学习中,刀尖半径补偿功能,一直是一个难点。一方面,由于它的理论复杂,应用条件严格,让一些人感觉无从下手;另一方面,由于常用的台阶轴类的加工,通过几何补偿也能达到精度要求,它的特点不能有效体现,使一些人对它不够重视。事实上,在现代数控系统中,刀尖半径补偿,对于提高工件综合加工精度具有非常重要的作用,是一个必须熟练掌握的功能。 2、刀尖圆弧半径补偿的原理 (1)半径补偿的原因 在学习刀尖圆弧的概念前,我们认为刀片是尖锐的,并把刀尖看作一个点,刀具之所以能够实现复杂轮廓的加工,就是因为刀尖能够严格沿着编程的轨迹进行切削。但实际上,目前广泛使用的机夹刀片的切削尖,都有一个微小的圆弧,这样做,既可以提高刀具的耐用度,也可以提高工件的表面质量。而且,不管多么尖的刀片,经过一段时间的使用,刀尖都会磨成一个圆弧,导致在实际加工中,是一段圆弧刃在切削,这种情况与理想刀尖的切削在效果上完全不同。

任务一:认识数控机床教案

教案

教学安 排与过 程设计 (含课时 分配) 约10分 钟 约10分 钟 约45分 钟 教学过程: 一、课程介绍 介绍本专业特点及从业方向和岗位群。 二、引入新课题 为了提高加工效率,降低加工当中人为因素所造成的制约生产质量的原因。最早由美国在50 年代提出的生产新型设备(数字设备)到现在形成规模化、成熟化的数控设备——数控机床。 三、教学内容 1 数控机床。就是将加工过程所需的各种操作(如主轴变速、松夹工件、进刀与退刀、开车与 停车、自动关停冷却液等)和步骤以及工件的形状尺寸用数字化的代码表示,通过控制介质(如穿孔纸带或磁盘等)将数字信息送入数控装置,数控装置对输入的信息进行处理与运算,发出各种控制信号,控制机床的伺服系统或其他驱动元件,使机床自动加工出所需要的工件。 2 数字控制(Numerical Control),简称NC,它是采用数字化信息实现加工自动化的控制技术, 用数字化信号对机床的运动及其加工过程进行控制的机床,称作数控机床。 3 计算机数控(Computer Numerical Control),简称CNC。现代数控系统是采用微处理器或专 用微机的数控系统,由事先存放在存储器里的系统程序(软件)来实现控制逻辑,实现部分或全部数控功能,并通过接口与外围设备进行联接,称为CNC系统,这样的机床一般称为CNC机床。 总之,数控机床是数字控制技术与机床相结合的产物,从狭义的方面看,数控一词就是“数控机床”的代名词,从广义的范围来看,数控技术本身在其他行业中有更广泛的应用,称为广义数字控制。数控机床就是将加工过程的各种机床动作,由数字化的代吗表示,通过某种载体将信息输入数控系统,控制计算机对输入的数据进行处理,来控制机床的伺服系统或其他执行元件,使机床加工出所需要的工件,其过程见下图。 数控机床的组成 1.1输入、输出装置 1.2数控装置 1.3伺服系统 1.4检测反馈系统 1.5机床本体

浅谈对数控车床的认识

浅谈对数控车床的认识 姓名:李本旗 单位:陇东职业中等专业学校 日期:二〇一一年六月三十日

浅谈对数控车床的认识 李本旗 摘要:数控车床源于普通车床而优于普通车床,其有五大优点:1、提高加工精度,尤其提高了同批零件加工的一致性,使产品质量稳定;2、提高生产效率,一般约提高效率3-5倍,使用数控加工中心机床则可提高生产率5-10倍;3、可加工形状复杂的零件; 4、减轻了劳动强度,改善了劳动条件; 5、有利于生产管理和机 械加工综合自动化的发展。数控机床的技术水平高低及其在金属切削加工机床产量和总拥有量的百分比是衡量一个国家国民经济发展和工业制造整体水平的重要标志之一。数控车床是数控机床的主要品种之一,它在数控机床中占有非常重要的位置,几十年来一直受到世界各国的普遍重视并得到了迅速的发展。普通车床经济实用,仍然在国民生产中占有一席之地。 关键词:数控车床认识 自从进入机械这个专业以来,“数控”这个词时常在耳边响起,作者对数控的理解虽然不象那些不懂数控的老师说的那样把毛坯装夹好后,输入程序,想要什么样的东西就能加工出什么来那样简单,但是对于数控车床的概念仍然不懂,虽然自己也曾经找书看过关于数控的概念,但那些生硬的文字解释依然使作者心里很含糊,直到这次培训真正接触了数控车床并亲手操作了才彻底明白。其实数控车床就

是在普通车床的基础上引入了计算机,利用计算机控制机床的运转,达到机电合一,并进一步改进机床的运行精度,同时实现多轴联动以完成复杂工件的加工。数控车床以其五大优点在工业生产中逐渐占领了重要的地位,并且其发展水平往往成为一个国家工业发展状况的标志之一。然而普通车床虽然没有数控车床的那么多优点,但由于其在价格上的优势仍然在国民生产中占有一席之地,占到车床总量的65%,而且永远也不可能完全被数控车床所取代。 一、数控车床的概念 数控车床又称为 CNC车床,即计算机数字控制车床,是目前国内使用量最大,覆盖面最广的一种数控机床,约占数控机床总数的25%。数控机床是集机械、电气、液压、气动、微电子和信息等多项技术为一体的机电一体化产品。是机械制造设备中具有高精度、高效率、高自动化和高柔性化等优点的工作母机。 数控技术也叫计算机数控技术(CNC,Computerized Numerical Control),目前它是采用计算机实现数字程序控制的技术。这种技术用计算机按事先存贮的控制程序来执行对设备的运动轨迹和外设的操作时序逻辑控制功能。由于采用计算机替代原先用硬件逻辑电路组成的数控装置,使输入操作指令的存贮、处理、运算、逻辑判断等各种控制机能的实现,均可通过计算机软件来完成,处理生成的微观指令传送给伺服驱动装置驱动电机或液压执行元件带动设备运行,从而实现对将毛坯料加工成为人

试谈数控加工中刀具补偿的应用

毕业论文 题目:数控加工中刀具补偿的应用系部:机电工程系 专业:数控技术 班级:08数控(2)班 学生:罗贤强 学号:08313244 指导老师:刘晓秋老师职称:

江西理工大学南昌校区 毕业设计(论文)任务书机电工程系系部数控专业2008级(2011届)数控(2)班学生罗贤强 题目:数控加工中刀具补偿的应用 专题题目(若无专题则不填): 原始依据(包括设计(论文)的工作基础、研究条件、应用环境、工作目的等):工作基础: 在20世纪60年代的数控加工中还没有出现补偿的概念,所以编程人员不得不围绕刀具的理论路线和实际路线的相对关系来进行编程,这样不仅很容易产生错误,而且生产效率低下。当刀具补偿概念出现并应用到数控系统中后,编程人员就可以直接按照轮廓尺寸进行程序编制。在建立、执行刀补后,由数控系统自动计算,自动调整刀位点到刀具的运动轨迹。当刀具磨损或更换后,加工程序不变,只须更改程序中刀具补偿的数值。因此刀具补偿的应用不仅提高了生产效率,还大大降低了技术人员的劳动强度。 研究条件: 利用网络资源,参考相关文献,并在老师的提示和指导下熟悉并掌握刀具补偿的基本应用和相关注意事项。 应用环境: 刀具补偿广泛用于数控车床、数控铣床、加工中心等淑红设备中。提高了数控加工的精度。 工作目的: 深入了解刀具补偿的概念以及分类,着重掌握数控车床车削加工中的刀具半径补偿的问题和车床的对刀问题。并通过本论文提高自己在刀具补偿方面的理论水平。 主要内容和要求:(包括设计(研究)内容、主要指标与技术参数,并根据课题性质对学生提出具体要求): 研究内容:

1数控车床加工的对象: 数控车床是目前使用比较广泛的数控机床,主要用干轴类和盘类回转体工件的加工,能自动完全内外圆面、柱面、锥面、圆弧、螺纹等工序的切削加工,并能进行切槽、钻、扩、铰孔等加工,适合复杂形状工件的加工。与常规车床相比,数控车床还适合加工如下工件。 ( 1 ) 轮廓形状特别复杂或难于控制尺寸的回转体零件, ( 2 ) 精度要求高的零件。 ( 3 ) 特殊的螺旋零件。 ( 4 ) 淬硬工件的加工。 2数控车床的对刀问题: ( 1)一般对刀。 ( 2)机外对刀仪对刀。 ( 3)自动对刀。 3 数控车削加工中刀尖圆弧半径补偿有关问题: 编制数控车床加工程序时,理论上是将车刀刀尖看成一个点,但为了提高刀具的使用寿命和降低加工工件的表面粗糙度,通常将刀尖磨成半径不大的圆弧(一般圆弧半径R是0.4一1.6 之间),所以如果在数控加工或数控编程时不对刀尖圆角半径进行补偿,仅按照工件轮廓进行编制的程序来加工,势必会产生加工误差。假想刀尖的轨迹分析与偏置值计算分为加工圆锥面的误差析与偏置值计算和加工圆弧面的误差分析与偏置值计算。 (一)刀尖半径补偿编程原则。 1 ) 将刀具的刀尖圆角半径值及刀具的指向编码数存入刀具偏置文档的相应偏置序号处,偏置序号必须先于刀尖半径补偿激活。 2 ) 为了激活刀尖半径补偿,在一个或两个坐标轴都处于非切削状态的直线运动段中编入G41或G42,至少其中一个坐标轴的移动编程量大于或等于刀尖圆角半径值。 3 ) 进入和退出工件切削时必须垂直于工件表面。 4 ) 刀尖半径补偿在下列的工作模式中不起作用: G32,G34,G71,G72,G73, G74,G75,G76,G92。 5 ) 若在G90,G94固定循环中使用刀尖半径补偿,刀尖半径补偿必须先于 G90,G94指令激活。 (二)刀尖回角半径补偿方法。 现代数控系统一般都有刀具圆角半径补偿器,具有刀尖圆弧半径补偿功能( 即G41左补偿和G42右补偿功能),对于这类数控车床,编程员可直接根据零件轮廓形状进行编程,编程时可假设刀具圆角半径为零,在数控加工前必须在数控机床上的相应刀具补偿号输人刀具圆弧半径值,加工过程中,数控系统根据加工程序和刀具圆弧半径自动计算假想刀尖轨迹,进行刀具圆角半径补偿,完成零件的加工。刀具半径变化时,不需修改加工程序,只需修改相应刀号补偿号刀具圆弧半径值即可。 (三)数控车床刀尖圆弧半径补偿。 1 ) 格式。 2 ) 偏置功能。

数控机床的误差补偿

数控机床的误差补偿 随着我国经济的飞速发展,数控机床作为新一代工作母机,在机械制造中已得到广泛的应用,精密加工技术的迅速发展和零件加工精度的不断提高,对数控机床的精度也提出了更高的要求。尽管用户在选购数控机床时,都十分看重机床的位置精度,特别是各轴的定位精度和重复定位精度。但是这些使用中的数控机床精度到底如何呢? 大量统计资料表明:65.7%以上的新机床,安装时都不符合其技术指标;90%使用中的数控机床处于失准工作状态。因此,对机床工作状态进行监控和对机床精度进行经常的测试是非常必要的,以便及时发现和解决问题,提高零件加工精度。 目前数控机床位置精度的检验通常采用国际标准ISO230-2或国家标准GB10931-89等。同一台机床,由于采用的标准不同,所得到的位置精度也不相同,因此在选择数控机床的精度指标时,也要注意它所采用的标准。数控机床的位置标准通常指各数控轴的反向偏差和定位精度。对于这二者的测定和补偿是提高加工精度的必要途径。 一、反向偏差 在数控机床上,由于各坐标轴进给传动链上驱动部件(如伺服电动机、伺服液压马达和步进电动机等)的反向死区、各机械运动传动副的反向间隙等误差的存在,造成各坐标轴在由正向运动转为反向运动时形成反向偏差,通常也称反向间隙或失动量。对于采用半闭环伺服系统的数控机床, 反向偏差的存在就会影响到机床的定位精度和重复定位精度, 从而影响产品的加工精度。如在G01切削运动时, 反向偏差会影响插补运动的精度, 若偏差过大就会造成“圆不够圆,方不够方”的情形;而在G00快速定位运动中,反向偏差影响机床的定位精度,使得钻孔、镗孔等孔加工时各孔间的位置精度降低。同时,随着设备投入运行时间的增长, 反向偏差还会随因磨损造成运动副间隙的逐渐增大而增加, 因此需要定期对机床各坐标轴的反向偏差进行测定和补偿。 (1)反向偏差的测定 反向偏差的测定方法:在所测量坐标轴的行程内, 预先向正向或反向移动一个距离并以此停止位置为基准,再在同一方向给予一定移动指令值,使之移动一段距离,然后再往相反方向移动相同的距离,测量停止位置与基准位置之差,在靠近行程的中点及两端的三个位置分别进行多次测定(一般为七次),求出各个位置上的平均值, 以所得平均值中的最大值为反向偏差测量值。在测量时一定要先移动一段距离AB段, 否则不能得到正确的反向偏差值。 测量直线运动轴的反向偏差时,测量工具通常采有千分表或百分表,若条件允许,可使用双频激光干涉仪进行测量。当采用千分表或百分表进行测量时,需要注意的是表座和表杆不要伸出过高过长,因为测量时由于悬臂较长,表座易受力移动,造成计数不准,补偿值也就不真实了。若采用编程法实现测量,则能使测量过程变得更便捷更精确。 例如,在三坐标卧式机床上测量X轴的反向偏差,可先将表压住主轴的圆柱表面,然后运行如下程序进行测量: N10 G91 G01 X50 F1000;工作台右移 N20 X-50;工作台左移,消除传动间隙 N30 G04 X5;暂停以便观察 N40 Z50;Z轴抬高让开 N50 X-50:工作台左移 N60 X50:工作台右移复位 N70 Z-50:Z轴复位 N80 G04 X5:暂停以便观察 N90 M99;

金工实习报告数控车床

金工实习报告数控车床 金工实习报告数控车床【一】 读了三年的大学,但是大多数人对本专业的认识依然别够,在大二期末学院曾为我们组织了两个星期的见习,但由于当时所学知识涉及本专业知识别多,所看到的东西与本专业很难联系起来,因此对本专业掌握并别是很理想。 今年暑假,学院为了使我们更多了解机电产品、设备,提高对机电工程创造技术的认识,加深机电在工业各领域应用的感性认识,开阔视野,了解相关设备及技术资料,熟悉典型零件的加工工艺,专门安排了我们到几个拥有较多类型的机电一体化设备,生产技术较先进的工厂进行生产操作实习。 为期23天的生产实习,我们先后去过了杭州通用机床厂,杭州机密机床加工工厂,上海阀门加工工厂,上海大众汽车厂以及杭州发动机厂等大型工厂,了解这些工厂的生产事情,与本专业有关的各种知识,各厂工人的工作事情等等。第一次亲身感觉了所学知识与实际的应用,传感器在空调设备的应用了,电子技术在机械创造工业的应用了,周密机械创造在机器创造的应用了,等等理论与实际的相结合,让我们大开眼界,也是对往常所学知识的一具初审。经过这次生产实习,进一步巩固和深化所学的理论知识,弥补往常单一理论教学的别脚,为后续专业课学习和毕业设计打好基础。 杭州通用机床厂 月日,我们来到实习的第一站,隶属杭州机床集团的杭州通用机床厂。该厂要紧以生产m-级磨床7130h,7132h,是目前国内比较大型的机床创造厂之一。在实习中我们首先听取了一系列对于实习过程中的安全事项和需注意的项目,在机械工程类实习中,安全咨询题始终是摆在第一位的。然后经过该厂总设计师的总体介绍。粗略了解了该厂的产品类型和工厂概况。也使我们知道了在该厂的实习目的和实习重点。 在接下来的一端时刻,我们分三组陆续在通机车间,专机车间和加工车间进行生产实习。在通机车间,该车间负责人带我们参观了他们的生产装配流水线,并为我们详细说解了平面磨床个要紧零部件的加工装配工艺和整机的动力驱动咨询题以及内部液压系统的一系列构造。我最感兴趣的应该是该平面磨床的液压系统,共分为供油机构,执行机构,辅助机构和操纵机构。从别同的角度动身,能够把液压系统分成别同的形式。 按油液的循环方式,液压系统可分为开式系统和闭式系统。开式系统是指液压泵从油箱吸油,油经各种操纵阀后,驱动液压执行元件,回油再经过换向阀回油箱。这种系统结构较为简单,能够发挥油箱的散热、沉淀杂质作用,但因油液常与空气接触,使空气易于渗入系统,导致机构运动别平稳等后果。开式系统油箱大,油泵自吸性能好。 闭式系统中,液压泵的进油管直接与执行元件的回油管相连,工作液体在系统的管路中进行封闭循环。其结构紧凑,与空气接触机会少,空气别易渗入系统,故传动较平稳,但闭式系统较开式系统复杂,因无油箱,油液的散热和过滤条件较差。为补偿系统中的泄漏,通常需要一具小流量的补油泵和油箱。由于闭式系统在技术要求和成本上比较高,思考到经济性的咨询题,因此该平面磨床采取开始系统,外加一具吸震器来平衡系统。 现代工程机械几乎都采纳了液压系统,同时与电子系统、计算机操纵技术结合,成为现代工程机械的重要组成部分,怎么样设计好液压系统,是提高我国机械创造业水平的一项关键技术。在专机车间,对专用磨床的三组导轨,两个拖板等特殊结构和送料机构及其加工范围有了进一步的加深学习,比向老师傅讨教了动力驱动的原理咨询题,获益非浅。在加工车间,对龙门刨床,牛头刨床等有了更多的确切的感性认知,听老师傅们把机床的五大部件:床身,立柱,磨头,拖板,工作台细细道来,如孢丁解牛般地,它们的加工工艺,加工特点在别知别觉间嵌们我们的脑袋。 在通机工厂的实习,了解了目前创造业的基本事情,不过由于机械行业特有的技术操

数控刀具补偿原理

3.3 刀具补偿原理 刀具补偿(又称偏置),在20世纪60~70年代的数控加工中没有补偿的概念,所以编程人员不得不围绕刀具的理论路线和实际路线的相对关系来进行编程,容易产生错误。补偿的概念出现以后很大地提高了编程的效率。 具有刀具补偿功能,在编制加工程序时,可以按零件实际轮廓编程,加工前测量实际的刀具半径、长度等,作为刀具补偿参数输入数控系统,可以加工出合乎尺寸要求的零件轮廓。 刀具补偿功能还可以满足加工工艺等其他一些要求,可以通过逐次改变刀具半径补偿值大小的办法,调整每次进给量,以达到利用同一程序实现粗、精加工循环。另外,因刀具磨损、重磨而使刀具尺寸变化时,若仍用原程序,势必造成加工误差,用刀具长度补偿可以解决这个问题。 刀具补偿分为2种: ☆刀具长度补偿; ☆刀具半径补偿。 文献《刀具补偿在数控加工中的应用》(工具技术,2OO4年第38卷No7,徐伟,广东技术师范学院)中提到在数控加工中有4种补偿: ☆刀具长度补偿; ☆刀具半径补偿; ☆夹具补偿; ☆夹角补偿(G39)。 这四种补偿基本上能解决在加工中因刀具形状而产生的轨迹问题。 3.3.1 刀具长度补偿 1.刀具长度的概念 刀具长度是一个很重要的概念。我们在对一个零件编程的时候,首先要指定零件的编程中心,然后才能建立工件编程坐标系,而此坐标系只是一个工件坐标系,零点一般在工件上。长度补偿只是和Z坐标有关,它不象X、Y平面内的编程零点,因为刀具是由主轴锥孔定位而不改变,对于Z坐标的零点就不一样了。每一把刀的长度都是不同的,例如,我们要钻一个深为50mm的孔,然后攻丝深为45mm,分别用一把长为250mm的钻头和一把长为350mm的丝锥。先用钻头钻孔深50mm,此时机床已经设定工件零点,当换上丝锥攻丝时,如果两把刀都从设定零点开始加工,丝锥因为比钻头长而攻丝过长,损坏刀具和工件。此时如果设定刀具补偿,把丝锥和钻头的长度进行补偿,此时机床零点设定之后,即使丝锥和钻头长度不同,因补偿的存在,在调用丝锥工作时,零点Z坐标已经自动向Z+(或Z)补偿了丝锥的长度,保证了加工零点的正确。 2.刀具长度补偿指令 通过执行含有G43(G44)和H指令来实现刀具长度补偿,同时我们给出一个Z坐标值,这样刀具在补偿之后移动到离工件表面距离为Z的地方。另外一个指令G49是取消G43

浅谈对数控车床的知识及应用

题目:浅谈对数控车床的知识及应用 1数控基本概念 1.1数控的定义 数控,就是数字程序控制。随着数控技术的发展,先进的数控机床都配置有小型计算机或微型计算机的数控装置,有的数控机床可以直接与外部计算机连接,由计算机进行自动编程,然后直接控制数控机床进行加工。简单地说数控的定义就是将数字、字母和符号等组成的控制指令输入到机床的数控装置中并转换成信息,用以控制机械设备的状态和加工过程。 1.2数控的加工原理 数控加工原理就是将被加工零件的工艺过程、工艺参数的要求用数控程序语言以手动或信息载体输入到数控机床的数控装置中,数控装置便根据程序指令直接控制机床的各种运动对零件进行加工。当程序结束,机床自动停止,零件加工完成。 数控程序加工的过程可用下图表示,见图1。 零件图纸——→程序编制——→信息裁体——→信息处理——→伺服系统 ↓ 零件加工←数控机床← 图1数控加工程序过程示意图 1.3数控机床的组成 数控机床是一种自动化程度高、加工精度高、生产效率高的先进设备。他除了机床本体部分与普通同类机床相似外,还配备有功能齐全、技术先进的数控装置,伺服系统,位置检测元件,空压和液压装置,刀具系统等,他们共同组成了一个相互关联的有机统一体,保证了数控机床加工的高精度、高效率和自动化程度。数控机床各部分的组成示意图见图2。 「———————————————→液压装置 程数伺 序控服↓ 输→装——→系—————→机床本体←———刀具系统 入置统

↑| ↑ | | ﹄——————→空压装置检测元件 | | |—————————————————-—| 图2数控机床的组成示意图 1.4数控机床的分类 (1)按工艺用途分类 分为一般数控机床和数控加工中心。一般数控机床指与一般通用机床相对应的数控车、铣、钻、镗、磨和齿轮加工机床。加工中心最显著的特点是具有刀库和换刀机械手,能够实现多工序加工。刀库的容量应为二十把刀以上,但是一般常说的四方刀架、八方刀架等不属于刀库的范畴。 (2)按控制运动的方式分类 分为点位控制、直线控制和轮廓控制三种。 点位控制数控机床在加工平面内只控制刀具相对于工件的定位点的坐标位置,而对定位移动的轨迹不作要求。这类控制系统主要用于数控钻床、数控镗床、数控冲床和测量机等。 直线控制数控机床能控制刀具或工件的适当的进给运动,沿平行于坐标轴的方向进行直线移动和加工,或者控制两个坐标轴以相同的速度运动,沿45°斜线进行切削加工。这类控制系统主要用于数控车床、数控镗铣床以及某些加工中心。 轮廓控制数控机床能同时控制两个或两个以上坐标轴,使刀具与工件作相对运动,加工复杂零件。单纯的点位控制和直线控制机床很少,大部分为轮廓控制数控机床。轮廓控制数控机床能够实现联动加工,也能进行点位和直线控制。这类控制系统主要用于数控车床、数控铣床、数控磨床以及加工中心机床。 (3按伺服系统控制方式分类 分为开环、闭环和半闭环系统。由伺服系统控制机床执行件运动时,虽然其接受了数控装置的指令要求值,但实际位移量并不一定等同于指令要求值,也就是存在一定的误差。这一误差是由伺服电动机的转角误差、减速齿轮的传动误差、滚珠丝杠的导程误差以及导轨副抵抗爬行的能力这四项因素综合反映的。 开环、闭环和半闭环系统的主要区别在于使用的电动机不同、是否进行执行件的测量及误差补偿以及误差补偿范围的大小不同。开环系统由于不进行执行件的测量及误差补偿,所以结构简单,维修方便,精度相对较低,成本低,一般用于精度要求不太高的中小型数控机床上。闭环系统精度高,成本高,主要用于精度要求较高的大型和精密数控机床上。半闭环系统只对部分误差进行补偿,因此从理论上讲其加工精度不如全闭环系统。 (4)按数控装置的功能分类 分为数控机床、简易数控机床和经济型数控机床。

相关文档
最新文档