外研版九年级下册:Module8-微卷专训-巧作平行线构造相似三角形

外研版九年级下册:Module8-微卷专训-巧作平行线构造相似三角形
外研版九年级下册:Module8-微卷专训-巧作平行线构造相似三角形

专训2 巧作平行线构造相似三角形

名师点金:解题时,往往会遇到要证的问题与相似三角形联系不上或者说图中根本不存在相似三角形的情况,添加辅助线构造相似三角形是这类几何证明题的一种重要方法.常作的辅助线有以下几种:(1)由比例式作平行线;(2)有中点时,作中位线;(3)根据比例式,构造相似三角形.

巧连线段的中点构造相似三角形

1.如图,在△ABC 中,E ,F 是边BC 上的两个三等分点,D 是AC 的中点,BD 分别交AE ,AF 于点P ,Q ,求BP PQ QD.

(第1题)

过顶点作平行线构造相似三角形

2.如图,在△ABC 中,AC =BC ,F 为底边AB 上一点,BF AF =32,取CF 的中

点D ,连接AD 并延长交BC 于点E ,求BE

EC

的值.

(第2题)

过一边上的点作平行线构造相似三角形

3.如图,在△ABC 中,AB >AC ,在边AB 上取一点D ,在AC 上取一点E ,使AD =AE ,直线DE 和BC 的延长线交于点P.求证:BP CP =BD

EC

.

(第3题)

过一点作平行线构造相似三角形

4.如图,在△ABC 中,点M 为AC 边的中点,点E 为AB 上一点,且AE =1

4AB ,连

接EM 并延长交BC 的延长线于点D.求证:BC =2CD.

(第4题)

答案

1.解:如图,连接DF ,∵E ,F 是边BC 上的两个三等分点, ∴BE =EF =FC.

∵D 是AC 的中点,∴AD =CD. ∴DF 是△ACE 的中位线. ∴DF ∥AE ,且DF =1

2AE.

∴DF ∥PE. ∴∠BEP =∠BFD. 又∵∠EBP 为公共角, ∴△BEP ∽△BFD.∴BE BF =BP

BD

.

∵BF =2BE ,∴BD =2BP.∴BP =PD.∴DF =2PE. ∵DF ∥AE ,

∴∠APQ =∠FDQ ,∠PAQ =∠DFQ. ∴△APQ ∽△FDQ.∴PQ QD =AP

DF .

设PE =a ,则DF =2a ,AP =3a. ∴PQ QD =AP DF =3 2. ∴BP PQ QD =53

2.

(第1题)

(第2题)

2.解:如图,过点C 作CG ∥AB 交AE 的延长线于点G. ∵CG ∥AB ,∴∠DAF =∠G. 又∵D 为CF 的中点,∴CD =DF.

在△ADF 和△GDC 中,????

?∠DAF =∠G ,∠ADF =∠CDG ,DF =CD ,

∴△ADF ≌△GDC(AAS ).∴AF =CG.

∵BF AF =32,∴AB AF =5 2.

∵AB ∥CG ,∴∠CGE =∠BAE ,∠BCE =∠ABE. ∴△ABE ∽△GCE. ∴

BE EC =AB CG =AB AF =52

.

(第3题)

3.证明:如图,过点C 作CF ∥AB 交DP 于点F , ∴∠PFC =∠PDB ,∠PCF =∠PBD. ∴△PCF ∽△PBD.∴BP CP =BD

CF .

∵AD ∥CF ,∴∠ADE =∠EFC. ∵AD =AE ,∴∠ADE =∠AED.

∵∠AED =∠CEP ,∴∠EFC =∠CEP.∴EC =CF. ∴

BP CP =BD EC

.

(第4题①)

4.证明:(方法一)如图①,过点C 作CF ∥AB ,交DE 于点F , ∴∠FCD =∠B. 又∵∠D 为公共角, ∴△CDF ∽△BDE. ∴

CF BE =CD BD

. ∵点M 为AC 边的中点, ∴AM =CM. ∵CF ∥AB , ∴∠A =∠MCF. 又∵∠AME =∠CMF , ∴△AME ≌△CMF. ∴AE =CF.

∵AE =1

4AB ,BE =AB -AE ,

∴BE =3AE.∴AE BE =1

3.

∵CF BE =CD BD

, ∴

AE BE =CD BD =1

3

,即BD =3CD. 又∵BD =BC +CD , ∴BC =2CD.

(第4题②)

(方法二)如图②,过点C 作CF ∥DE ,交AB 于点F , ∴

AE AF =AM AC

. 又∵点M 为AC 边的中点, ∴AC =2AM.

∴2AE =AF.∴AE =EF. 又∵AE AB =14,∴BF EF =2.

又∵CF ∥DE ,∴BF FE =BC

CD =2.

∴BC =2CD.

(第4题③)

(方法三)如图③,过点E 作EF ∥BC ,交AC 于点F ,∴∠AEF =∠B. 又∵∠A 为公共角, ∴△AEF ∽△ABC. ∴

EF BC =AE AB =AF AC

. 由AE =1

4AB ,知

EF BC =AE AB =AF AC =14

∴EF =14BC ,AF =1

4

AC.

由EF ∥CD ,易证得△EFM ∽△DCM , ∴

EF CD =MF MC

. 又∵AM =MC ,∴MF =1

2MC ,

∴EF =1

2CD.

∴BC =2CD.

(第4题④)

(方法四)如图④,过点A 作AF ∥BD ,交DE 的延长线于点F , ∴∠F =∠D ,∠FAE =∠B. ∴△AEF ∽△BED. ∴

AE BE =AF BD

. ∵AE =1

4

AB ,

∴AE =13BE.∴AF =1

3

BD.

由AF ∥CD ,易证得△AFM ∽△CDM. 又∵AM =MC ,∴AF =CD. ∴CD =1

3

BD.∴BC =2CD.

点拨:由已知线段的比,求证另外两线段的比,通常添加平行线,构造相似三角形来求解.

(end)

相似三角形-构造相似辅助线双垂直模型

构造相似辅助线(1)——双垂直模型 6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx 的图象与线段OA的夹角是45°,求这个正比例函数的表达式. 7.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.

8.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB. 9.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y 轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D 点的位置,且AD交y轴于点E.那么D点的坐标为() A. B. C. D.

10..已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。求C、D两点的坐标。

6.答案:解:分两种情况 第一种情况,图象经过第一、三象限 过点A作AB⊥OA,交待求直线于点B,过点A作平行于y轴的直线交x轴于点C,过点B作BD⊥AC则由上可知:=90°由双垂直模型知:△OCA∽△ADB ∴ ∵A(2,1),=45°∴OC=2,AC=1,AO=AB ∴AD=OC=2,BD=AC=1 ∴D点坐标为(2,3)∴B点坐标为(1,3) ∴此时正比例函数表达式为:y=3x 第二种情况,图象经过第二、四象限 过点A作AB⊥OA,交待求直线于点B,过点A作平行于x轴的直线交y轴于点C,过点B作BD⊥AC 则由上可知:=90°由双垂直模型知:△OCA∽△ADB ∴

初三《相似三角形》知识点总结

相似三角形知识点总结 知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。 如△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C / 。 相似三角形的比叫相似比 相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。 注意:(1)相似比是有顺序的。 (2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这 样写比较容易找到相似三角形的对应角和对应边。 (3)顺序性:相似三角形的相似比是有顺序的,若△ABC ∽△A /B /C /, 相似比为k ,则△A /B /C /与△ABC 的相似比是1 k 知识点2、相似三角形与全等三角形的关系 (1)两个全等的三角形是相似比为1的相似三角形。 (2)两个等边三角形一定相似,两个等腰三角形不一定相似。 (3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。 知识点3、平行线分线段成比例定理 1. 比例线段的有关概念: 在比例式 ::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2 =AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质: a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0 3. 平行线分线段成比例定理 (1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知l1∥l2∥l3, A D l1 B E l2 C F l3 可得 EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或等.

初三数学《相似三角形》知识点归纳

初三数学《相似三角形》知识提纲 (何老师归纳) 一:比例的性质及平行线分线段成比例定理 (一)相关概念:1.两条线段的比:两条线段的比就是两条线段长度的比 在同一长度单位下两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段 的比是,或写成a :b=m :n ; 其中 a 叫做比的前项,b 叫做比的后项 2:比例尺= 图上距离/实际距离 3:成比例线段:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,记作:c d a b =(或a :b=c :d ) ① 线段a ,d 叫做比例外项,线段b ,c 叫做比例内项, ② 线段a 叫首项,d 叫a ,b ,c 的第四比例项。 ③ 比例中项:若 c a b c a b c b b a ,,2是则即?==的比例中项. (二)比例式的性质 1.比例的基本性质:b c a d d c b a =?= 2. 合比:若 ,则或a b c d a b b c d d a b a c d c =±=±±=± 3. 等比:若 ……(若……)a b c d e f m n k b d f n =====++++≠0 则 …………a c e m b d f n a b m n k ++++++++=== 4、黄金分割: 把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项, 叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=2 1 5-AB ≈0.618AB , (三)平行线分线段成比例定理 1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 如图:当AD∥BE∥CF 时,都可得到 = . = , = , 语言描述如下: = , = , = . (4)上述结论也适合下列情况的图形: n m b a =

初中数学相似三角形知识库平行线分线段成比例经典例题与变式练习(精选题目)

平行线分线段成比例 平行线分线段成比例定理及其推论 1. 平行线分线段成比例定理 如下图,如果1l ∥2l ∥3l ,则 BC EF AC DF =,AB DE AC DF =,AB AC DE DF = . l 3 l 2l 1F E D C B A 2. 平行线分线段成比例定理的推论:如图,在三角形中,如果DE BC ∥,则 AD AE DE AB AC BC == A B C D E E D C B A 3. 平行的判定定理:如上图,如果有 BC DE AC AE AB AD ==,那么DE ∥ BC 。

专题一、平行线分线段成比例定理及其推论基本应用 【例1】 如图,DE BC ∥,且DB AE =,若510AB AC ==,,求AE 的长。 E D C B A 【例2】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证:111 c a b =+. F E D C B A 【巩固】如图,AB BD ⊥,CD BD ⊥,垂足分别为B 、D ,AC 和 BD 相交于点E ,EF BD ⊥,垂足为F .证明: 111 AB CD EF += . F E D C B A 【巩固】如图,找出ABD S ?、BED S ?、BCD S ?之间的关系,并证明你的结论. F E D C B A 【例3】 如图,在梯形ABCD 中,AB CD ∥, 129AB CD ==,,过对角线交点O 作

EF CD ∥交AD BC ,于E F ,,求EF 的长。 O F E D C B A 【巩固】(上海市数学竞赛题)如图,在梯形ABCD 中,AD BC ∥,AD a BC b E F ==,,,分别是AD BC ,的中点,AF 交BE 于P ,CE 交DF 于Q ,求PQ 的长。 Q P F E D C B A 专题二、定理及推论与中点有关的问题 【例4】 (2007年北师大附中期末试题) (1)如图(1),在ABC ?中,M 是AC 的中点,E 是AB 上一点,且14 AE AB =, 连接EM 并延长,交BC 的延长线于D ,则 BC CD =_______. (2)如图(2),已知ABC ?中,:1:3AE EB =,:2:1BD DC =,AD 与CE 相交于F ,则EF AF FC FD + 的值为( ) A.5 2 B.1 C.32 D.2 (1) M E D C B A (2) F E D C B A 【例5】 (2001年河北省中考试题)如图,在ABC ?中,D 为BC 边的中点,E 为 AC 边上的任意一点,BE 交AD 于点O . (1)当 1A 2AE C =时,求 AO AD 的值; E A O

第27章.相似——专训2:巧作平行线构造相似三角形

第27章.相似——专训2:巧作平行线构造相似三角形 名师点金:解题时,往往会遇到要证的问题与相似三角形联系不上或者说图中根本不存在相似三角形的情况,做平行线构造相似三角形是这类几何证明题的一种重要方法.常作的平行线有以下几种:(1)由比例式作平行线;(2)有中点时,作中位线;(3)根据比例式,构造相似三角形. 巧连线段的中点构造相似三角形 1.如图,在△ABC 中,E ,F 是边BC 上的两个三等分点,D 是AC 的中点,BD 分别交AE ,AF 于点P ,Q ,求BP :PQ : QD. (第1题 ) 过顶点作平行线构造相似三角形 2.如图,在△ABC 中,AC =BC ,F 为底边AB 上一点,BF :AF =3:2,取CF 的中点D ,连接AD 并延长交BC 于点E ,求BE EC 的值. (第2题) 3.如图,已知△ABC 中,AD 为BC 边上中线,过C 任作一条直线交AD 于E ,交AB 于F ,求证:AE :ED=2AF :FB . (第3题 ) 过一边上的点作平行线构造相似三角形 4.如图,在△ABC 中,AB >AC ,在边AB 上取一点D ,在AC 上取一点E ,使AD =AE ,直线DE 和BC 的延长线交于点P.求证:BP CP =BD EC . (第4题 ) 过一点作平行线构造相似三角形 5.如图,在△ABC 中,点M 为AC 边的中点,点E 为AB 上一点,且AE =1 4 AB ,连接EM 并延 长交BC 的延长线于点D.求证:BC =2CD. 作辅助线的方法一: (第5题①) 作辅助线的方法二: (第5题②) 作辅助线的方法三: (第5题③) 作辅助线的方法四: (第5题④)

九年级相似三角形知识点总结及例题讲解

相似三角形基本知识 知识点一:放缩与相似 1.图形的放大或缩小,称为图形的放缩运动。 2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。 注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。 ⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。 ⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形. 3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。 注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1. 知识点二:比例线段有关概念及性质 (1)有关概念 1、比:选用同一长度单位量得两条线段。a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m : n (或 n m b a =) 2、比的前项,比的后项:两条线段的比a :b 中。a 叫做比的前项,b 叫做比的后项。 说明:求两条线段的比时,对这两条线段要用同一单位长度。 3、比例:两个比相等的式子叫做比例,如d c b a = 4、比例外项:在比例 d c b a =(或a :b =c :d )中a 、d 叫做比例外项。 5、比例项:在比例d c b a = (或a :b =c :d )中b 、c 叫做比例项。 6、第四比例项:在比例 d c b a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。 7、比例中项:如果比例中两个比例项相等,即比例为 a b b a =(或a:b =b: c 时,我们把b 叫做a 和 d 的比例 中项。

相似三角形之常用辅助线

相似三角形之常用辅助线 在与相似有关的几何证明、计算的过程中,常常需要通过相似三角形,研究两条线段之间的比例关系,或者转移线段或角。而有些时候,这样的相似三角形在问题中,并不是十分明显。因此,我们需要 通过添加辅助线,构造相似三角形,进而证明所需的结论。 专题一、添加平行线构造“ A ”“X ”型 定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似. 定理的基本图形: 例1、平行四边形ABCD中, E为AB中点,AF: FA 1 : 2,求AG GC

变式练习: 如图,直线交厶ABC的BC,AB两边于D,E,与CA延长线交于F,若—;;=2,求BE:EA的比 值. 例3、BE^ AD,求证:EF- BO AC- DF 变式练习: 已知在△ ABC中,AD是/ BAC的平分线.求证: AB BD AC CD BD 例2、如图,直线交△ ABC的BC,AB两边于D,E,与CA延长线交于F,若 - DC FC =2,求BE:EA的比值. FA (本题有多种解法,多想想)

变式1、如图,△ ABC中,AB

说明:此题充分展示了添加辅助线,构造相似形的方法和技巧?在解题中方法要灵活,思路要开阔. 总结:(1)遇燕尾,作平行,构造.字一般行。 (2)引平行线应注意以下几点: 1)选点:一般选已知(或求证)中线段的比的前项或后项,在冋一直线的线段的端点作为引平行 线的点。 2)引平行线时尽量使较多已知线段、求证线段成比例。 专题二、作垂线构造相似直角三角形 基本图形 例1、如图, ABC 中,AB AC, BD AC,那么BC22CA CD吗?试说明理由?(用多种

平行线及角平分线类相似

平行线及角平分线类相似 中考要求 重难点 1.相似定义,性质,判定,应用和位似 2.相似的判定和证明 3.相似比的转化 课前预习 上一节课我们知道了相似三角形的由来,那你是否知道其他跟金子塔有关的不可思议的事实呢? 不仅建造金字搭的技术中,表现了古埃及人的非凡的数学天才;而且,它本身的许多数据,也说明了古埃及人的数学才华,巧夺天工,比如,胡夫金字塔底面周长365米,恰好是一年的天娄;周长乘以2,正是赤道的时分度;搭高乘以10九次方,正是地球到太阳的距离;周长除以塔塔高的2倍,正是圆周率3.1415926……;塔的自重乘以10的15次方,正好是地球的重量;塔里放置的棺材內部尺寸,正好是几千年后希腊数学家华连哥拉斯发现华连哥拉斯数——345 ∶∶. 数学的趣味是无法言语的,同学们可以从身边的点滴去发现其中的奥秘.

例题精讲 模块一 平行线类相似问题 平行线类相似的基本模型有 ?模型一、二类综合题 【例1】 如图,在ABC △中,M 是AC 的中点,E 是AB 上一点,且1 4 AE AB = ,连接EM 并延长,交BC 的延长线于D ,则 BC CD =____ ___. M E C B A 【难度】3星 【解析】先介绍常规的解法: B C F E D M A B C F E D M A 如图,过点C 作DE 或AB 的平行线均可,不妨以左图为例来说明. 过点C 作//CF DE ,交AB 于点F . ∵AM MC =,//CF DE ∴AE EF = ∵14AE AB = ∴2BF EF = ∵//CF DE ∴ 2BC BF CD EF == 当然,过点M 、点E 作适当的平行线,均可作出此题,这里不再给出.

北师大版九年级数学上相似三角形

一对一教案

三、主要练习: 【知识点】: 相似多边形定义:各角分别相等、各边成比例的两个多边形叫做相似多边形。 相似多边形可以用符号“∽”表示,读作“相似于”。在记两个多边形相似时,要把表示对应顶点的字母写在对应的位置上。 相似多边形对应边的比叫做相似比。 【例题】: 1.以下五个命题:①所有的正方形都相似;②所有的矩形都相似;③所有的三角形都相似;④所有的等腰直角三角形都相似;⑤所有的正五边形都相似.其中正确的命题有_______. 2、若五边形ABCDE∽五边形MNOPQ ,且AB=12,MN=6,AE=7,则MQ= . 3、矩形ABCD 与矩形EFGH 中,AB=4,BC=2,EF=2,FG=1,则矩形ABCD 与矩形EFGH 相似(填“一定”或“不一定”) 4、如图,在□ABCD 中,AB//EF ,若AB = 1,AD = 2,AE= 2 1 AB ,则□ABFE 与□BCDA 相似吗?说明理由. 【课堂练习】: 1.下面图形是相似形的为 ( ) A .所有矩形 B .所有正方形 C .所有菱形 D .所有平行四边形 2.下列说法正确的是 ( ) A . 对应边成比例的多边形都相似 B . 四个角对应相等的梯形都相似 C . 有一个角相等的两个菱形相似 D . 有一个锐角相等的两个等腰三角形相似 3.□ABCD 与□ EFGH 中,AB = 4,BC = 2,EF = 2,FG=1,则□ABCD 与□ EFGH 相似(填“一定”或“不一定”) 4.如图,等腰梯形ABCD 与等腰梯形A′B′C′D′相似,∠A′=65°,A′B′=6 cm, AB=8 cm , AD=5 cm ,试求梯形ABCD 的各角的度数与A′D′, B′C′的长. F E D C B A

【教案】-相似三角形及平行线分线段成比例

27.2.1 相似三角形及平行线分线段成比例 一、教学目标: 知识目标 理解并掌握相似三角形及平行线分线段成比例的基本事实及其推论,并会灵活应用。 能力目标 通过应用,培养识图能力和推理论证能力。 情感态度与价值观 (1)、培养学生积极的思考、动手、观察的能力,使学生感悟几何知识 在生活中的价值。 (2)、在进行探索的活动过程中发展学生的探索发现归纳意识并养成合 作交流的习惯。 二、重、难点 重点:平行线分线段成比例定理和推论及其应用。 难点:平行线分线段成比例定理及推论的灵活应用,平行线分线段成比例定理的变式。 三、教学过程 1、复习设疑,引入新课 内容:教师提问: (1)什么是成比例线段? (2)什么是相似多边形? (3)你能不通过测量快速将一根绳子分成两部分,使得这两部分的比 是2:3? 目的:(1)复习成比例线段的内容,回顾上节课通过方格纸探究成比例线 段性质的过程。(2)通过一个生活中的实例激发学生探究的欲望。 效果:学生对不通过测量快速将一根绳子分成两部分,使得这两部分的比是2:3,这一问题很感兴趣,急切想要知道解决办法。 2、小组活动,探究定理 探究活动一: 内容:如图(1)小方格的边长都是1,直线a ∥b∥ c ,分别交直线m,n 于 A 1,A 2 ,A 3 ,B 1 ,B 2 ,B 3 。

(1)计算 1212 2323 ,A A B B A A B B 你有什么发现? (2)将b向下平移到如下图2的位置,直线m,n与直线b的交点分别为A 2,B 2 。你在问题(1)中发现的结论还成立吗?如果将b平移到其他位置呢? (图2) (3)在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗? 归纳:平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例; 目的:让学生通过观察、度量、计算、猜测、验证、推理与交流等数学活动,达到对平行线分线段成比例定理的意会、感悟。 效果:学生在以前的学习中,尤其是本章前两节的探究也是通过表格中的多边形来完成的。所以学生有种熟悉感,并不感到困难。 2.议一议: 内容:教师提问: 1.如何理解“对应线段”? 2.平行线分线段成比例定理的符号语言如何表示? 3.“对应线段”成比例都有哪些表达形式?

相似三角形知识点归纳(全)

《相似三角形》知识点归纳 知识点1 有关相似形的概念 (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念、比例的性质 (1)定义: 在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段. 注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =. ②()()()a b c d a c d c b d b a d b c a ?=???=?=???=?? , 交换内项,交换外项.同时交换内外项 核心内容:bc ad = (2)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =?,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-= ≈0.618AB .即512AC BC AB AC -== 简记为:512-长短==全长 注:①黄金三角形:顶角是360的等腰三角形 ②黄金矩形:宽与长的比等于黄金数的矩形 (3)合、分比性质: a c a b c d b d b d ±±=?=.

注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间 发生同样和差变化比例仍成立.如:???????+-=+-- =-?=d c d c b a b a c c d a a b d c b a 等等. (4)等比性质:如果)0(≠++++====n f d b n m f e d c b a ΛΛ, 那么b a n f d b m e c a =++++++++ΛΛ. 知识点3 比例线段的有关定理 平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF, 可得AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF =====或或或或等. 特别在三角形中: 由DE ∥BC 可得:AC AE AB AD EA EC AD BD EC AE DB AD ===或或 知识点4 相似三角形的概念 (1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例. 注:①对应性:即把表示对应顶点的字母写在对应位置上 ②顺序性:相似三角形的相似比是有顺序的. ③两个三角形形状一样,但大小不一定一样. ④全等三角形是相似比为1的相似三角形. F E D C B A E A B C D

初三数学《相似三角形》知识点归纳

初三数学《相似三角形》知识提纲 (孟老师归 纳) :比例的性质及平行线分线段成比例定理 (一)相关概念:1.两条线段的比:两条线段的比就是两条 线段长度的比 在同一长度单位下两条线段a,b的长度分别为m n,那么就说 这两条线段 的比是,或写成a:b=m n;其中a叫做比的前项, 项 2:比例尺=图上距离/实际距离 b叫做比的后 3:成比例线段:在四条线段a, b, c,d中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例 线段,记作:b =—(或a:b=c:d) a c ①线段a,d叫做比例外项,线段b,c叫做比例内项, ..I.; I , ②线段a叫首项,d叫a,b,c的第四比例项。 ③ 比例中项:若a = b即&卩c,则b是a,c的比例中项. b c (二)比例式的性质 2. 1.比例的基本性质:a=c二ad=bc b d 合比:若-,则U =□或―a J b d b d b±a d±c 3?等比:若m k (右b d f .................... n = 0) n 则ace…… m =3 =巴* b d f .......................... n b n 4、黄金分割: 把线段AB分成两条线段AC BC( AC>BC,并且使AC是AB和BC

的比例中项,叫做把线段AB黄金分割,点C叫做线段AB 的黄金分割 点,其中AC^^AB 0.618AB, 2 (三)平行线分线段成比例定理 1. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线 段成比例. 2. 推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得 的对应线段成比例. 如图:当AD// BE// CF时,都可得到 AB _ BC~ 语言描述如下: 上一上上一上 __ ------------------------------ ----------- 、-,二二, DE AB = DE BC = EF睿~七三「三一 [一二, 7 7 〔十宀 (4)上述结论也适合下列情况的图形: 13 11 12 1 2 3 D E

最新相似三角形经典例题解析

一、如何证明三角形相似 例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽ ∽ 。 例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线,求证:△ABC ∽△BCD 例3:已知,如图,D 为△ABC 内一点连结ED 、AD ,以BC 为边在△ABC 外作∠CBE=∠ABD ,∠BCE=∠BAD 求证:△DBE ∽△ABC 例4、矩形ABCD 中,BC=3AB ,E 、F ,是BC 边的三等分点,连结AE 、AF 、AC ,问图中是否存在非全等的相似三 角形?请证明你的结论。 二、如何应用相似三角形证明比例式和乘积式 例5、△ABC 中,在AC 上截取AD ,在CB 延长线上截取BE ,使AD=BE ,求证:DF ?AC=BC ?FE 例6:已知:如图,在△ABC 中,∠BAC=900 ,M 是BC 的中点,DM ⊥BC 于点E , 交BA 的延 长线于点D 。 求证:(1)MA 2 =MD ?ME ;(2)MD ME AD AE = 22 例7:如图△ABC 中,AD 为中线,CF 为任一直线,CF 交AD 于E ,交AB 于F ,求证:AE :ED=2AF :FB 。 三、如何用相似三角形证明两角相等、两线平行和线段相等。 例8:已知:如图E 、F 分别是正方形ABCD 的边AB 和AD 上的点,且 3 1 ==AD AF AB EB 。求证:∠AEF=∠FBD 例9、在平行四边形ABCD 内,AR 、BR 、CP 、DP 各为四角的平分线, 求证:SQ ∥AB ,RP ∥BC 例10、已知A 、C 、E 和B 、F 、D 分别是∠O 的两边上的点,且AB ∥ED ,BC ∥FE ,求证:AF ∥CD 例11、直角三角形ABC 中,∠ACB=90°,BCDE 是正方形,AE 交BC 于F ,FG ∥AC 交AB 于G ,求证:FC=FG 例12、Rt △ABC 锐角C 的平分线交AB 于E ,交斜边上的高AD 于O ,过O 引BC 的平行线交AB 于F ,求证:AE=BF A B C D E F G A B C D E M 12 A B C D E F G 1 234 A B C D A B C D E F K A B C D E F A B C D S P R Q O A B C D E F A B C D E F O 123 A B C D F G E

初三数学相似三角形典型例题(含标准答案)

初三数学相似三角形典型例题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质:a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0

九年级下相似三角形复习专题

相似三角形专题复习 教学目标: 1、了解相似比的概念及相似多边形、相似三角形的概念,掌握相似三角形的判定和性质的应用;灵活运用三角形相似的判定定理; 2、利用图形的相似解决实际问题。 教学重点:掌握相似三角形的判定和性质的应用 教学难点:灵活运用相似三角形的判定和性质 一.【知识梳理】 活动1 相似三角形基本图形的回顾: 问题:请同学们结合下列图形添加一个能判定△ADE 与 △ABC 相似的条件,并说明理由 (课件展示) 请两名同学口答,教师点评。 A B C D E A B C D E A B C D E A B C D E A B C

学生说出,教师板书。 (1)DE ∥BC (平行线法) (2) BC DE AC AE AB AD ==(三边法) (3) AC AE AB AD = (两边及夹角法) (4)∠ADE=∠B 或∠AED=∠C (两角法) (1) ∠ADE=∠C 或∠AED=∠B (2) AC AD AB AE = (1)∠ACD=∠B (2)∠ADC=∠ACB (3)AB AC AC AD = (AB AD AC ?=2) 学生归纳总结方法: 相似三角形基本图形的回顾: A B C A B C D D D E A B C D E A D

活动2:如图1中△ADE ∽△ABC ,相似比为2:3 (1)△ADE 和△ABC 对应中线的比_________,对应角平分线的比__________,对应高的比_________. (2)若它们的周长差为10,则△ADE 和△ABC 的周长分别是_____和_______. (3)若它们的面积和为19.5,则△ADE 和△ABC 的面积分别是____和________. (1)、(2)题学生口答,第(3)题请两位同学板演 (投影)总结相似三角形的性质: A D E B C A D E B A B D E B C A D E A B C D E

九年级相似三角形知识点总结

九年级相似三角形知识点总结 知识点一 1、相似图形:把具有相同形状的图形称为相似图形。 2、相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边成比例。知识点二:比例线段 1、比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线段。(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位) 2、比例性质的基本性质: (两外项的积等于两内项积) 3、更比性质(交换比例的内项或外项): 4、合比性质:(分子加(减)分母,分母不变) 5、等比性质:(分子分母分别相加,比值不变、)如果,那么、注意:(1)此性质的证明运用了“设法” ,这种方法是有关比例计算,变形中一种常用方法、 (2)应用等比性质时,要考虑到分母是否为零、知识点三:黄金分割 1、定义:在线段AB上,点C把线段AB分成两条线段AC和BC(AC>BC),如果,即AC2=ABBC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比。其中≈0、618。知识点四:相似三角形

1、相似三角形:两个三角形中,如果三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。 如△ABC与△DEF相似,记作△ABC ∽△DEF。 2、相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。通常用k来表示。相似比具有顺序性、 3、相似三角形的性质①相似三角形对应角相等、对应边成比例、②相似三角形对应高、对应角平分线、对应中线、周长的比都等于相似比。 ③相似三角形对应面积的比等于相似比的平方、4、三角形相似的判定定理:(1)平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。(2)两角对应相等,两三角形相似、(3)两边对应成比例且夹角相等,两三角形相似、(4)三边对应成比例,两三角形相似、(5)直角三角形相似判定定理: 、斜边与一条直角边对应成比例的两直角三角形相似。、直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。射影定理:CD=ADBD,AC=ADAB,BC=BDBA知识点五:中位线 1、三角形的中位线:连结三角形两边中点的线段。(3条) 2、三角形的中位线平行于第三边且等于第三边的一半。 3、重心:三角形三条中线相交于一点,这个交点叫做三角形的重心、 4、重心的性质:三角形的重心到一个顶点的距离,

陕西西安市碑林区铁一中学中考七模试卷(解析版)--数学

陕西省西安市碑林区铁一中学中考数学七模试卷 一、选择题 1.检测同一型号的4个产品的质量(g),其中超过标准质量的记为正数,不足标准质量的记为负数,其中最接近标准的是() A.﹣3.5 B.+2.5 C.﹣0.6 D.+0.7 2.如图所示的几何体的左视图是() A.B.C.D. 3.25的算术平方根是() A.5 B.﹣5 C.±5 D. 4.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是() A.70°B.60°C.55°D.50° 5.在下列四组点中,可以在同一个正比例函数图象上的一组点是() A.(2,﹣3),(﹣4,6)B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6)D.(2,3),(﹣4,6) 6.如图,在平行四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()

A.7 B.10 C.11 D.12 7.如图,直线y=﹣x+2与x轴,y轴分别交于A,B两点,把△AOB沿着直线AB翻折后得到△AO'B,则点O'的坐标是() A.B.C.D. 8.如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积为() A.πB.4πC.πD.π 9.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点,若AM=4,则线段ON的长为() A.B.C.2 D. 10.二次函数y=﹣x2+2x+c的图象与x轴有两个交点A(x1,0),B(x2,0),且x1<x2,点P (m,n)是图象上一点,那么下列判断正确的是() A.当n<0时,m<x1B.当n<0时,m>x2 C.当n>0时,x1<m<x2D.当n>0时,m>x1

相似三角形知识点及典型例题

相似三角形知识点及典型例题 知识点归纳: 1、三角形相似的判定方法 (1)定义法:对应角相等,对应边成比例的两个三角形相似。 (2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似。 (3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似。简述为:两角对应相等,两三角形相似。 (4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三 角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。 (5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相 似。简述为:三边对应成比例,两三角形相似。 (6)判定直角三角形相似的方法: ①以上各种判定均适用。 ②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。 ③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。 # 直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。 每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 如图,Rt△ABC 中,∠BAC=90°,AD 是斜边BC 上的高, 则有射影定理如下: (1)(AD )2 =BD ·DC , (2)(AB )2 =BD ·BC , (3)(AC )2=CD ·BC 。 注:由上述射影定理还可以证明勾股定理。即 (AB )2 +(AC )2 =(BC )2 。

典型例题: 例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE 2=EF·EG 证明:如图,连结EC ,∵AB =AC ,AD ⊥BC , ∴∠ABC =∠ACB ,AD 垂直平分BC ∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2, 即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G 又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CE EF ∴EC 2=EG· EF ,故EB 2=EF·EG 【解题技巧点拨】 本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。 例2 已知:如图,AD 是Rt △ABC 斜BC 上的高,E 是AC 的中点,ED 与AB 的延长线相交于F ,求证:BA FB =AC FD 证法一:如图,在Rt △ABC 中,∵∠BAC =Rt ∠,AD ⊥BC , ∴∠3=∠C ,又E 是Rt △ADC 的斜边AC 上的中点, ∴ED=21 AC =EC ,∴∠2=∠C ,又∠1=∠2,∴∠1=∠3, ∴∠DFB =∠AFD ,∴△DFB ∽△AFD ,∴FD FB =AD BD (1) 又AD 是Rt △ABC 的斜边BC 上的高,∴Rt △ABD ∽Rt △CAD ,∴AD BD =AC BA (2) 由(1)(2)两式得FD FB =AC BA ,故BA FB =AC FD 证法二:过点A 作AG ∥EF 交CB 延长线于点G ,则BA FB =AG FD (1) ∵E 是AC 的中点,ED ∥AC ,∴D 是GC 的中点,又AD ⊥GC ,∴AD 是线段GC 的垂直平分线,∴AG =AC (2) 由(1)(2)两式得:BA FB =AC FD ,证毕。 【解题技巧点拨】

最新湘教版九年级数学相似三角形知识点及习题

九年级上册相似三角形考点 一、本章的两套定理 第一套(比例的有关性质): b a n d b m c a n d b n m d c b a =++++++?≠+++=== :)0(等比性质 涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。 二、有关知识点: 1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。 2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。 3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。 4.相似三角形的预备定理: 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。 5.相似三角形的判定定理: (1)三角形相似的判定方法与全等的判定方法的联系列表如下: 类型 斜三角形 直角三角形 全等三角形的判定 SAS SSS AAS (ASA ) HL 相似三角形的判定 两边对应成比 例夹角相等 三边对应成比例 两角对应相等 一条直角边与斜边对应成比例 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。 6.直角三角形相似: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。 (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。 7.相似三角形的性质定理: (1)相似三角形的对应角相等。 (2)相似三角形的对应边成比例。 (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。 (4)相似三角形的周长比等于相似比。 (5)相似三角形的面积比等于相似比的平方。 8.相似三角形的传递性 如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2 三、注意 1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A ”型和“ X ”型。 c d a b = d b c a a c b d ==或 合比性质:d d c b b a ±=± ?=?=bc ad d c b a (比例基本定理)

相似三角形中几种常见的辅助线作法

相似三角形中几种常见的辅助线作法 在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。主要的辅助线有以下几种: 一、添加平行线构造“A ”“X ”型 例1:如图,D 是△ABC 的BC 边上的点,BD :DC=2:1,E 是AD 的中点,求:BE :EF 的值. 解法一:过点D 作CA 的平行线交BF 于点P ,则 ∴PE=EF BP=2PF=4EF 所以BE=5EF ∴BE :EF=5:1. 解法二:过点D 作BF 的平行线交AC 于点Q , ∴BE :EF=5:1. 解法三:过点E 作BC 的平行线交AC 于点S , 解法四:过点E 作AC 的平行线交BC 于点T , ∵BD=2DC ∴ ∴BE :EF=5:1. 变式:如图,D 是△ABC 的BC 边上的点,BD :DC=2:1,E 是AD 的中点, 连结BE 并延 长交AC 于F, 求AF :CF 的值. 解法一:过点D 作CA 的平行线交BF 于点P , 解法二:过点D 作BF 的平行线交AC 于点Q , 解法三:过点E 作BC 的平行线交AC 于点S , 解法四:过点E 作AC 的平行线交BC 于点T , , 1==AE DE FE PE ,2==DC BD PF BP ,则2==EA DA EF DQ ,3==DC BC DQ BF , EF EF EF EF DQ EF BF BE 563=-=-=-=,则DC CT DT 2 1 ==;TC BT EF BE =, DC BT 2 5=

例2:如图,在△ABC的AB边和AC边上各取一点D和E,且使AD=AE,DE延长线与BC延长线相交于F ,求证: (证明:过点C作CG 分析:证明等积式问题常常化为比例式,再通过相似三角形对 应边成比例来证明。不相似,因而要通过两组三角形相似,运 用中间比代换得到,为构造相似三角形,需添加平行线。. 方法一:过E作EM方法二:过D作DN 例4:在△ABC中,D为AC 上的一点,E为CB延长线上的一点,BE=AD,DE交AB于F。求证: EF×BC=AC×DF 证明:过D作DG∥BC交AB于G,则△DFG和△EFB相似, ∴∵BE=AD,∴ 由DG∥BC可得△ADG和△ACB相似,∴即 ∴EF×BC=AC×DF. 例5:已知点D是BC的中点,过D点的直线交AC于E, 交BA的延长线于F, 求证: 分析:利用比例式够造平行线,通过中间比得结论 . (或利用中点”倍长中线”的思想平移线段EC,使得所得四条线段分别构成两个三角形.) CE BD CF BF = EC AE BF AF = DG DF BE EF = DG DF AD EF = DG AD BC AC = DG BC AD AC =

相关文档
最新文档