拓展练习2 _锐角三角函数-优质公开课-浙教9下精品
初中锐角三角函数市公开课获奖教案省名师优质课赛课一等奖教案

初中锐角三角函数教案一、教学目标:1.理解锐角的概念,并能够通过观察角度来判断锐角;2.掌握正弦、余弦和正切三角函数的定义及基本性质;3.能够在给定角度范围内计算正弦、余弦和正切的值;4.能够运用三角函数解决实际问题。
二、教学重点:1.正弦、余弦和正切三角函数的定义及基本性质;2.正弦、余弦和正切的计算方法;3.能够通过问题分析运用三角函数解决实际问题。
三、教学难点:1.正弦、余弦和正切的计算方法;2.运用三角函数解决实际问题的能力。
四、教学准备:教学课件、黑板、白板笔、直尺、三角板等。
五、教学过程:步骤一:引入新知识教师可以通过多媒体或实物等方式,引导学生观察角度,并介绍锐角的概念。
然后通过与学生的互动,让学生判断哪些角度是锐角。
步骤二:讲解三角函数的定义及基本性质1.定义:正弦函数:在直角三角形中,对于锐角A,以A的对边长度除以其斜边长度所得的比值,叫做A的正弦,记作sinA。
余弦函数:在直角三角形中,对于锐角A,以A的邻边长度除以其斜边长度所得的比值,叫做A的余弦,记作cosA。
正切函数:在直角三角形中,对于锐角A,以A的对边长度除以其邻边长度所得的比值,叫做A的正切,记作tanA。
2.基本性质:正弦函数的值域为[-1,1],在每个周期内呈周期性变化;余弦函数的值域为[-1,1],在每个周期内呈周期性变化;正切函数的定义域为全体锐角,值域为R。
步骤三:计算三角函数的值1.通过给定的角度,使用三角函数的定义及基本性质来计算正弦、余弦和正切的值。
例如:计算角度为30°的正弦、余弦和正切的值。
2.通过课堂练习,让学生灵活掌握计算三角函数的方法。
步骤四:解决实际问题通过一些实际问题的引入,让学生运用所学的三角函数知识解决问题。
例如:一根斜杆在水平地面上的倾斜角为60°,斜杆的长度为10米,求斜杆的垂直高度是多少?步骤五:课堂练习及小结设计一些课堂练习题,让学生巩固所学的知识,并在小结时进行复习。
2022年浙教初中数学九下《锐角三角函数》PPT课件6

名师指津
1. 一个实数的立方根表示为3 a,根指数 3 不能省略. 2. 一个实数的立方根的结果总是唯一的. 3. 3 -a=-3 a(a 为一切实数).
1.1 锐角三角函数(1)
取宝物比赛
10m
10
(1)
1m
5m
(2)
梯子在上升变陡的过程中,倾 斜角,铅直高度与梯子的比,水 平宽度与梯子的比,铅直高度与 水平宽度的比,都发生了什么变 化?
铅
直
高
倾斜角
度
水平宽度
梯子在上升变陡的过程中,倾 斜角,铅直高度与梯子的比,水 平宽度与梯子的比,铅直高度与 水平宽度的比,都发生了什么变 化?
想一想
B
B1
(1)直角三角形AB1C1和直角三 角 形ABC有什么关系?
BC
B 1C 1 A C
AC1 BC
(2) A B 和 A B 1 , A B 和A B 1 , A C
和B
A
1C C
1 1
有什么关系?
A
(3)如果改变B在梯子上的位置
呢?
C C1
B
∠A的对边
sinA
斜边
斜边
∠A的对边 cosA
【解析】 (1)∵3x3+24=0,∴3x3=-24,
∴x3=-8,∴x=3 -8=-2. (2)∵1000(x-1)3=-27, ∴(x-1)3=-0.027,
∴x-1=3 -0.027=-0.3, ∴x=0.7. 【答案】 (1)x=-2 (2)x=0.7
【典例 2】 计算:
3 (1)
0.125;
的比_越__大__
铅 直 高
度
水平宽度
想一想
B
A
(初中精品)第一章解直角三角形 锐角三角函数 学年浙教版九年级数学下册

【知识梳理】一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sin A aA c ∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cos A bA c ∠==的邻边斜边;锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c ∠==的对边斜边;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化. (2)sinA ,cosA ,tanA 分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin 与∠A ,cos 与∠A ,tan 与∠A 的乘积.书写时习惯上省略∠A 的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan ∠AEF ”,不能写成“tanAEF ”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在. (4)由锐角三角函数的定义知:当角度在0°<∠A<90°间变化时,,,tanA >0.锐角三角函数BCa bc二、特殊角的三角函数值锐角30°45° 160°要点诠释:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反.三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.【典型例题】考点一锐角三角函数值的求解策略【例1】如图,在方格纸中,点A,B,C都在格点上,则tan∠ABC的值是()A.2B.12C.√55D.√5【例2】如图,A,B,C是小正方形的顶点,且每个小正方形的边长均为1,则tan∠BAC的值为()A.12B.1C.√33D.√3【变式训练】1.如图,若点A的坐标为(1,√3),则sin∠1=.2. 如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B. C. D.考点二已知三角函数求边长,则BC的长为()【例3】如图,在△ABC中,∠C=90°,AB=15,sin B=35A.3B.9C.4D.12【变式训练】,则AB的长是()1. 如图,在Rt△ABC中,∠C=90°,AC=4,tan A=12A.2B.8C.2√5D.4√5,则斜边AB上的高为.2.在Rt△ABC中,∠C=90°,若AB=5,sin A=35考点三特殊角的三角函数值的计算【例5】求+tan60°﹣【例6】已知△ABC中的∠A与∠B满足(1﹣tanA)2+|sinB﹣|=0(1)试判断△ABC的形状.(2)求(1+sinA)2﹣2﹣(3+tanC)0的值.【变式训练】1. 6tan230°﹣sin60°﹣2sin45°2. sin60°﹣4cos230°+sin45°•tan60°+(√3-tanβ)2=0,则对此三角形的形状描3.若α,β是一个三角形的两个锐角,且满足sinα-√32述最准确的是 ( ) A .等腰三角形 B .直角三角形C .等边三角形D .等腰直角三角形考点三 锐角三角函数的拓展探究与应用【例6】通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1①,在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时sadA BCAB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=________.(2)对于0<A <180°,∠A 的正对值sadA 的取值范围是_______.(3)如图1②,已知sinA =35,其中∠A 为锐角,试求sadA 的值.【变式训练】如图,定义:在Rt △ABC 中,锐角α的邻边与对边的比叫做∠α的余切,记作cot α,即cot α=∠α的邻边∠α的对边=ACBC .根据上述角的余切定义,解答下列问题:(1)cot30°= ;(2)已知tan A=34,其中∠A 为锐角,则cot A 的值为 .【强化练习】1. 如图,以点O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB⏜上一点(不与点A ,B 重合),连结PO,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)2. 如图,已知AB是☉O的直径,弦CD⊥AB,AC=2√2,BC=1,那么sin∠ABD的值是.3.在Rt△ABC中,若2AB=AC,则cos C=.,AD是BC边上的高线.4. 如图,在△ABC中,∠B=45°,AC=5,cos C=35(1)求AD的长;(2)求△ABC的面积.5. 如图所示,AB是⊙O的直径,且AB=10,CD是⊙O的弦,AD与BC相交于点P,若弦CD =6,试求cos∠APC的值.【典型例题】考点一 锐角三角函数值的求解策略【例1】如图,在方格纸中,点A ,B ,C 都在格点上,则tan ∠ABC 的值是 ( )A .2B .12C .√55D .√5【答案】A【例2】如图,A ,B ,C 是小正方形的顶点,且每个小正方形的边长均为1,则tan ∠BAC 的值为( )A .12B .1C .√33D .√3【答案】B【解析】如图,连结BC ,则BC ⊥AB.答案及解析=1.在Rt△ABC中,AB=BC=√22+12=√5,∴tan∠BAC=BCAB【变式训练】1.如图,若点A的坐标为(1,√3),则sin∠1=.【答案】√322. 如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B. C. D.【答案】D【解析】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.考点二已知三角函数求边长,则BC的长为()【例3】如图,在△ABC中,∠C=90°,AB=15,sin B=35A.3B.9C.4D.12【答案】D【变式训练】,则AB的长是() 1. 如图,在Rt△ABC中,∠C=90°,AC=4,tan A=12A.2B.8C.2√5D.4√5【答案】C,则斜边AB上的高为.2.在Rt△ABC中,∠C=90°,若AB=5,sin A=35【答案】125考点三特殊角的三角函数值的计算【例5】求+tan60°﹣【答案】见解析【解析】原式=+﹣=2+﹣=3﹣2+2.【例6】已知△ABC中的∠A与∠B满足(1﹣tanA)2+|sinB﹣|=0 (1)试判断△ABC的形状.(2)求(1+sinA)2﹣2﹣(3+tanC)0的值.【答案】见解析【解析】(1)∵|1﹣tanA)2+|sinB﹣|=0,∴tanA=1,sinB=,∴∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°, ∴△ABC 是锐角三角形;(2)∵∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴原式=(1+)2﹣2﹣1=.【变式训练】 1. 6tan 230°﹣sin60°﹣2sin45° 2.sin60°﹣4cos 230°+sin45°•tan60°【答案】见解析 【解答】(1)原式==12- (2) 原式=×﹣4×()2+×=﹣3+3;3. 若α,β是一个三角形的两个锐角,且满足sin α-√32+(√3-tan β)2=0,则对此三角形的形状描述最准确的是 ( ) A .等腰三角形 B .直角三角形C .等边三角形D .等腰直角三角形【答案】C 【解答】∵sin α-√32+(√3-tan β)2=0,∴sin α-√32=0,√3-tan β=0, ∴sin α=√32,tan β=√3. 又∵α,β都是锐角, ∴α=60°,β=60°,∴此三角形的形状是等边三角形. 故选C考点三 锐角三角函数的拓展探究与应用【例6】通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1①,在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时sadA BC AB ==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题: (1)sad60°=________.(2)对于0<A <180°,∠A 的正对值sadA 的取值范围是_______.(3)如图1②,已知sinA =35,其中∠A 为锐角,试求sadA 的值..【答案】见解析【解析】(1)1; (2)0<sadA <2;(3)如图2所示,延长AC 到D ,使AD =AB ,连接BD .设AD =AB =5a ,由3sin 5BC A AB ==得BC =3a , ∴ 22(5)(3)4AC a a a =-=,∴ CD =5a-4a =a ,22(3)10BD a a a =+=,∴ 10sadA BD AD ==.【变式训练】如图,定义:在Rt △ABC 中,锐角α的邻边与对边的比叫做∠α的余切,记作cot α,即cot α=∠α的邻边∠α的对边=ACBC .根据上述角的余切定义,解答下列问题:(1)cot30°= ;(2)已知tan A=34,其中∠A为锐角,则cot A的值为.【答案】(2)4 3【强化练习】1. 如图,以点O为圆心,半径为1的弧交坐标轴于A,B两点,P是AB⏜上一点(不与点A,B重合),连结PO,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【答案】C【解析】如图,过点P作PQ⊥OB,垂足为Q.在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=PQOP ,cosα=OQOP,即PQ=sinα,OQ=cosα,则点P的坐标为(cosα,sinα).故选C.2. 如图,已知AB是☉O的直径,弦CD⊥AB,AC=2√2,BC=1,那么sin∠ABD的值是.【答案】2√23【解析】∵AB是☉O的直径,∴∠ACB=90°,则AB=√12+(2√2)2=3.∵AB ⊥CD ,AC⏜=AD ⏜,∴∠ABC=∠ABD , ∴sin ∠ABD=sin ∠ABC=AC AB =2√23. 3. 在Rt △ABC 中,若2AB=AC ,则cos C= .【答案】.√32或2√55【解析】∵2AB=AC ,∴AB 不是最长边,即∠C ≠90°.分两种情况讨论:①当∠B=90°时,设AB=x ,则AC=2x ,∴BC=√(2x )2-x 2=√3x ,∴cos C=BC AC =√3x 2x =√32.②当∠A=90°时,设AB=y ,则AC=2y ,∴BC=√(2y )2+y 2=√5y ,∴cos C=AC BC =√5y =2√55. 综上所述,cos C 的值为√32或2√55. 4. 如图,在△ABC 中,∠B=45°,AC=5,cos C=35,AD 是BC 边上的高线.(1)求AD 的长;(2)求△ABC 的面积.【答案】见解析【解答】解:(1)∵AD ⊥BC ,∴∠ADC=∠ADB=90°.在Rt △ACD 中,AC=5,cos C=35,∴CD=AC ·cos C=3,∴AD=√AC 2-CD 2=4.(2)∵∠B=45°,∠ADB=90°,∴∠BAD=90°-∠B=45°,∴∠B=∠BAD ,∴BD=AD=4,∴S △ABC =12AD ·BC=12×4×(4+3)=14.5. 如图所示,AB 是⊙O 的直径,且AB =10,CD 是⊙O 的弦,AD 与BC 相交于点P ,若弦CD =6,试求cos ∠APC 的值.【答案】见解析【解答】连结AC ,∵ AB 是⊙O 的直径,∴ ∠ACP =90°,又∵ ∠B =∠D ,∠PAB =∠PCD ,∴ △PCD ∽△PAB ,∴ PC CD PA AB=. 又∵ CD =6,AB =10,∴ 在Rt △PAC 中,63cos 105PC CD APC PA AB ∠====.。
浙教版数学九年级下册1.1《锐角三角函数》说课稿2

浙教版数学九年级下册1.1《锐角三角函数》说课稿2一. 教材分析《锐角三角函数》是浙教版数学九年级下册第一章的第一节内容。
本节课的主要内容有:锐角三角函数的定义,正弦、余弦、正切函数的定义及它们的图象和性质。
这部分内容是中学数学中非常重要的基础知识,是进一步学习中学几何、三角函数和其他数学分支的基础。
在本节课中,学生将掌握锐角三角函数的基本概念,了解它们之间的关系,以及学会用锐角三角函数解决一些实际问题。
二. 学情分析九年级的学生已经学习了初中阶段的数学基础知识,对函数的概念有一定的了解。
但是,对于锐角三角函数的定义和性质,他们可能还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握锐角三角函数的知识。
同时,学生应该具备一定的观察能力、推理能力和解决问题的能力,以便能够更好地学习和理解本节课的内容。
三. 说教学目标1.知识与技能目标:学生能够理解锐角三角函数的定义,掌握正弦、余弦、正切函数的定义及它们的图象和性质。
2.过程与方法目标:学生能够通过观察、实验、推理等方法,探索和发现锐角三角函数之间的关系。
3.情感态度与价值观目标:学生能够积极参与课堂活动,培养对数学的兴趣和自信心,提高合作和交流的能力。
四. 说教学重难点1.教学重点:锐角三角函数的定义,正弦、余弦、正切函数的定义及它们的图象和性质。
2.教学难点:锐角三角函数之间的关系,以及如何运用锐角三角函数解决实际问题。
五. 说教学方法与手段在本节课的教学中,我将采用以下教学方法和手段:1.引导法:通过提问、引导学生观察和思考,激发学生的学习兴趣和主动性。
2.案例分析法:通过具体的案例,让学生更好地理解和掌握锐角三角函数的知识。
3.小组讨论法:学生进行小组讨论,促进学生之间的交流和合作,培养学生的团队精神。
4.多媒体辅助教学:利用多媒体课件,生动形象地展示锐角三角函数的图象和性质,帮助学生更好地理解和记忆。
六. 说教学过程1.导入:通过提问,引导学生回顾已学的函数知识,为新课的学习做好铺垫。
初中数学 九年级下册 28-1 锐角三角函数(教学课件)

∵ ∠C=90°,∠A=45°∴ BC=AC=2
由勾股定理得AB=
+ =2 ∴cos A=
=
=
变式2-2 Rt△ABC中,∠C=90°,cosA=,AC=6cm,那么BC等于_____.
在 △ 中,∵ =
∴
,
=
A.
B.
C.
D.
【详解】作AB⊥x轴交x轴于点B,
∵A(3,4),∴AB=4,BO=3,∴AO= AB 2 + BO2 = 42 + 32 =5,
B
AB 4
= .故选C.
AO 5
∴sinα =
变式1-2 把△ABC三边的长度都扩大为原来的3倍,则锐角A的正弦函数值()
A.不变
B.缩小为原来的
在直角三角形中,当锐角 A 的度数一定时,
不管三角形的大小如何,它的对边与斜边的比是一个固定值.
′′
与
’
′′
01
锐角三角函数-正弦
在 Rt△ABC 中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作:sinA.
即 sin A=
∠所对的边
斜边
=
B
斜边
c
a 对边
∠所邻的边
斜边
B
=
斜边
c
A
正弦和余弦的注意事项:
b
邻边
a 对边
C
1.sinA、cosA是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形)。
2.sinA、cosA是一个比值(数值,无单位)。
浙教版数学九年级下册1.1《锐角三角函数》教案2

浙教版数学九年级下册1.1《锐角三角函数》教案2一. 教材分析《锐角三角函数》是浙教版数学九年级下册的教学内容,本节课主要介绍了锐角三角函数的定义及应用。
通过学习,学生能够理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及其在实际问题中的应用。
教材通过丰富的例题和练习题,帮助学生巩固知识,提高解题能力。
二. 学情分析九年级的学生已经具备了一定的代数和几何基础,对函数的概念有一定的了解。
但是,对于锐角三角函数的定义及其应用,学生可能较为陌生。
因此,在教学过程中,教师需要引导学生从已有的知识出发,逐步过渡到锐角三角函数的学习。
三. 教学目标1.理解锐角三角函数的定义及概念。
2.掌握正弦、余弦、正切函数的定义及其在实际问题中的应用。
3.培养学生的逻辑思维能力和解题能力。
四. 教学重难点1.重点:锐角三角函数的定义及应用。
2.难点:正弦、余弦、正切函数的定义及其在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入锐角三角函数的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生从已有的知识出发,探索锐角三角函数的定义及其应用。
3.互动式教学法:鼓励学生积极参与课堂讨论,提高学生的表达能力和合作能力。
4.练习法:通过大量的练习题,巩固所学知识,提高学生的解题能力。
六. 教学准备1.教学课件:制作课件,展示锐角三角函数的定义及应用。
2.练习题:准备相关的练习题,用于课堂练习和课后作业。
3.教学工具:准备三角板、直尺等教学工具,方便学生直观地理解锐角三角函数。
七. 教学过程1.导入(5分钟)通过一个实际问题引入锐角三角函数的概念,例如:在直角三角形中,如何求解一个锐角的正弦、余弦、正切值?2.呈现(15分钟)讲解锐角三角函数的定义,引导学生从已有的知识出发,理解正弦、余弦、正切函数的定义。
通过示例,展示这三个函数在直角三角形中的几何意义。
3.操练(20分钟)让学生分组讨论,运用锐角三角函数解决实际问题。
2022年浙教初中数学九下《锐角三角函数的计算》PPT课件11
∴∠ACB=2∠ACD≈2×27.50 =550. ∴V型角的大小约550.
知识的运用
1. 已知sinθ=0.82904,求∠θ的大小.
2. 一梯子斜靠在一面
墙上,已知梯子长4m,梯
子位于地面上的一端离
ห้องสมุดไป่ตู้4m
墙壁2.5m,求梯子与地
面所成的锐角.
2.5m
真知在实践中诞生
3. 图中的螺旋形由一系列直角
3.蛋白质和脂肪含量占50%,矿物质含量是脂肪 含量的2倍;蛋白质和碳水化合物含量占85%,
根据上述数据回答下面的问题:
(1)分别求出营养快餐中蛋白质,碳水化合物,脂 肪,矿物质的质量和所占百分比;
根据以上计算,可得下面的统计表:
中学生营养快餐成分统计表
蛋白 脂 矿物 碳水化 合计 质 肪 质 合物
及是否符合题意).
列二元一次方程组解应用题的 步骤:
1.审题;
2.设未知数;
3.列方程组; 4.解方程组;
5.检验; 6.答。
例1:一根金属棒在0℃时的长度是q米,温度每升高 1 ℃ ,它就伸长p米,当温度为t ℃ 时,金属棒的 长度l可用公式l=pt+q计算. 已测得当t=100 ℃时l=2.002米; 当t=500 ℃时l=2.01米.
各种成分的
质量(g) 135 15 30 120
300
各种成分所 占百分比( 45 5 10 40 100
%)
1:列二元一次方程组解应用题的关键是:
找出两个等量关系(要求不同)
2:列二元一次方程组解应用题
的一般步骤分为:
审、设、列、解、检、答
回顾与反思
1.这节课你学到了哪些知识和方法? 2. 你还有什么问题或想法需要和大家交流吗?
精品人教版数学9年级下. 特殊角的锐角三角函数(教案与导学案)
第二十八章锐角三角函数28.1锐角三角函第3课时特殊角的锐角三角函数【知识与技能】1.理解并掌握30°,45°,60°的三角函数值,能用它们进展有关计算;2.能依据30°,45°,60°的三角函数值,说出相应锐角的度数.【过程与方法】经历探索30°,45°,60°角的三角函数值的过程,进一步体会三角函数的意义.【情感态度】在探索特殊角的三角函数值的过程中,增强学生的推理能力和计算能力. 【教学重点】熟记30°,45°,60°的三角函数值,并用它们进展计算.【教学难点】探索30°,45°,60°的三角函数值的指导过程.一、情境导入,初步认识问题在前面我们已经得到sin3o°= 12,sin45°=2,你能得到30°,45°角的其它三角函数值吗?不妨试试看.【教学说明】 教师可引导学生从所给结论sinA = sin30°=12出发,设 BC = 1,那么 AB = 2,由勾股定理可得30°的其它三角函数值,同样在图〔2)中,仍可设BC = 1, 那么AC = 1,45°的其它三角函数值.这里设BC = 1是为了方便计算.二、思考探究,获取新知通过对上述问题的思考,可以得到:sin30°=12,cos30°= 2,tan30°= 3,sin45°= 2,cos45°= 2, tan45°= 1.【想一想】 60°角的三角函数值各是多少?你是如何得到的?在学生的相互交流中可得出结论:sin60°= 2,cos60°= 12 ,tan60°教师再将上述所有结论整理,制成下表.三、典例精析,掌握新知例1 求以下各式的值.(1)cos260°+ sin260°;〔2〕cos45tan45sin45︒-︒︒.解〔1〕原式 =12()2 +32()2 =14+34= 1;〔2〕原式 =2222- 1 = 0.例2 〔1〕如图〔1〕,在Rt△ABC中,∠C=90°,AB = 6,BC = 3,求∠A的度数;〔2〕如图〔2〕,圆锥的高AO等于圆锥的底面半径OB的3倍,求α.解〔1〕∵sinA = BC32AB26==,∴∠A = 45°;〔2〕∵tanα = OA33OBOBOB==,∴α = 60°.【教学说明】以上两例均可先由学生自主完成,然后教师在展示解答过程,加深学生对本节知识的理解,并指明两例题的侧重点不一样,例1侧重于运用特殊角的三角函数值来参与计算,而例2那么是通过计算一个角的某一三角函数值后,利用锐角的三角函数值与锐角之间的一一对应关系,从而确定锐角的度数.这样处理,可让学生熟记特殊角的三角函数值.四、运用新知,深化理解1.在△ABC中,∠A,∠B都是锐角,且tanA = 12,cosB =32,那么△ABC的形状是〔〕A.直角三角形B.钝角三角形C.锐角三角形D.不能确定2.计算:〔1〕3tan30°- tan45°+ 12sin60°= ___________ .〔2〕60160sincos︒-︒+130tan︒- sin45°= ___________ .3.在Rt△ABC中,∠C=90°,BC = 7,AC = 21,试求∠A、∠B的度数.4.边长为2的正方形ABCD在平面直角坐标系中的位置如下图,且∠OBC=30°,试求A、D两点坐标.【教学说明】四道题均可让学生自主探究,也可小组内讨论,到达解决问题的目的.教师巡视,发现问题给予指导,对优秀者和积极参与者给予鼓励,增强学生的学习信心.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学〞局部.【答案】 1.B 【解析】∵cosB =32,∴∠B = 30°,又∵tanA =12<3 2= tan30°,∴∠A < 30°,∠A + ∠B < 60°,∴∠C = 180°- (∠A + ∠B)> 120°.即△ABC 是钝角三角形,应选B.2.〔1〕5314-〔2〕2232【解析】〔1〕原式 =31331322⨯-+⨯3314+ =5314-〔2〕原式 =3221312-233222323.由题意易得:tanA =73213BCAC===,tanB = 3ACBC=,∴∠A= 30°,∠B = 60°.4.解:∵ OB = BC·cosB =323⨯=, OC = BC·sinB =1212⨯=,∴B 点的坐标是〔3,0-〕.过D点作DE 垂直于y轴,交y轴于E点,易证△OBC≅△ECD,∴∠DCE = ∠CBO =30°.∴CE = cos∠DCE ·CD =3232⨯=,∴OE = OC + CE = 13+,DE = 112CD=,∴D 点的坐标是〔1,13-+〕.五、师生互动,课堂小结1.如何理解并熟记特殊角的三角函数值?同学间相互交流.2.运用特殊角的三角函数值可解决哪两类问题?【教学说明】师生共同回忆,对于问题1,可引导学生利用图形进展推理计算,也可通过表格中横排的数的变化规律来记忆.1.布置作业:从教材P68〜70习题28. 1中选取.2.完成创优作业中本课时的“课时作业〞局部.本课时教学以“自主探究〞为主体形式,所以应先给学生自主动手的时间,给学生提供创新的空间与可能,再给不同层次的学生提供一个交流合作的时机,培养学生独立探究和合作学习的能力.28.1 锐角三角函数第3课时特殊角的锐角三角函数一、新课导入1.课题导入情景:出示一副三角尺,教师手中的两块三角尺中有几个不同的锐角?问题:分别求出这几个锐角的正弦值、余弦值和正切值.本节课我们学习30°,45°,60°角的三角函数值.〔板书课题〕2.学习目标〔1〕推导并熟记30°,45°,60°角的三角函数值.〔2〕能运用30°,45°,60°角的三角函数值进展简单的计算.〔3〕能由30°,45°,60°角的三角函数值求对应的锐角.〔4〕会运用计算器求锐角三角函数的三角函数值和由三角函数值求锐角.3.学习重、难点重点:推导并熟记30°,45°,60°角的三角函数值.难点:相关运算.二、分层学习1.自学指导〔1〕自学内容:教材P65探究~P66例3上面的内容.〔2〕自学时间:8分钟.〔3〕自学方法:完成探究提纲.②通过计算,得到30°,45°,60°角的正弦值、余弦值、正切值如下表:③观察上表,sin30°,sin45°,sin60°的值有什么规律?cos30°,cos45°,cos60°呢?tan30°,tan45°,tan60°呢?2.自学:学生可参考自学指导进展自学.3.助学〔1〕师助生:①明了学情:明了学生能否推导30°,45°,60°角的三角函数值.②差异指导:根据学情进展针对性指导.〔2〕生助生:小组内相互交流、研讨、纠正错误.4.强化:特殊角的三角函数值的推导和记忆以及30°,45°,60°角的正弦值、余弦值、正切值的变化规律.1.自学指导〔1〕自学内容:教材P66例3~P67练习上面的内容.〔2〕自学时间:10分钟.〔3〕自学方法:先自主学习,再同桌之间讨论交流,互相纠错.〔4〕自学参考提纲:①含30°,45°,60°角的三角函数值的计算题的解题要点是什么?熟练掌握特殊锐角的三角函数值.②求直角三角形中某锐角的解题要点是什么?先求该锐角的正弦值或余弦值或正切值,然后根据特殊锐角的三角函数值求该锐角的度数.③求以下各式的值:1-2sin30°cos30°;=1-2×12×3223-3tan30°-tan45°+2sin60°;=3×3-1+2×3=231.(cos230°+sin230°)×tan60°.=[3〕2+〔12〕2]×3 3④在Rt△ABC中,∠C=90°,BC7AC21,求∠A、∠B的度数.∵tan A=73321==BCAC,∴∠A=30°,∠B=60°.2.自学:学生可结合自学指导进展自学.3.助学〔1〕师助生:①明了学情:明了学生对特殊角的三角函数值表的掌握情况.②差异指导:根据学情指导学生记忆或推导特殊角的三角函数值.〔2〕生助生:小组交流、研讨.4.强化〔1〕求特殊锐角的三角函数值的关键是先把它转化为实数的运算,再根据实数的运算法那么计算.〔2〕求锐角的度数的关键是先求其正弦值或余弦值或正切值,然后对应特殊锐角的三角函数值求角的度数.〔3〕当A、B为锐角时,假设A≠B,那么sin A≠sin B,cos A≠cos B,tan A≠tanB.1.自学指导〔1〕自学内容:教材P67~P68.〔2〕自学时间:10分钟.〔3〕自学指导:完成探究提纲.〔4〕探究提纲:①用计算器求sin18°的值.sin18°=0.309016994.②用计算器求tan30°36′的值.tan30°36′=0.591398351.③sin A=0.5018,用计算器求锐角A的度数.∠A=30.11915867°或∠A=30°7′8.97″.④∠A是锐角,用计算器探索sin A与cos A的数量关系.sin2A+cos2A=1.⑤∠A 是锐角,用计算器探索sin A 、cos A 与tan A 的数量关系.sin tan cos.AA A⑥当一个锐角逐渐增大时,这个角的各三角函数值会发生怎样的变化呢?请用计算器探索其中的规律.正弦值逐渐增大,余弦值逐渐减小,正切值逐渐增大. ⑦用计算器求以下各锐角三角函数的值: sin35° 0.573576436 cos55° 0.573576436 tan80°25′43″ 5.93036308⑧以下锐角三角函数值,用计算器求相应锐角的度数: sin A =0.6275∠A =38.86591697° cos A =0.6252∠A =51.30313157° tan A =4.8425∠A =78.3321511°三、评价1.学生自我评价:这节课你学到了什么?还有什么疑惑?2.教师对学生的评价:〔1〕表现性评价:根据学生的情感态度和学习效果等方面进展评价. 〔2〕纸笔评价:课堂评价检测. 3.教师的自我评价〔教学反思〕.本课时中的特殊角是指30°,45°,60°的角,课堂上采用“自主探究〞的形式,给学生自主动手的时间并提供创新的空间与可能,再给不同层次的学生提供一个交流合作的时机,培养学生独立探究和合作的能力.本节课的最终教学目的是让学生理解并掌握30°,45°,60°角的三角函数值,并且能够熟记其函数值,然后利用它们进展计算.一、根底稳固〔70分〕1.(5分)2cos(α-10°)=1,那么锐角α= 70° .2.(5分) α为锐角,tanα3cosα等于〔A〕A.12B.22C.32D.333.(5分)用计算器计算cos44°的结果〔准确到0.01〕是〔B〕4.(5分)tanα=0.3249,那么α约为〔B〕A.17°B.18°C.19°D.20°5.(40分)求以下各式的值.〔1〕sin45°+cos45°;22=2.〔2〕sin45°cos60°-cos45°;=22×12-22=-2 4.〔3〕cos245°+tan60°cos30°;=2〕23×3=12+32=2.(4〕1-cos30°sin60°+tan30°.=3123+33=3-1.6.(10分)在△ABC中,∠A,∠B都是锐角,且sin A=3,tan B=1,求∠C的度数.解:∵∠A是锐角且sin A=32,∴∠A=60°.∵∠B是锐角且tan B=1,∴∠B=45°.∴∠C=180°-∠A-∠B=75°.二、综合应用〔20分〕7.(10分)在△ABC中,锐角A,B满足〔sin A-3〕2+|cos B-3|=0,那么△ABC是〔D〕A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形8.(10分)如图,△ABC内接于⊙O,AB,CD为⊙O的直径,D E⊥AB于点E,BC=1,AC=3,那么∠D的度数为30° .三、拓展延伸〔10分〕9.(10分)对于钝角α,定义它的三角函数值如下:sinα=sin〔180°-α〕,cosα=-cos〔180°-α〕.〔1〕求sin 120°,cos 120°,sin 150°的值;解:sin120°=sin(180°-120°)=sin60°=3 .Cos120°=-cos(180°-120°)=-cos60°=-1 2 .sin150°=sin(180°-150°)=sin30°=1 2 .〔2〕假设一个三角形的三个内角的比是1∶1∶4,A ,B 是这个三角形的两个顶点,sin A ,cos B 是方程4x 2-mx-1=0的两个不相等的实数根,求m 的值及∠A 和∠B 的大小.解:∵三角形的三个内角的比是1∶1∶4,∴三角形三个内角度数分别为30°,30°,120°.∴∠A =30°或120°,∠B =30°或120°.∴sin A =sin30°=12或sin A =sin120°=,cos B =cos30°=或cos B =cos120°=-12. 又∵sin A ,cos B 是方程4x 2-mx-1=0的两个不相等的实数根, ∴sin A +cos B =4m ,sin A ·cos B =-14. ∴sin A =12,cos B =-12,∴∠A =30°,∠B =120°,m=0.。
浙教版数学九下1.1《锐角三角函数》ppt课件1
tan A a b
A
cos A b c
b
C
c
a
B
探索园地
ΔABC~ΔA’B’C’
B
BC AB
B’ B'C' A' B'
BC B'C'
A
A’ C
C’ AB A' B'
A的对边 斜边
--这个比值和三角板
的大小有关吗?
那这个比值和谁有关呢?
初识三角函数
边之比 定义 表示 公式
60
40
40
20
如图,小红骑车上学路上要依次经过这 样的三个斜坡,你认为哪一个斜坡更陡 些?并说一说你是用什么方法来判别 的?
2、你能用所学知识分别求出30 ° 、45°、 60 °的三角
函数 值吗?
C
思考题:
1、若y=sinA+3,则y取值范围为________ A
B
2、如图,在Rt Δ ABC中, ∠B=90 °,则sinA =____
cosA =______,猜想: sin²A+ cos²A=_____
100 30
B
∠A的对边a 正弦函数
斜边c
∠A的
sinA
sssiiinnn
AAA
===Leabharlann aaa ccc对边 ∠A的邻边b
a
斜边c
余弦函数
cosA
ccc ooosss
AAA
===
bbb ccc
A
∠ A的邻边b
C
∠A的对边a ∠A的邻边b
正切函数
tanA
tttaaannn
AAA
2022年浙教初中数学九下《锐角三角函数的计算》PPT课件4
∠A= 30 0
tan A 3 3
∠A= 30 0 tanA 3 ∠A= 60 0
tanA1∠A= 45 0
谈谈今天的收获
按n 0 . 4 5 1 1
= 2ndf
1
°′″ sin 0 . 4 5 1
2ndf
DMS
26048’51” 26048’51”
即∠ β =26048’51”
例2、一段公路弯道呈弧形,测得弯道 A⌒B两端的距离为200米,A⌒B 的半径为 1000米,求弯道的长(精确到0.1米)
例1 如图,工件上有一V型槽,测得它的上口宽20mm,深19. 2mm.求V型角(∠ACB)的大小(结果精确到10 ).
解 : taA nCA DD 100.52,08 CD 1.2 9
∴∠ACD≈27.50 . ∴∠ACB=2∠ACD≈2×27.50 =550.
∴V型角的大小约550.
一段公路弯道呈圆忽形,测得弯道AB 两端的距离为200m,AB的半径为1000m, 求弯道的长(精确到0.1m)
A
B
知识的运用
1. 已知sinθ=0.82904,求∠θ的大小.
2. 一梯子斜靠在一面墙上,已知梯子长 4m,梯子位于地面上的一端离墙壁2.5m, 求梯子与地面所成的锐角.
真知在实践中诞生
3. 图中的螺旋形由一系列直角 三角形组成.每个三角形都以点O 为一顶点. (1)求∠A0OA1,∠A1OA2,∠A2OA3, 的大小. (2)已知∠An-1OAn,是一个小于200 的角,求n的值.
tanA=56.78 shift tan 5 6 . 7 8 =
tan 键的第二
显示结果
Sin-1=0.9816 =78.991 840 39 coS-1=0.8607 =30.604 730 07 tan-1=0.189 0 =10.702 657 49