物理学习必知:物理中常见的临界条件!一定会考,建议收藏!

合集下载

高中物理必修一 第四章 专题强化 动力学临界问题

高中物理必修一 第四章 专题强化 动力学临界问题
12345678
当汽车向右匀减速行驶时,设小球所受车后壁弹力为0时(临界状态) 的加速度为a0,受力分析如图甲所示. 由牛顿第二定律和平衡条件得: Tsin 37°=ma0, Tcos 37°=mg, 联立并代入数据得: a0=7.5 m/s2.
12345678
当汽车以加速度a1=2 m/s2<a0向右匀减速行驶时,小球受力分析如图 乙所示. 由牛顿第二定律和平衡条件得: T1sin 37°-FN1=ma1, T1cos 37°=mg, 联立并代入数据得: T1=50 N,FN1=22 N, 由牛顿第三定律知,小球对车后壁的压力大小为22 N.
4.解答临界问题的三种方法 (1)极限法:把问题推向极端,分析在极端情况下可能出现的状态,从而 找出临界条件. (2)假设法:有些物理过程没有出现明显的临界线索,一般用假设法,即 假设出现某种临界状态,分析物体的受力情况与题设是否相同,然后再 根据实际情况处理. (3)数学法:将物理方程转化为数学表达式,如二次函数、不等式、三角 函数等,然后根据数学中求极值的方法,求出临界条件.
A.g2
m k
C.g
2m k
√B.g
m 2k
D.2g
m k
12345678
静止时弹簧压缩量 x1=2mk g,分离时 A、B 之间的压 力恰好为零,设此时弹簧的压缩量为 x2,对 B:kx2- mg=ma,得 x2=32mkg,物块 B 的位移 x=x1-x2=m2kg, 由 v2=2ax 得:v=g 2mk,B 正确.
第四章
专题强化
探究重点 提升素养 / 专题强化练
动力学临界问题
学习目标
1.掌握动力学临界问题的分析方法. 2.会分析几种典型临界问题的临界条件.

临界条件的判定与处理

临界条件的判定与处理

质 的飞跃 时的转折条件 叫做 临界条 件。出现 临界条件 时对应的物理 状态即为临界状态 ,临界状 态可以理解 为“ 好怎 么样 …” 者“ 好不 怎么样 …” 解决这 恰 或 恰 要
类临界问题 , 关键就是找 出临界条件 。 有些题 目考查 的 临界条件暴露的较为明显 ,不难 由题意推 出临界点所 需要 的条件 , 但往往有些题 目的临界条 件较为隐 敝, 不

例2 两绳系一质 量为0O k 的 .lg 物体 刚 好 滑 出 小 出 或 不 能 滑 物体 到达 小 车另 一 端 生 滑出 时 速 度刚 好 与车 速 度 小 球 , 杆 夹 角 分 别 为 4 。 和 3 ' , 与 5 0
如 图 2 示 , = m, 问 角 速 度 在 什 所 Lc2 轻 杆 拉 着 小 球 做 杆 对 小球 无 作 用力 时 两绳始终张紧? 圆 周 运 动 通 过 最 力 或 支 持 拉 的速度 为临界速度 , 把 么范同内, 高点的受力情况 力 小 球 的速 度 与 临界 速 分 析 这 类 问题 虽 然 没 有 出 现 度进行 比较 明显的临界条件 ,但在物理 变化过 C 在 有 界 磁 场 中做 粒 子 运 动到 磁 场 边界 匀 速 圆 周 运 动 带 出 或 不 能 射 时速 度 与磁 场 边 界 相 程 中可能会 出现临界 问题 ,我们可 图2 电粒 子 能 否 射 出 出 射 切 以采用假设法 磁场 假设一 : 如果角速度太小 , 则AC 光 从 光 密 介 质 射 折射 或 全 反 绳张紧但B 绳会松驰 C 向光 疏 介 质 时 发 射 入射角等 于临界角 生 全 反射 假设二 : 果角 速度太大 , 如 小球 会飞起来 , C 则B 绳
【。 l
相 同
翻蟹豳建钮 丽豳

临界问题

临界问题
A = 1 + µ sin(θ + ϕ ), 其中 ϕ=arcsin
2
1 1+µ 2
F
而Amax = 1+µ , 与此相对应的角为
2
θ=90 0 -arcsin
1 1+µ 2
≈ 21.8 0
F 1+µ 2 所以加速度的最大值为 :a max = − µg ≈ 6.8m / s 2 M 平距离为: 此时木块离定滑轮的水 平距离为: s = h cot θ ≈ 25cm
运动到某一极端位置 物体刚好滑出(滑不出) 物体刚好滑出(滑不出)小车 两个物体距离最近(远) 两个物体距离最近( 动与静的分界点 刚好不上(下)滑;保持物体 刚好不上( 静止在斜面上的最小水平推 力;拉动物体的最小力 关于绳的临界问题 绳刚好被拉直 绳刚好被拉断
刚好运动到某一点(“最高点”)到达该点时速度为零 刚好运动到某一点( 最高点”
Fm
故系统的加速度 a=F/(M+m)=2.5 m/s2 小结:存在静摩擦的连接系统,当系统外力大 小结:存在静摩擦的连接系统, 擦力时, 于最大静摩 擦力时,物体间不一定有相对滑 动。 相对滑动与相对静止的临界条件是: 相对滑动与相对静止的临界条件是: 静摩擦力达最大值
课 后 练 习
如图所示,质量均为M的两个木块A 在水平力F 如图所示,质量均为M的两个木块A、B在水平力F的 作用下,一起沿光滑的水平面运动, 作用下,一起沿光滑的水平面运动,A与B的接触面 光滑,且与水平面的夹角为60 60° 求使A 光滑,且与水平面的夹角为60°,求使A与B一起运 动时的水平力F的范围。 动时的水平力F的范围。 解:当水平力F为某一值时, 当水平力F为某一值时, 恰好使A AB面向上滑动 面向上滑动, 恰好使A沿AB面向上滑动, 即物体A当水平推力F很小时, ,受力分析如图 即物体A当水平推力F很小时,A与B一起作匀加速 分析: 对地面的压力恰好为零, 分析: 对地面的压力恰好为零 运动,当 = 2M 运动, 对整体: F较大时, ① 对整体: F较大时,B对A的弹力竖直向上的分力 a N 等于A的重力时,地面对A的支持力为零,此后, 等于A的重力时,地面对A的支持力为零,此后, 隔离A 隔离A: NA = 0 ② F 物体A将会相对B滑动。显而易见, 物体A将会相对B滑动。显而易见,本题的临界 o N cos 60 − M为某一值时,恰好使A沿AB° g = 0 ③ ,恰好使A ﹚AB面 水平力F 面 条件就是水平力F为某一值时 60° G F − N ,即物体A对地面的压力恰好为零. sin60o =A对地面的压力恰好为零. a 向上滑动,即物体 M ④ 向上滑动

高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题在应用牛顿运动定律解决动力学问题时,会出现一些临界或极值条件的标志: 1.若题目中出现“恰好”“刚好”等字眼,明显表示过程中存在临界点.2.若题目中有“取值范围”“多长时间”“多大距离”等词语,表明过程中存在着“起止点”,而这些“起止点”往往就对应临界状态.3.若题目中有“最大”“最小”“至多”“至少”等字眼,表明过程中存在着极值,而极值点往往是临界点.4.若题目要求“最终加速度”“稳定加速度”等即是求收尾加速度或收尾速度. 一、接触与分离的临界条件物体分离的临界条件是相互作用力由原来的不为零变为零.因此解答此类问题,应该对原状态下研究对象的受力和运动状态进行分析,由牛顿第二定律或平衡条件列方程,令其中相互作用的弹力为零解得临界状态的加速度,以临界加速度为依据分析各种状态下物体的受力情况及运动状态的变化.质量为m 、半径为R 的小球用长度也为R 的轻质细线悬挂在小车车厢水平顶部的A 点,现观察到小球与车顶有接触,重力加速度为g ,则下列判断正确的是( )A .小车正向右做减速运动,加速度大小可能为3gB .小车正向左做减速运动,加速度大小可能为33gC .若小车向右的加速度大小为23g ,则车厢顶部对小球的弹力为mgD .若细线张力减小,则小球一定离开车厢顶部 [解析] 如图所示,小球恰好与车顶接触的临界状态是车顶对小球的弹力恰为零,故临界加速度a 0=g tan θ,由线长等于小球半径可得,θ=60°,a 0=3g .小球与车顶接触时,小车具有向右的加速度,加速度大小a ≥3g ,A 、B 项错;当小车向右的加速度大小a =23g 时,ma F N +mg=tan θ,解得F N =mg ,C 项正确;细线张力F T =ma sin θ,小球与车顶接触的临界(最小)值F Tmin =2mg ,当张力的初始值F T >2mg 时,张力减小时只要仍大于或等于临界值,小球就不会离开车厢顶部,D 项错误.[答案] C二、绳子断裂与松弛的临界条件绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T =0.如图所示,小车内固定一个倾角为θ=37°的光滑斜面,用一根平行于斜面的细线系住一个质量为m =2 kg 的小球,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,则:(1)当小车以a 1=5 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?(2)当小车以a 2=20 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?[解析] 本题中存在一个临界状态,即小球刚好脱离斜面的状态,设此时加速度为a 0,对小球受力分析如图甲所示.将细线拉力分解为水平x 方向和竖直y 方向两个分力,则得到F cos θ=ma 0 F sin θ-mg =0a 0=g tan θ=403m/s 2.(1)a 1=5 m/s 2<a 0,这时小球没有脱离斜面,对小球受力分析如图乙所示,由牛顿第二定律得 F cos θ-F N sin θ=ma 1 F sin θ+F N cos θ-mg =0 解得F =20 N ,F N =10 N.(2)a2=20 m/s2>a0,这时小球脱离斜面,设此时细线与水平方向之间的夹角为α,对小球受力分析如图丙所示,由牛顿第二定律得F cos α=ma2F sin α=mg两式平方后相加得F2=(ma2)2+(mg)2解得F=(ma2)2+(mg)2=20 5 N.[答案](1)20 N(2)20 5 N三、相对滑动的临界条件两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值,并且还要考虑摩擦力方向的多样性.(多选)如图所示,小车内有一质量为m的物块,一轻质弹簧两端与小车和物块相连,处于压缩状态且在弹性限度内,弹簧的劲度系数为k,形变量为x,物块和小车之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,运动过程中,物块和小车始终保持相对静止,则下列说法正确的是()A.若μmg小于kx,则小车的加速度方向一定向左B.若μmg小于kx,则小车的加速度最小值为a=kx-μmgm,且小车只能向左加速运动C.若μmg大于kx,则小车的加速度方向可以向左也可以向右D.若μmg大于kx,则小车的加速度最大值为kx+μmgm,最小值为kx-μmgm[解析]若μmg小于kx,而弹簧又处于压缩状态,则物块所受弹簧弹力和静摩擦力的合力水平向左,即小车的加速度一定向左,A对;由牛顿第二定律得kx-F f=ma,当F f=μmg时,加速度方向向左且最小值为a min=kx-μmgm,随着加速度的增加,F f减小到零后又反向增大,当再次出现F f=μmg时,加速度方向向左达最大值a max =kx+μmgm,但小车可向左加速,也可向右减速,B错;若μmg大于kx,则物块所受弹簧弹力和静摩擦力的合力(即加速度)可能水平向左,也可能水平向右,即小车的加速度方向可以向左也可以向右,C对;当物块的合外力水平向右时,加速度的最大值为μmg-kxm,物块的合外力水平向左时,加速度的最大值为μmg+kxm,则小车的加速度最大值为kx+μmgm,最小值为0,D错.[答案]AC四、加速度或速度最大的临界条件当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度.当出现加速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值.(多选)(2016·潍坊模拟)如图所示,一个质量为m 的圆环套在一根固定的水平长直杆上,环与杆的动摩擦因数为μ,现给环一个水平向右的恒力F ,使圆环由静止开始运动,同时对环施加一个竖直向上、大小随速度变化的作用力F 1=kv ,其中k 为常数,则圆环运动过程中( )A .最大加速度为FmB .最大加速度为F +μmgmC .最大速度为F +μmgμkD .最大速度为mgk[解析] 当F 1<mg 时,由牛顿第二定律得F -μ(mg -kv )=ma ,当v =mg k 时,圆环的加速度最大,即a max =Fm ,选项A 正确,B 错误;圆环速度逐渐增大,F 1=kv >mg ,由牛顿第二定律得F -μ(kv -mg )=ma ,当a =0时,圆环的速度最大,即v max =F +μmgμk,选项C 正确,D 错误. [答案] AC五、数学推导中的极值问题将物理过程通过数学公式表达出来,根据数学表达式解出临界条件,通常用到三角函数关系.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2. (1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得: L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为: F min =1335N. [答案] (1)3 m/s 2 8 m/s (2)30°1335N 六、滑块一滑板模型中的临界问题在滑块—滑板模型中,若两者一起运动时优先考虑“被动”的“弱势”物体,该物体通常具有最大加速度,该加速度也为系统一起运动的最大加速度,否则两者将发生相对运动.(2016·湖北荆州模拟)物体A 的质量m 1=1 kg ,静止在光滑水平面上的木板B 的质量为m 2=0.5 kg 、长l =1 m ,某时刻A 以v 0=4 m/s 的初速度滑上木板B 的上表面,为使A不至于从B 上滑落,在A 滑上B 的同时,给B 施加一个水平向右的拉力F ,若A 与B 之间的动摩擦因数μ=0.2,试求拉力F 应满足的条件.(忽略物体A 的大小)[解析] 物体A 滑上木板B 以后,做匀减速运动, 加速度a A =μg ①木板B 做加速运动,有F +μm 1g =m 2a B ②物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v t ,则v 20-v 2t 2a A =v 2t2a B+l ③ 且v 0-v t a A =v ta B④ 由③④式,可得a B =v 202l-a A =6 m/s 2,代入②式得F =m 2a B -μm 1g =0.5×6 N -0.2×1×10 N =1 N ,若F <1 N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1 N. 当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才能不会从B的左端滑落.即有:F =(m 1+m 2)a , μm 1g =m 1a ,所以F =3 N ,若F 大于3 N ,A 就会相对B 向左端滑下. 综上,力F 应满足的条件是1 N ≤F ≤3 N. [答案] 1 N ≤F ≤3 N1.(2016·西安质检)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为2m和m,各接触面间的动摩擦因数均为μ.重力加速度为g.要使纸板相对砝码运动,所需拉力的大小至少应大于()A.3μmg B.4μmg C.5μmg D.6μmg解析:选D.纸板相对砝码恰好运动时,对纸板和砝码构成的系统,由牛顿第二定律可得:F-μ(2m+m)g=(2m +m)a,对砝码,由牛顿第二定律可得:2μmg=2ma,联立可得:F=6μmg,选项D正确.2.(多选)(2016·湖北黄冈模拟)如图甲所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态,现用竖直向上的拉力F作用在物体上,使物体开始向上做匀加速运动,拉力F与物体位移x的关系如图乙所示(g=10 m/s2),下列结论正确的是()A.物体与弹簧分离时,弹簧处于原长状态B.弹簧的劲度系数为750 N/mC.物体的质量为2 kgD.物体的加速度大小为5 m/s2解析:选ACD.物体与弹簧分离时,弹簧的弹力为零,轻弹簧无形变,所以选项A正确;从题图乙中可知ma =10 N,ma=30 N-mg,解得物体的质量为m=2 kg,物体的加速度大小为a=5 m/s2,所以选项C、D正确;弹簧的劲度系数k=mgx0=200.04N/m=500 N/m,所以选项B错误.3.(多选)如图所示,质量均为m的A、B两物块置于光滑水平地面上,A、B接触面光滑,倾角为θ,现分别以水平恒力F作用于A物块上,保持A、B相对静止共同运动,则下列说法中正确的是()A.采用甲方式比采用乙方式的最大加速度大B.两种情况下获取的最大加速度相同C.两种情况下所加的最大推力相同D.采用乙方式可用的最大推力大于甲方式的最大推力解析:选BC.甲方式中,F最大时,A刚要离开地面,A受力如图丙所示,则F N1cos θ=mg①对B:F′N1sin θ=ma1②由牛顿第三定律可知F′N1=F N1③乙方式中,F 最大时,B 刚要离开地面,B 受力如图丁所示,则F N2cos θ=mg ④ F N2sin θ=ma 2⑤由①③④可知F N2=F N1=F N1′⑥由②⑤⑥式可得a 2=a 1,对整体易知F 2=F 1, 故选项B 、C 正确,选项A 、D 错误.4.如图所示,水平桌面光滑,A 、B 物体间的动摩擦因数为μ(可认为最大静摩擦力等于滑动摩擦力),A 物体质量为2m ,B 和C 物体的质量均为m ,滑轮光滑,砝码盘中可以任意加减砝码.在保持A 、B 、C 三个物体相对静止共同向左运动的情况下,B 、C 间绳子所能达到的最大拉力是( )A.12μmg B .μmg C .2μmg D .3μmg 解析:选B.因桌面光滑,当A 、B 、C 三者共同的加速度最大时,F BC =m C a 才能最大.这时,A 、B 间的相互作用力F AB 应是最大静摩擦力2μmg ,对B 、C 整体来讲:F AB =2μmg =(m B +m C )a =2ma ,a =μg ,所以F BC =m C a =μmg ,选项B 正确.5.如图所示,用细线将质量为m 的氢气球拴在车厢地板上的A 点,此时细线与水平方向成θ=37°角,气球与固定在水平车顶上的压力传感器接触,小车静止时,细线恰好伸直但无弹力,压力传感器的示数为气球重力的12.重力加速度为g ,sin37°=0.6,cos 37°=0.8.现要保持细线方向不变而传感器示数为零,下列方法中可行的是( )A .小车向右加速运动,加速度大小为12gB .小车向左加速运动,加速度大小为12gC .小车向右减速运动,加速度大小为23gD .小车向左减速运动,加速度大小为23g解析:选C.小车静止时细线无弹力,气球受到重力mg 、空气浮力f 和车顶压力F N ,由平衡条件得f =mg +F N =32mg ,即浮力与重力的合力为12mg ,方向向上.要使传感器示数为零,则细线有拉力F T ,气球受力如图甲所示,由图乙可得12mg ma =tan 37°,小车加速度大小为a =23g ,方向向左.故小车可以向左做加速运动,也可以向右做减速运动,C 选项正确.6.如图所示,质量为m =1 kg 的物体,放在倾角θ=37°的斜面上,已知物体与斜面间的动摩擦因数μ=0.3,最大静摩擦力等于滑动摩擦力,取g =9.8 m/s 2,sin 37°=0.6,cos 37°=0.8.要使物体与斜面相对静止且一起沿水平方向向左做加速运动,则其加速度多大?解析:当物体恰不向下滑动时,受力分析如图甲所示 F N1sin 37°-F f1cos 37°=ma 1F f1sin 37°+F N1cos 37°=mg F f1=μF N1解得a 1=3.6 m/s 2当物体恰不向上滑动时,受力分析如图乙所示F N2sin 37°+F f2cos 37°=ma2F N2cos 37°=mg+F f2sin 37°F f2=μF N2解得a2=13.3 m/s2因此加速度的取值范围为3.6 m/s2≤a≤13.3 m/s2.答案:3.6 m/s2≤a≤13.3 m/s2。

圆周运动的临界问题-高考物理复习

圆周运动的临界问题-高考物理复习

力提供向心力,有μmg=mω2lsin θ,解得 ω= 4gl,可得
当 ω≤ 4gl时绳子无张力,ω> 4gl时绳子有张力,故 A、B 正确;圆台对木箱恰好无支持力时,有 mgtan θ=mω2lsin θ,
解得 ω= 53gl ,即当 ω≥ 故 C 正确,D 错误。
53gl 时,圆台对木箱无支持力,
目录
研透核心考点
2.解题技巧 (1)物体通过圆周运动最低点、最高点时,利用合力提供向心力列牛顿第二定律 方程。 (2)物体从某一位置到另一位置的过程中,用动能定理找出两处速度关系。 (3)注意:求对轨道的压力时,转换研究对象,先求物体所受支持力,再根据牛 顿第三定律求出压力。
目录
研透核心考点
2.(2024·北京丰台高三期中)如图5甲所示,小球在竖直放置的光滑圆形管道内做 圆周运动。当小球运动到圆形管道的最高点时,管道对小球的弹力与过最高点 时小球速度的平方的关系如图乙所示(取竖直向下为正方向)。MN为通过圆心的 一条水平线。不计小球半径、管道的粗细,重力加速度为g。下列说法正确的
0.5 kg的小球(可视为质点),用长为0.4 m的轻绳拴着在
竖直平面内做圆周运动,g=10 m/s2,下列说法不正确
的是( D )
A.小球要做完整的圆周运动,在最高点的速度至少为 2 m/s
图3
B.当小球在最高点的速度为 4 m/s 时,轻绳拉力为 15 N
C.若轻绳能承受的最大张力为 45 N,小球的最大速度不能超过 4 2 m/s
目录
研透核心考点
1.(多选)如图2所示,在水平圆台的转轴上的O点固定一根结实的细绳,细绳长度为l, 细绳的一端连接一个小木箱,木箱里坐着一只玩具小熊,此时细绳与转轴间的夹 角为θ=53°,且处于恰好伸直的状态。已知小木箱与玩具小熊的总质量为m,木箱 与水平圆台间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,sin 53°=0.8, cos 53°=0.6,重力加速度为g,不计空气阻力。在可调速电动机的带动下,让水

二 小力学专题8 临界极值问题—2021届高三物理一轮复习讲义

二  小力学专题8   临界极值问题—2021届高三物理一轮复习讲义

专题8 临界极值问题1. 力学“临界极值问题”的一般方法:(1)临界条件相当于是题目中的隐含条件,是物体从一个状态到另一个状态转折的一个中间状态;(2)常见的有5种临界,需要熟练掌握出现这些临界状态时,对应的临界条件是那些。

2. 常见的五种临界点 (1)共速临界:①在相遇追及问题中,涉及能否追上、相距最远、最近时,临界条件即为二者速度相等; ②传送带、滑块木板问题中,摩擦力发生突变的时刻也是共速的时刻。

(2)变速临界:①变加速运动中,a=0,速度最大或者最小; ②变速运动中,v=0,位移最大。

(3)松断临界: ①绳子松弛T=0; ②断裂T=Tmax 。

(4)分离临界:①分离瞬间:相互0F N (隔离法); ②分离瞬间:各自a 相同。

(5)滑动临界:①刚好滑动瞬间,相互之间的静摩擦达到最大静摩擦即:f=fm 。

拓展:(1)整体法与隔离法;将AB 之间的摩擦为最大静摩擦作为已知条件,利用整体法与隔离法列方程求解;(2)外力分配公式:AB 仍然看成相对静止,求出f 静,再利用f 静的范围f 静≤fmax ,进行求解;常用外力分配公式大大简化计算。

小结论:滑块木板模型中 1μ< 2μ,达到共速后不会相对滑动,无论在水平面还是斜面都适用( 1μ表示地面与木板之间的摩擦因数, 2μ表示滑块与木板之间的摩擦因数)。

3. 力学极值问题①物理方法:临界状态法,图解法;②数学方法:三角函数法、二次函数法、不等式法、图像法等;()ϕθθθ++=+sin b a bcos asin 22 (其中abtan =ϕ) ;由sc+cs 推导 ③逻辑方法:极限法、极值法、特殊值法。

例1. 倾角为θ=45°、外表面光滑的楔形滑块M 放在水平面AB 上,滑块M 的顶端O 处固定一细线,细线的另一端拴一小球,已知小球的质量为m =55kg ,当滑块M 以a =2g 的加速度向右运动时,则细线拉力的大小为(取g =10 m/s 2)( )A .10 NB .5 N C. 5 ND .10 N例2. 如图所示,木块A的质量为m,木块B的质量为M,叠放在光滑的水平面上,A、B 之间的滑动摩擦因数为μ,若最大静摩擦力等于滑动摩擦力,重力加速度为g.现用水平力F作用于A,则保持A、B相对静止的条件是F不超过() A.μmg B.μMg C.μmg(1+ m/M ) D.μMg(1+ M/m )变式:若地面摩擦因素为μ',在F的作用下AB一起匀加速运动,求F的最大值?例3. 如图所示,梯形物体的质量分别为M和m,斜面的倾角为θ,接触面都光滑。

动力学连接体问题和临界问题(解析版)—2024-2025学年高一物理(人教版2019必修第一册)

动力学连接体问题和临界问题1、动力学中的连接体模型,学会使用整体法与隔离法分析。

2、掌握动力学的临界分析。

一、动力学的连接体问题1.连接体:两个或两个以上相互作用的物体组成的具有相同加速度的整体叫连接体.如几个物体叠放在一起,或并排挤放在一起,或用绳子、细杆等连在一起,在求解连接体问题时常用的方法为整体法与隔离法.2.整体法:把整个连接体系统看做一个研究对象,分析整体所受的外力,运用牛顿第二定律列方程求解.其优点在于它不涉及系统内各物体之间的相互作用力.3.隔离法:把系统中某一物体(或一部分)隔离出来作为一个单独的研究对象,进行受力分析,列方程求解.其优点在于将系统内物体间相互作用的内力转化为研究对象所受的外力,容易看清单个物体(或一部分)的受力情况或单个过程的运动情形.4.整体法与隔离法的选用求解各部分加速度都相同的连接体问题时,要优先考虑整体法;如果还需要求物体之间的作用力,再用隔离法.求解连接体问题时,随着研究对象的转移,往往两种方法交替运用.一般的思路是先用其中一种方法求加速度,再用另一种方法求物体间的作用力或系统所受合力.无论运用整体法还是隔离法,解题的关键还是在于对研究对象进行正确的受力分析.二、动力学的临界问题1.临界问题:某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态.2.关键词语:在动力学问题中出现的“最大”“最小”“刚好”“恰能”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件.3.临界问题的常见类型及临界条件:(1)接触与脱离的临界条件:两物体相接触(或脱离)的临界条件是弹力为零.(2)相对静止或相对滑动的临界条件:静摩擦力达到最大静摩擦力.(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断与不断的临界条件是实际张力等于它所能承受的最大张力,绳子松弛的临界条件是绳上的张力为零.(4)加速度最大与速度最大的临界条件:当所受合力最大时,具有最大加速度;当所受合力最小时,具有最小加速度.当出现加速度为零时,物体处于临界状态,对应的速度达到最大值或最小值.4.解答临界问题的三种方法(1)极限法:把问题推向极端,分析在极端情况下可能出现的状态,从而找出临界条件.(2)假设法:有些物理过程没有出现明显的临界线索,一般用假设法,即假设出现某种临界状态,分析物体的受力情况与题设是否相同,然后再根据实际情况处理.(3)数学法:将物理方程转化为数学表达式,如二次函数、不等式、三角函数等,然后根据数学中求极值的方法,求出临界条件.题型1动力学的连接体问题[例题1](2023秋•密云区期末)如图是采用动力学方法测量空间站质量的原理图。

专题五-牛顿第二定律中的临界和极值问题

专题五牛顿运动定律的应用——临界和极值问题一、概念(1)临界问题:某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态。

(2)极值问题:在满足一定的条件下,某物理量出现极大值或极小值的情况。

二、关键词语在动力学问题中出现的“最大”、“最小”、“刚好”、“恰能”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件。

有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,也可能不出现临界问题,解答这类问题一般用假设法。

三、常见类型动力学中的常见临界问题主要有三类:一是弹力发生突变时接触物体间的脱离与不脱离的问题;二是绳子的绷紧与松弛问题;三是摩擦力发生突变的滑动与不滑动问题。

四、解题关键解决此类问题的关键是对物体运动情况的正确描述,对临界状态的判断与分析,找出处于临界状态时存在的独特的物理关系,即临界条件。

常见的三类临界问题的临界条:1、相互接触的两个物体将脱离的临界条件是:相互作用的弹力为零。

2、绳子松弛的临界条件是:绳子的拉力为零。

3、存在静摩擦的系统,相对滑动与相对静止的临界条件是:静摩擦力达到最大值。

五、例题解析【例题1】质量为0.2kg的小球用细线吊在倾角为θ=60°的斜面体的顶端,斜面体静止时,小球紧靠在斜面上,线与斜面平行,如图所示,不计摩擦,求在下列三种情况下,细线对小球的拉力(取g=10 m/s2)(1) 斜面体以23m/s2的加速度向右加速运动;(2) 斜面体以43m/s2,的加速度向右加速运动;【例题2】如图所示,轻绳AB与竖直方向的夹角θ=37°,绳BC水平,小球质量m=0.4 kg,取g=10m/s2。

试求:(1)小车以a1=2.5m/s2的加速度向右做匀加速运动时,绳AB的张力是多少?(2)小车以a2=8m/s2的加速度向右做匀加速运动时,绳AB的张力是多少?【例题3】如图所示,质量为2kg 的m1和质量为1kg 的m2两个物体叠放在一起,放在水平面,m1与m2、m1与水平面间的动摩擦因数都是0.3,现用水平拉力F拉m1,使m 1 和m 2一起沿水平面运动,要使m 1 和m 2之间没有相对滑动,水平拉力F 最大为多大?六、巩固练习【练习1】一个质量为m=0.1kg 的小球,用细线吊在倾角a =37°的斜面顶端,如图所示。

临界问题分析法

临界问题的分析方法孟德飞纵观近年来各省高考物理试题,不难发现,各省都越来越重视考查学生对解决物理问题方法的掌握情况。

例如,物理模型法、整体法与隔离法、等效法、图像法、临界问题分析法等。

在问题练习中,同学们要重视解题过程的思维方法训练。

如果同学们能够熟练掌握各种解题方法的特点和技巧,对物理学习就起到事半功倍的效果。

透析近年的高考考题,本文就解决常见的临界问题解题方法进行分析和总结。

临界状态就是指物理现象从一种状态变化成另一种状态的中间过程,这时存在着一个过渡的转折点。

临界问题的分析对象正是临界状态。

与临界状态相关的物理条件则称为临界条件。

临界条件是解决临界问题的突破点,在物理解题中起着举足轻重的作用,解答临界问题的关键是找准临界条件。

临界条件一般是隐藏着的,需要同学们仔细分析题目才能找出来。

但它也有一定规律:题干含有“恰好”、“刚好”、“最小”、“最大”、“至少”、“最多”等词语时,该问题一般是临界问题。

审题时,要抓住这些关键的词语认真分析找出临界条件。

临界问题一般解题模式为:1.找出临界状态及临界条件;2.列出临界点的规律;3.解出临界量;4.分析临界量列出公式。

下面就一些典型试题进行分析总结:一、动力学中的临界问题分析方法动力学中的临界问题比较普遍,例如“物体恰好离开地面”、“物体速度达到最大值时”、“绳刚好碰到钉子”、“物体刚好通过最高点”、“两物体刚好不相撞”、“物体刚好滑出小车”等就是一些题目中常见的临界状态。

相对例题1. 一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M=15kg的重物,重物静止于地面上。

有一质量m=10kg的猴子,从绳的另一端沿绳向上爬,如图所示。

不计滑轮摩擦,在重物不离开地面的条件下,猴子向上爬的最大加速度为(g=10m/s2)()A. 25 m/s2B. 5 m/s2C. 10 m/s2D. 15 m/s2解题方法分析:本题是典型的临界问题,关键词为“在重物不离开地面的条件下”,临界条件为:物体M 不受地面的支持力。

临界(高二三)

一、概念临界问题是物理现象中的常见现象。

所谓临界状态就是物理现象从一种状态变化成另一种状态的中间过程,临界状态通常具有以下特点:瞬时性、突变性、关联性、极值性等。

临界状态往往隐藏着关键性的隐含条件,是解题的切入口,在物理解题中起举足轻重的作用。

求解临界问题通常有如下方法:极限法、假设法、数学分析法(包括解析法、几何分析法等)、图象法等。

极限法:在题目中如出现“最大”、“最小”、“刚好”、“要使”等词语时,一般隐含着临界问题。

处理问题时,一般把物理问题(或过程)设想为临界状态,从而使隐藏着的条件暴露出来,达到求解的目的。

假设法:有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,解决办法是采用假设法,把物理过程按变化的方向作进一步的外推,从而判断可能出现的情况。

数学分析法;是一种很理性的分析方式,把物理现象转化成数学语言,用数学工具加以推导,从而求出临界问题,用这种分析方法一定要注意理论分析与物理实际紧密联系起来,切忌纯数学理论分析。

图象法:将物理过程的变化规律反映到物理图象中,通过图象分析求出临界问题。

下面列举的是高中物理各知识系统中典型的临界问题。

一、振动和波中的临界问题例1、把一根长度为10cm 的轻弹簧下端固定,上端连一个质量为m 的物块P ,在P 的上面再放一个质量也是m 的物块Q ,系统静止后,弹簧的长度为6cm ,如图1所示。

如果迅速撤去Q ,物块P 将在竖直方向做简谐运动,此后弹簧的最大长度是多少?分析:由题意可知在撤去Q 后物块P 将在竖直方向做简谐运动,即以平衡位置为中心做往复运动,找到平衡位置和确定振动的振幅是求解问题的关键:平衡位置在重力和弹力平衡的位置,由题设条件可知,平衡位置在弹簧长度为8cm 的位置;P 刚开始运动时,弹簧的长度是6cm ,可知振幅是2cm 。

根据对称性可知弹簧的最大长度为10cm 。

例2、质量分别为2A m kg =和3B m kg =的两物块A 、B 用轻弹簧相连后竖直放在水平面上,现用力F 把物块向下压而使之处于静止状态,如图2所示,然后突然撤去外力,要使物块B 能离开地面,则压力F 至少要为多大(设该过程在弹性限度内进行)?分析:先假设B 是不动的,则撤去压力F 后,A 将在竖直平面内做简谐运动,平衡位置在弹簧压缩量为0A m g x k =的位置;若要物体B 能被拉离地面,则弹簧至少要被拉长B m g x k=,可见A 物体的振幅为: 0()B A m m g A x x k+=+=,所以压力F 至少为: ()50B A F kA m m g N ==+=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理学习必知:物理中常见的临界条件!一定会考,建议收
藏!
物理,作为一个理科代表,令很多学生感到头疼。

其实,每个学科知识点都很多,但是都有他们独特的属性,而且很多知识有相同的属性,把相同的知识点归类,你就会发现,其实,物理也挺“平易近人”的。

下面就为大家总结了,物理学中最常见、最易考的8个临界点。

1
1
一、刚好不相撞
两物体最终速度相等或者接触时速度相等。

2
二、刚好不分离
两物体仍然接触、弹力为零,且速度和加速度相等。

3
刚好不滑动
1.转盘上“物体刚好发生滑动”:向心力为最大静摩擦力。

2.斜面上物体刚好不上(下)滑:静摩擦力为最大静摩擦力,物体平衡。

3.保持物体静止在斜面上的最小水平推力: 静摩擦力为最大静摩擦力,物体平衡。

4.拉动物体的最小力:静摩擦力为最大静摩擦力,物体平衡。

4
运动到某一极端位置
1.绳端物体刚好通过最高点(等效最高点):物体运动到最高点时重力(等效重力)等于向心力,速度大小为(gR)1/2[(gˊR)1/2].
2.杆端物体刚好通过最高点:物体运动到最高点时速度为零。

3.刚好运动到某一点:到达该点时速度为零。

4.物体刚好滑出(不滑出)小车:物体滑到小车一端时与小车速度刚好相等。

5.粒子刚好飞出(飞不出)两个极板间的匀强电场:粒子沿极板的边缘射出(粒子运动轨迹与极板相切)。

6.粒子刚好飞出(飞不出)磁场:粒子运动轨迹与磁场边界相切。

5
速度达到最大或最小时:物体所受的合外力为零,即加速度为零
1.机车启动过程中速度达最大匀速行驶:牵引力和阻力平衡。

2.导体棒在磁场中做切割运动时达稳定状态:感应电流产生的安培力和其他力的合力平衡。

6
某一量达到极大(小)值
1.两个物体距离最近(远):速度相等。

2.圆形磁场区的半径最小:磁场区是以公共弦为直径的圆。

3.使通电导线在倾斜导轨上静止的最小磁感应强度:安培力平行于斜面。

4.穿过圆形磁场区域时间最长:入射点和出射点分别为圆形直径两端点。

7
绳的临界问题
1.绳刚好被拉直:绳上拉力为零。

2.绳刚好被拉断:绳上的张力等于绳能承受的最大拉力。

3.绳子突然绷紧:速度突变,沿绳子径向方向的速度减为零。

8
运动的突变
1.天车下悬挂重物水平运动,天车突停:重物从直线运动转为圆周运动,绳拉力增加。

2.绳系小球摆动,绳碰到(离开)钉子:圆周运动半径变化,拉力突变。

3.物体运动到曲面和水平面的交界处:对支持面的压力突变。

4.稳定轨道上运行的卫星突然加速或减速:卫星变轨,做离心运动或近心运动。

作为教育者,我们愿意把毕生的知识都传授给孩子,教他们如何快速记忆,如何提升思维,教给他们做题的思路,而不仅仅是告诉他们每一道题的答案。

爱孩子,就要让他们学到正确的学习方法,让他们拥有一个聪明的头脑和一颗美丽的心。

正在为孩子学习而感到烦恼的各位家长,可以加我的私人微信:460468551,有任何问题都可以咨询我,我会一一解答。

另外本人已在互联网上开办了增强孩子记忆力与提高孩子学习成绩的免费公益课,大家可以适时收看。

相关文档
最新文档