热重分析

合集下载

5%热失重温度

5%热失重温度

5%热失重温度
热分析技术是一种分析化学方法,旨在研究物质的热力学性质,例如热稳定性和分解动力学。

热重分析(TGA)是热分析技术中最常用的方法之一,其基本原理是在控制的加热或冷却条件下,测量样品的质量变化。

在温度达到一定程度时,样品会发生热失重,也就是样品中的质量开始下降。

这个温度被称为“5%热失重温度”。

5%热失重温度,也被称为“失重温度”,是指样品在加热过程中,其质量下降了5%的温度。

这个温度是样品热分解或热失重开始的温度,因此可以用来评估样品的热稳定性。

在热重分析实验中,失重温度通常是通过绘制样品质量-温度曲线来确定的。

5%热失重温度对于材料的性能和应用具有重要意义。

对于许多材料来说,温度升高会导致它们的热分解和氧化,从而影响它们的性能和使用寿命。

例如,聚合物在高温下容易脆化和分解;金属材料的机械性能和耐蚀性随着温度的升高而降低。

通过测量失重温度,可以评估材料在实际使用过程中的稳定性,选择合适的使用条件,提高材料性能和延长使用寿命。

与其他热性质参数相比,如热分解温度、热解吸能等,5%热失重温度更符合实际应用需求。

因为它反映的是材料在实际使用过程中的热稳定性,对于材料的设计和开发具有实用价值。

同时,由于5%失重温度可以在相对较低的温度下测量,因此更容易操作和重复。

在工业生产中,失重温度也是一个重要的质量控制指标,可以用来监测材料的稳定性和一致性。

材料的热重分析实验报告

材料的热重分析实验报告

材料的热重分析实验报告一、实验目的热重分析(Thermogravimetric Analysis,TGA)是一种在程序控制温度下测量物质质量与温度关系的技术。

本次实验的目的是通过热重分析研究材料的热稳定性、组成成分以及热分解过程,为材料的性能评估、质量控制和研发提供重要的依据。

二、实验原理热重分析的基本原理是在程序升温或恒温的条件下,测量样品的质量随温度或时间的变化。

当样品发生物理变化(如挥发、升华、吸附等)或化学变化(如分解、氧化、还原等)时,会导致质量的损失或增加。

通过对热重曲线(TG 曲线)的分析,可以确定样品的起始分解温度、终止分解温度、质量损失率等参数,进而推断样品的组成和热稳定性。

三、实验仪器与材料1、仪器:热重分析仪(型号:_____)2、材料:待测试样(名称:_____)四、实验步骤1、样品制备将待测试样研磨成粉末状,以确保样品的均匀性和良好的热传导性能。

准确称取一定质量(约_____mg)的样品,放入坩埚中。

2、仪器调试打开热重分析仪,设置实验参数,如升温速率(_____℃/min)、温度范围(_____℃至_____℃)、气氛(氮气或空气)等。

进行空白实验,以扣除仪器本身的基线漂移和误差。

3、样品测试将装有样品的坩埚放入热重分析仪的加热炉中,启动实验程序。

仪器自动记录样品的质量随温度的变化数据,生成热重曲线(TG曲线)和微商热重曲线(DTG 曲线)。

4、实验结束实验完成后,待仪器冷却至室温,取出坩埚。

关闭仪器和相关设备,清理实验台面。

五、实验结果与分析1、热重曲线(TG 曲线)分析观察 TG 曲线的形状和趋势,确定样品的质量损失阶段。

计算样品在不同温度区间的质量损失率。

例如,样品在温度区间_____℃至_____℃之间发生了明显的质量损失,质量损失率约为_____%。

2、微商热重曲线(DTG 曲线)分析DTG 曲线的峰值对应着样品质量变化的最大速率,可用于确定样品的分解温度。

热重分析

热重分析

典型热重曲线
如何确定起始温度、外延起始温度、外延终止温度、终止温度、半寿温度、 分解5%、10%的温度呢?如下图:
几个常用术语
①热天平(Thermobalance)在程序温度下,连续称量 试样重量的仪器; ②测温热电偶 由于不同金属接触存在接触电势,两接 触头温度一致,无电动势,两温度不同则产生E,这叫 温差电动势,是1821年德国物理学家塞贝克首先发现的 。E与ΔT有正比关系。这可用来测高温,铂铑-铂电偶可测1600℃高温,镍-镍 铝热电偶可测到1100℃,铜-康铜热电偶<300℃(见上图); ③试样(sample)实际研究的材料,即被测定物质; ④样品池或称钳锅 放试样的容器(陶瓷、铝、铂等等); ⑤试样支持器(sample holder)放样品池或称钳锅的支架; ⑥ 曲线平台(plateau)TG曲线上质量基本不变的部分; ⑦起始温度(Initial temperature)Ti 累积质量变化达到热天平能够检测时的温 度; ⑧ 终止温度(final temperature)Tf 累积质量变化达到最大值的温度; ⑨反应区间(reaction interval)起始温度与终止温度间的温度间隔(Ti - Tf).
热重分析的应用
目前,热重分析法已在下述诸方面得到应用:
(1)无机物、有机物及聚合物的热分解; (2)金属在高温下受各种气体的腐蚀过程; (3)固态反应; (4)矿物的煅烧和冶炼; (5)液体的蒸馏和汽化; (6)煤、石油和木材的热解过程; (7)含湿量、挥发物及灰分含量的测定; (8)升华过程; (9)脱水和吸湿; (10)爆炸材料的研究; (11)反应动力学的研究; (12)发现新化合物; (13)吸附和解吸; (14)催化活度的测定; (15)氧化稳定性和还原稳定性的研究; (16)反应机理的研究;

热重分析

热重分析

–11.0
200 Ti 400 500 Tf 700
T(K)
DTG曲线上出现的峰指示质量发生变化,峰的面积与试样的 质量变化成正比,峰顶与失重变化速率最大处相对应。
3、试样制备方法
热重分析前天平校正。 试样预磨,100-300目筛(0.04-0.15mm) ,
干燥、称量。 装填方法同DTA法。 选择合适的升温速率。
——粒度细,反应速率快,反应起 始和终止温度降低,反应区间变 窄。粒度粗则反应较慢,反应滞 后。
——装填紧密,试样颗粒间接触 好,利于热传导,但不利于扩散
或气体。要求装填薄而均匀,
热重法的应用
无机物及有机物的脱水和 吸湿;
无机物及有机物的聚合与 分解;
矿物的燃烧和冶炼;
金属及其氧化物的氧化与 还原;
DTA-TG、DSC-TG、DSC-TG-DTG、DTA-TMA、DTA-TGTMA 联用 与气相色谱、质谱、红外光谱等的联用
新型热分析技术
高压DTA、DSC技术 微分DTA技术
综合热分析技术
利用DTA、DSC、TG、热膨胀 等热分析技术的联用,获取更 多的热分析信息。
多种分析技术集中在一个仪器 上,方便使用,减少误差。
高岭石: 500收缩 600脱结构水 1000析晶
水云母 100脱吸附水 500脱结构水 500后略膨胀 900脱结构水
析晶
16
综合热分析仪上做的TG-DSC曲线
17
4
4、影响TG曲线的因素 (1)浮力及对流的影响
——浮力和对流引起热重曲线 的基线漂移 ——浮力影响:573K时浮力约 为常温的1/2,1173K时为1/4 左右。 ——热天平内外温差造成的对 流会影响称量的精确度。 ——解决方案:空白曲线 、热 屏板 、冷却水等。

热重分析原理

热重分析原理

热重分析原理热重分析(Thermogravimetric Analysis,TGA)是一种通过测量样品在升温过程中的质量变化来研究材料性质的分析技术。

它是一种广泛应用于材料科学、化学、生物学等领域的重要实验手段。

热重分析原理主要是利用样品在不同温度下的质量变化来分析样品的成分、热稳定性、热分解动力学等信息。

在进行热重分析时,首先需要将样品放入热重仪的样品盘中,并在恒定的升温速率下进行加热。

在加热的过程中,热重仪会实时监测样品的质量变化,并将数据记录下来。

通过对样品质量变化曲线的分析,可以得到样品在升温过程中的质量损失情况,进而推断样品的热分解温度、热分解产物、热分解动力学参数等信息。

热重分析原理的核心在于样品在升温过程中的质量变化。

当样品受热时,其内部的化学键可能会发生断裂,导致挥发分的释放、热分解产物的生成等过程,从而引起样品质量的变化。

通过监测样品的质量变化,可以得到样品在不同温度下的热稳定性情况,进而推断样品的热分解特性。

热重分析原理不仅可以用于研究样品的热稳定性,还可以用于分析样品的成分。

在进行热重分析时,可以结合其他分析技术,如气相色谱-质谱联用技术(GC-MS)、傅里叶变换红外光谱(FTIR)等,对样品在不同温度下释放的挥发分进行在线分析,从而推断样品的成分信息。

此外,热重分析原理还可以用于研究样品的热分解动力学。

通过对样品在不同升温速率下的热重曲线进行分析,可以得到样品的热分解动力学参数,如活化能、反应级数等信息,从而揭示样品的热分解反应机理。

总之,热重分析原理是一种重要的材料分析技术,通过研究样品在升温过程中的质量变化,可以得到样品的成分、热稳定性、热分解动力学等信息,为材料科学、化学、生物学等领域的研究提供了重要的实验手段。

实验二十一__热重分析法

实验二十一__热重分析法

实验二十一热重分析法一、实验目的1.掌握热重分析的原理。

2.用热天平测CuSO4·5H2O样品的热重曲线,学会使用WRT-3P高温微量热天平。

二、实验原理热重分析法(Thermogravimetric Analysis,简称TG)是在程序控制温度下,测量物质质量与温度关系的一种技术。

许多物质在加热过程中常伴随质量的变化,这种变化过程有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。

1.TG和DTG的基本原理与仪器进行热重分析的基本仪器为热天平。

热天平一般包括天平、炉子、程序控温系统、记录系统等部分。

有的热天平还配有通入气氛或真空装置。

典型的热天平示意图见图l。

除热天平外,还有弹簧秤。

国内已有TG和DTG(微商热重法)联用的示差天平。

热重分析法通常可分为两大类:静态法和动态法。

静态法是等压质量变化的测定,是指一物质的挥发性产物在恒定分压下,物质平衡与温度T的函数关系。

以失重为纵坐标,温度T为横坐标作等压质量变化曲线图。

等温质量变化的测定是指一物质在恒温下,物质质量变化与时间t的依赖关系,以质量变化为纵坐标,以时间为横坐标,获得等温质量变化曲线图。

动态法是在程序升温的情况下,测量物质质量的变化对时间的函数关系。

1一机械减码;2一吊挂系统;3一密封管;4一出气口5一加热丝;6一试样盘;7一热电偶8一光学读数;9一进气口;10一试样;1l一管状电阻炉;12一温度读数表头;13一温控加热单元图l 热天平原理图控制温度下,试样受热后重量减轻,天平(或弹簧秤)向上移动,使变压器内磁场移动输电功能改变;另一方面加热电炉温度缓慢升高时热电偶所产生的电位差输入温度控制器,经放大后由信号接收系统绘出TG热分析图谱。

2曲线a所示。

TG曲线以质量作纵坐标,从上向下表示质量减少;以温度(或时间)作横坐标,自左至右表示温度(或时间)增加。

DTG是TG对温度(或时间)的一阶导数。

差热和热重分析


差热分析可以用来研究土壤中污染物 的热分解和转化过程,例如研究土壤 中农药的分解和转化过程。
热重分析可以用来研究土壤中污染物 的迁移和分布特性,例如研究土壤中 重金属的分布和迁移特性。
06 差热和热重分析的未来发 展与挑战
新技术发展
新型传感器技术
利用新型传感器技术,如纳米传感器和柔性传感器,提高差热和 热重分析的灵敏度和精度。
差热分析的应用
01 确定物质的熔点、玻璃化转变温度等物理 性质。
02 研究物质的热稳定性、热分解和氧化等化 学性质。
03
用于药物、食品、聚合物、陶瓷等领域的 研发和质量控制。
04
热重分析(TGA)
02 热重分析(TGA)
热重分析的定义
热重分析(TGA)是一种在程序控温下测量物质质量与温度关系的分析方法。通过 测量物质质量随温度变化的情况,可以研究物质在加热或冷却过程中的物理和化学 变化。
在热重分析中,样品被放置在热天平上,并加热或冷却以模拟不同的温度条件。随着温度的变化,样 品的质量会发生变化,这些变化被记录并转化为温度与质量之间的关系曲线。通过对曲线的分析,可 以了解物质在加热或冷却过程中的质量变化情况。
热重分析的应用
热重分析在多个领域都有广泛的应用,包括材料科学 、化学、制药、食品科学等。它可以用于研究材料的 热稳定性、分解行为、反应动力学以及物质在温度变 化过程中的相变等。
陶瓷材料的抗热震性能
差热分析可以研究陶瓷材料在不同温度下的热震稳定性,对于陶瓷 材料的应用具有重要意义。
金属材料
金属材料的熔点和凝固点
01
通过差热分析,可以精确测定金属材料的熔点和凝固点,有助
于了解金属材料的热物性。
金属材料的氧化和腐蚀行为

热重分析

热重法,是在程序控制温度下,测量物质的质量与温度或时间的关系的方法。

进行热重分析的仪器,称为热重仪,主要由三部分组成,温度控制系统,检测系统和记录系统。

通过分析热重曲线,我们可以知道样品及其可能产生的中间产物的组成、热稳定性、热分解情况及生成的产物等与质量相联系的信息。

从热重法可以派生出微商热重法,也称导数热重法,它是记录TG曲线对温度或时间的一阶导数的一种技术。

实验得到的结果是微商热重曲线,即DTG曲线,以质量变化率为纵坐标,自上而下表示减少;横坐标为温度或时间,从左往右表示增加。

DTG曲线的特点是,它能精确反映出每个失重阶段的起始反应温度,最大反应速率温度和反应终止温度;DTG曲线上各峰的面积与TG曲线上对应的样品失重量成正比;当TG曲线对某些受热过程出现的台阶不明显时,利用DTG曲线能明显的区分开来。

热重法的主要特点,是定量性强,能准确地测量物质的质量变化及变化的速率。

根据这一特点,可以说,只要物质受热时发生质量的变化,都可以用热重法来研究。

图中给出可用热重法来检测的物理变化和化学变化过程。

我们可以看出,这些物理变化和化学变化都是存在着质量变化的,如升华、汽化、吸附、解吸、吸收和气固反应等。

但象熔融、结晶和玻璃化转变之类的热行为,样品没有质量变化,热重分析方法就帮不上忙了。

热重法测定的结果与实验条件有关,为了得到准确性和重复性好的热重曲线,我们有必要对各种影响因素进行仔细分析。

影响热重测试结果的因素,基本上可以分为三类:仪器因素、实验条件因素和样品因素。

仪器因素包括气体浮力和对流、坩埚、挥发物冷凝、天平灵敏度、样品支架和热电偶等。

对于给定的热重仪器,天平灵敏度、样品支架和热电偶的影响是固定不变的,我们可以通过质量校正和温度校正来减少或消除这些系统误差。

气体浮力和对流的影响气体浮力的影响:气体的密度与温度有关,随温度升高,样品周围的气体密度发生变化,从而气体的浮力也发生变化。

所以,尽管样品本身没有质量变化,但由于温度的改变造成气体浮力的变化,使得样品呈现随温度升高而质量增加,这种现象称为表观增重。

热重分析原理

热重分析原理
热重分析是一种常用的物理化学分析技术,主要用于研究材料的热稳定性、分解过程以及含水量等热学特性。

它的原理是通过测量样品在升温过程中的质量变化来分析样品的特性。

在热重分析中,通常使用灵敏度较高的电子天平来测量样品的质量变化。

样品被置于恒定温度下,然后随着温度的升高,活性物质开始分解、挥发或发生其他化学反应,这些变化将导致样品质量的变化。

通过连续地记录样品质量的变化情况,可以得到样品在不同温度下发生的热变化曲线。

根据样品质量的变化情况,可以推断出物质的热稳定性和分解特性。

例如,在某一温度下,如果样品质量明显下降,那么可以推断样品发生了分解反应。

此外,样品质量变化的速率也可以提供有关反应动力学信息的线索。

除了分析样品的热稳定性和分解过程外,热重分析还可以用于测定样品中的含水量。

在升温过程中,水分会从样品中挥发出来,因此通过测量质量的变化,可以估计样品中的水分含量。

综上所述,热重分析是一种常用的物理化学分析技术,通过测量样品在升温过程中的质量变化,可以研究样品的热学特性、分解过程以及含水量等重要参数。

它在材料科学、化学工程等领域具有广泛的应用。

热重分析 实验报告

热重分析实验报告热重分析实验报告引言:热重分析(Thermogravimetric Analysis,简称TGA)是一种常用的热分析技术,通过测量样品在升温过程中的质量变化,可以分析样品的热稳定性、热分解过程以及含水量等信息。

本实验旨在通过TGA技术对某种材料的热分解特性进行研究,从而为材料的应用提供参考。

实验方法:1. 样品制备:将待测试的材料样品细细磨碎,并通过筛网筛选,以获得均匀颗粒大小的样品。

2. 仪器准备:将样品放置在热重分析仪的样品盘中,并确保样品盘平整。

3. 实验条件设定:根据样品的特性和预期结果,设置合适的升温速率和温度范围。

一般来说,较快的升温速率可以更好地展现样品的热分解特性,但过快的升温速率可能导致数据失真。

4. 实验操作:启动热重分析仪,开始实验。

在实验过程中,记录样品质量随温度变化的曲线,并观察样品的颜色、形态等变化情况。

5. 数据分析:根据实验结果,分析样品的热分解特性,包括起始分解温度、峰值温度、分解过程等。

实验结果与讨论:通过对某种材料的热重分析实验,我们得到了如下结果:在升温过程中,样品的质量随温度的升高而逐渐减少。

在温度范围X到Y之间,样品质量变化较为剧烈,表明该温度范围内发生了较为显著的热分解反应。

进一步观察发现,在温度T处,样品的质量变化达到峰值,表明该温度是样品热分解反应的峰值温度。

此后,样品质量的减少速率逐渐减缓,直至温度达到Z时,样品质量变化趋于平缓,热分解反应基本结束。

根据实验结果,我们可以推断出该材料在温度范围X到Y之间发生了热分解反应,且在温度T处达到峰值。

进一步分析样品的颜色、形态等变化情况,可以推测该材料的热分解反应可能是由于化学反应引起的。

结论:通过热重分析实验,我们成功地研究了某种材料的热分解特性。

实验结果表明该材料在温度范围X到Y之间发生了热分解反应,且在温度T处达到峰值。

这些结果对于该材料的应用具有重要意义,可以为材料的加工、储存和安全性评估提供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热重分析
热重分析(Thermogravimetric Analysis,TG或TGA),是指在程序控制温度下测量待测样品的质量与温度变化关系的一种热分析技术,用来研究材料的热稳定性和组份。

TGA 在研发和质量控制方面都是比较常用的检测手段。

热重分析在实际的材料分析中经常与其他分析方法连用,进行综合热分析,全面准确分析材料。

基本概念
根据根据国际热分析协会(International Confederation for Thermal Analysis,缩写ICTA)的定义,热重分析指的是在温度程序控制下,测量物质质量与温度之间的关系的技术。

这里值得一提的是,定义为质量的变化而不是重量变化是基于在磁场作用下,强磁性材料当达到居里点时,虽然无质量变化,却有表观失重。

而热重分析则指观测试样在受热过程中实质上的质量变化。

热重分析所用的仪器是热天平,它的基本原理是,样品重量变化所引起的天平位移量转化成电磁量,这个微小的电量经过放大器放大后,送入记
录仪记录;而电量的大小正比于样品的重量变化量。

当被
测物质在加热过程中有升华、汽化、分解出气体或失去结
晶水时,被测的物质质量就会发生变化。

这时热重曲线就
不是直线而是有所下降。

通过分析热重曲线,就可以知道
被测物质在多少度时产生变化,并且根据失重量,可以计
算失去了多少物质(如CuSO4•5H2O中的结晶水)。

从热
重曲线上我们就可以知道CuSO4•5H2O中的5个结晶水是
分三步脱去的。

TGA 可以得到样品的热变化所产生的热
物性方面的信息。

热重分析仪3D图
种类
热重分析通常可分为两类:动态法和静态法。

1、静态法:包括等压质量变化测定和等温质量变化
测定。

等压质量变化测定是指在程序控制温度下,测量物
质在恒定挥发物分压下平衡质量与温度关系的一种方法。

等温质量变化测定是指在恒温条件下测量物质质量与温
度关系的一种方法。

这种方法准确度高,费时。

2、动态法:就是我们常说的热重分析和微商热重分
析。

微商热重分析又称导数热重分析(Derivative Thermo
gravimetry,简称DTG),它是TG曲线对温度(或时间)的
一阶导数。

以物质的质量变化速率(dm/dt)对温热重分析仪结构
度T(或时间t)作图,即得DTG曲线。

仪器构造
进行热重分析的基本仪器为热天平,它包括天平、炉
子、程序控温系统、记录系统等几个部分。

除热天平外,
还有弹簧秤。

热重分析仪数据分析
热重分析仪结构:1、试样支持器;2、炉子;3、测
温热电偶;4、传感器;5、平衡锤;6、阻尼和天平复位
器;7、天平;8、阻尼信号
热重分析仪数据分析
影响因素
影响热重法测定结果的因素,大致有下列几个方面:仪器因素,实验条件和参数的选择,试样的影响因素等等。

1、浮力及对流的影响。

浮力和对流引起热重曲线的基线漂移。

热天平内外温差造成的对流会影响称量的精确度。

解决方案:空白曲线、热屏板、冷却水等。

2、挥发物冷凝的影响。

解决方案:热屏板。

3、温度测量的影响。

解决方案:利用具特征分解温度的高纯化合物或具特征居里点温度的强磁性材料进行温度标定。

4、升温速率。

升温速率越大,热滞后越严重,易导致起始温度和终止温度偏高,甚至不利于中间产物的测出。

5、气氛控制。

与反应类型、分解产物的性质和所通气体的种类有关。

6、纸速。

走纸速度快,分辨率高。

7、坩埚形状。

8、试样因素。

试样用量、粒度、热性质及装填方式等。

用量大,因吸、放热引起的温度偏差大,且不利于热扩散和热传递。

粒度细,反应速率快,反应起始和终止温度降低,反应区间变窄。

粒度粗则反应较慢,反应滞后。

装填紧密,试样颗粒间接触好,利于热传导,但不利于扩散或气体。

要求装填薄而均匀。

应用
热重法的重要特点是定量性强,能准确地测量物质的质量变化及变化的速率,可以说,只要物质受热时发生重量的变化,就可以用热重法来研究其变化过程。

目前,热重法已在下述诸方面得到应用:
(1)无机物、有机物及聚合物的热分解;
(2)金属在高温下受各种气体的腐蚀过程;
(3)固态反应;
(4)矿物的煅烧和冶炼;
(5)液体的蒸馏和汽化;
(6)煤、石油和木材的热解过程;
(7)含湿量、挥发物及灰分含量的测定;
(8)升华过程;
(10)爆炸材料的研究;
(11)反应动力学的研究;
(12)发现新化合物;
(14)催化活度的测定;
(17)反应机制的研究。

相关文档
最新文档