信号与系统复习题(含答案)

合集下载

信号与系统复习大纲(含答案)

信号与系统复习大纲(含答案)

选择题、填空题、画图题(2道)、计算题1、信号f (2t 4)-+跟f (2t)-的图像相比,移位多少?P9 信号f (2t 4)-+是信号f (2t)-的图像右移两个单位得到的。

2、掌握判断一个系统是否线性的方法。

P27 (课后1.23) 线性系统满足三个条件:1)响应可分解性:y(t)=yzi(t)+yzs(t),其中yzi(t)为零输入响应,yzs(t)为零状态响应; 2)零输入线性:当所有输入信号为零时,系统的零输入响应对于各初始状应呈现线性,如:T[{ax1(0)+bx2(0)}, {0}]=aT[{ x1(0)}, {0}]+bT[{ x2(0)}, {0}];3)零状态响应:当所有初始状态均为零时,系统的零状态响应对于各输入信号应呈现线性, 如:T[{0},{af1(t)+bf2(t)}]=aT[{0},{f1(t)}]+bT[{0},{f2(t)}].3、掌握单位冲激信号的取样特性和尺度变化特性。

P18,P21 取样特性:f(t) δ(t)=f(0) δ(t); ∫﹢∞﹣∞f(t)δ(t)dt=f(0)尺度变化特性:δ(at)= δ(at)/|a|;δ(n)(t)=(1/|a|)*(δ(n)(t)/a n )4、信号有哪些分类方式?怎样判断两个周期信号的和是否周期信号?P2-P8 1)分类方式:①根据信号定义域的特点可分为连续时间信号和离散时间信号; ②根据信号按时间自身的变化规律可分为周期信号和非周期信号; ③根据信号的物理可实现性可分为实信号和复信号; ④根据信号的能量性质可分为能量信号和功率信号。

2)设两周期信号的周期分别为T1和T2,若T1和T2有最小公倍数,则这个最小公倍数就是这两个周期信号的和的周期,若T1和T2没有最小公倍数,则为非周期信号。

(详见1.5 (2)、(5))5、若f1 (k) ={ 2 , 1 , 5},f 2(k) ={ 0,3 , 4, 6}↑k=0 ↑k=0二者的卷积和等于多少?P101 2 ,1 ,5× 3 ,4 ,6 12, 6 ,30 8 , 4 ,20 6 , 3, 156 ,11,31, 26,30 ↑k=1(左边起第一个非零的数字的下角标之和)6、一连续LTI 系统的单位阶跃响应3()()t g t e t ε-=,则此系统的单位冲激响应h(t)为多少? P56h(t)=dg(t)/dt= -3e -3t ε(t)+ e -3t δ(t)7、理想低通滤波器是因果系统还是非因果的系统?物理可实现吗?P177-182 理想低通滤波器是非因果系统,物理不可实现。

(完整版)信号与系统复习题

(完整版)信号与系统复习题

信号与系统试题库一、填空题绪论:1。

离散系统的激励与响应都是____离散信号 __。

2.请写出“LTI ”的英文全称___线性非时变系统 ____。

3.单位冲激函数是__阶跃函数_____的导数. 4.题3图所示波形可用单位阶跃函数表示为()(1)(2)3(3)t t t t εεεε+-+---。

5.如果一线性时不变系统的输入为f(t ),零状态响应为y f (t )=2f (t —t 0),则该系统的单位冲激响应h (t )为____02()t t δ-_________。

6。

线性性质包含两个内容:__齐次性和叠加性___。

7。

积分⎰∞∞-ω--δ-δdt )]t t ()t ([e 0t j =___01j t e ω--_______。

8。

已知一线性时不变系统,当激励信号为f (t)时,其完全响应为(3sint-2cost )ε(t );当激励信号为2f (t )时,其完全响应为(5sint+cost )ε(t),则当激励信号为3f(t )时,其完全响应为___7sint+4cost _____。

9。

根据线性时不变系统的微分特性,若:f (t)−−→−系统y f (t)则有:f ′(t)−−→−系统_____ y ′f (t )_______。

10。

信号f (n )=ε(n )·(δ(n)+δ(n-2))可_____δ(n)+δ(n —2)_______信号。

11、图1所示信号的时域表达式()f t =()(1)(1)tu t t u t --- 。

12、图2所示信号的时域表达式()f t =()(5)[(2)(5)]u t t u t u t +----。

13、已知()()()2f t t t t εε=--⎡⎤⎣⎦,则()f t '=()(2)2(2)u t u t t δ----.14、[]2cos32t d ττδτ-∞⎛⎫+ ⎪⎝⎭⎰=8()u t 。

信号与系统试题附答案

信号与系统试题附答案

信科0801《信号与系统》复习参考练习题一、单项选择题 (2分1题,只有一个正确选项,共20题,40分)1、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。

200 rad /s C 。

100 rad /s D 。

50 rad /s2、已知信号)(t f 如下图(a )所示,其反转右移的信号f 1(t) 是( )3、已知信号)(1t f 如下图所示,其表达式是( )A 、ε(t )+2ε(t -2)-ε(t -3)B 、ε(t -1)+ε(t -2)-2ε(t -3)C 、ε(t)+ε(t -2)-ε(t -3)D 、ε(t -1)+ε(t -2)-ε(t -3)4、如图所示:f (t )为原始信号,f 1(t)为变换信号,则f 1(t)的表达式是( )A 、f(-t+1)B 、f(t+1)C 、f(-2t+1)D 、f(-t/2+1)5、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )6。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ7线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数8、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号9. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ10卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f11零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差12号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在13知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为() A 。

信号与系统复习题与答案-给学生

信号与系统复习题与答案-给学生

2π π n + ) x (n ); 7 6
3. y (t ) = ∫ x (τ − 1) dτ ;
2
4. y (n ) =
m= −∞
∑ x(m) 。
n
(线性、时不变) )内)
2.1 选择题(每小题可能有一个或几个正确答案,将正确的题号填入( 1.系统微分方程式
dy (t ) 4 + 2 y (t ) = 2 x (t ), 若x (t ) = u (t ), y (0 − ) = ,解得完全响应 dt 3
1 y(t )= e − 2t + 1, (当t ≥ 0) 则零输入响应分量为——————————— ( 3 ) 3 1 (1) e − 2t 3 4 (3) e − 2t 3
1 −2 t 1 (2) e − 3 3
(4) − e −2t + 1
2.已知 f 1 (t ) = u (t ), f 2 (t ) = e − at u (t ) ,可以求得 f 1( t ) * f 2 (t ) = —————( 3 ) (1)1- e − at (2) e − at
2.6 某 线 性时不变系统在零状态条件下 ,当激励 x 1 ( t ) = tu(t )时,响应 y1 (t )= e− t u(t ), 试求当激励 x2 (t )=u(t )时,响应 y2 (t )的表达式。 答案: y2 (t ) = −e −tu ( t ) + δ (t ) 2.7 题图所示系统是由两个子系统级联而成的,两子系统的冲激响应分别为: h1 ( t ) = t [ u ( t ) − u ( t − 1)], h 2 ( t ) = u ( t − 1) − u ( t − 2 ) 试求总系统的冲激响应 h(t ) ,并画出 h(t )的波形。

[VIP专享]《信号与系统》复习题及答案

[VIP专享]《信号与系统》复习题及答案
故得
f (n) (n m) f (n m)
1

f (n m) zmF (z)
f (n) (n m) F (z) zm
证明 (a) 因由卷和定理
信号(signal):物质的运动形式或状态的变化。 (声、光、电、力、振动、流量、温度… … ) 系统(system):由若干相互联系、相互作用的单元组成的具有一定功能的整体。 零输入响应(储能响应 ):从观察的初始时刻起不再施加输入信号,仅由该时刻系统本身的起始储能状态引起的响应称为零输入 响应(ZIR)。 零状态响应(受迫响应 ):当系统的储能状态为零时,由外加激励信号(输入)产生的响应称为零状态响应(ZSR) 。 阶跃响应:LTI 系统在零状态下,由单位阶跃信号引起的响应称为单位阶跃响应,简称阶跃响应,记为 s( t )。 冲激响应:储能状态为零的系统,在单位冲激信号作用下产生的零状态响应称为冲激响应,记为 h( t )。
8-5 试用卷和定理证明以下关系:
(a) f (n) (n m) f (n m)
(b) (n) (n) (n 1) (n)
电信号系统分连续系统、(离散系统)、(混合系统)、串联系统、并联系统、反馈系统 按响应的不同起因响应分为(储能响应)和(受激响应); 卷积交换律是(f1( t ) f2( t ) = f2( t ) f1( t )) 卷积结合律是(f1( t ) [ f2( t ) f3( t ) ] = [ f1( t ) f2( t ) ] f3( t ) ) 卷积分配律是([f1( t ) + f2( t ) ] f3( t ) = f1( t ) f3( t ) +f2( t ) f3( t )) 信号的带宽与信号的持续时间(脉冲宽度)成(反比)。 f( t )为实偶函数,F( )为(实偶函数); f( t )为奇函数,F( )为(纯虚函数); f( t )为非奇非偶函数,F( )为(复函数); H( s )的零点只影响 h( t )的(幅度)和相位, H( s )的极点才决定(时域特性的变化模式)。 H(s)分子多项式 N(s)=0 的根叫零点。 H(s)分母多项式 D(s)=0 的根叫极点。 极点位于 S 平面原点,h( t )对应为(阶跃)函数; 极点位于 S 平面负实轴上, h( t )对应为(衰减指数)函数; 共轭极点位于虚轴上, h( t )对应为(正弦振荡); 共轭极点位于 S 的左半平面, h( t )对应为(衰减的正弦振荡); 在零状态条件下,由单位序列 (n)引起的响应称为(单位)响应,记为(h( n ))。 仅在离散时刻有定义的信号叫(离散时间)信号:。 H(s)在虚轴上有单极点,其余极点均在 S 的左半平面时,系统处于(临界稳定) H(s)只要有一个极点位于 S 的右半平面,系统处于(不稳定)。 H(s)为系统(冲激响应)的拉氏变换。 H(s)是一个实系数有理分式,它决定了系统的(特征根)(固有频率); 具有新内容、新知识的消息叫(信息)。 时不变系统是系统的(元件参数)不随时间变化,或系统的方程为(常系数)。 因果系统是在(激励信号)作用之前系统不产生(响应)。 解调是(从已被调制的信号中恢复原信号)的过程 系统函数 H(s)是零状态(响应的象函数)与(输入信号的象函数)之比

信号与系统(带答案)

信号与系统(带答案)

第一套第1题,下列信号的分类方法不正确的是(A)A、数字信号和离散信号B、确定信号和随机信号C、周期信号和非周期信号:D、因果信号与反因果信号第2题,以下信号属于连续信号的是(B)A、e-nTB、e-at sin(ωt)C、cos(nπ)D、sin(nω0)第3题,下列说法正确的是(D)A、两个周期信号x(t),y(t)的和x(t)+y(t)一定是周期信号。

B、两个周期信号x(t),y(t)的周期分别为2和2开根号,其和信号x(t)+y(t)是周期信号。

C、两个周期信号x(t),y(t)的周期分别为2和Pi,其和信号x(t)+y(t)是周期信号。

D、两个周期信号x(t),y(t)的周期分别为2和3,其和信号x(t)+y(t)是周期信号。

第4题,将信号f(t)变换为( A ) 称为对信号f(t)的平移或移位。

A、f(t-t0)B、f( k -k0)C、f(at)D、f(-t)第五题,下列基本单元属于数乘器的是(A )A、B、C、D、第六题、下列傅里叶变换错误的是(D)А.1<-->2πδ(ω)B.ejω0t<-- > 2πδ(ω-ω0 )С.соѕ(ω0t) < -- > π[δ(ω-ω0 ) +δ (ω+ω0 )]D. ѕіn(ω0t)<-> jπ[δ(ω+ω0)+ δ(ω- ω0)]第7题、奇谐函数只含有基波和奇次谐波的正弦和余弦项,不会包含偶次谐波项。

(对)第8题、在奇函数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。

(错)第9题、满足均匀性和____条件的系统称为线性系统。

(叠加性)第10题.根据激励信号和内部状态的不同,系统响应可分为零输入响应和__响应(零状态)第二套1、当周期信号的周期增大时,频谱图中谱线的间隔( C)A:增大B:无法回答C:减小D:不变2、δ(t)的傅立叶变换为( A)。

A:1B: u(t)C: 0D:不存在3、已知f(t),为求f(3-2t)则下列运算正确的是(B)A:f(-2t)左移3/2B:f(-2t)右移3/2C:f(2t)左移3D:f(2t)右移3 ,4、下列说法不正确的是(D)。

信号与系统期末复习试题附答案

一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。

200 rad /s C 。

100 rad /s D 。

50 rad /s15、已知信号)(t f 如下图(a )所示,其反转右移的信号f 1(t) 是( )16、已知信号)(1t f 如下图所示,其表达式是( )A 、ε(t )+2ε(t -2)-ε(t -3)B 、ε(t -1)+ε(t -2)-2ε(t -3)C 、ε(t)+ε(t -2)-ε(t -3)D 、ε(t -1)+ε(t -2)-ε(t -3)17、如图所示:f (t )为原始信号,f 1(t)为变换信号,则f 1(t)的表达式是( )A 、f(-t+1)B 、f(t+1)C 、f(-2t+1)D 、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )19。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差2A 、1-eB 、3eC 、3-eD 、127.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为tt Be Ae 2--+,则其2个特征根为() A 。

信号与系统期末考试试卷(有详细答案).doc

格式《信号与系统》考试试卷(时间 120 分钟)院 / 系专业姓名学号题号一二三四五六七总分得分一、填空题(每小题 2 分,共 20 分)得分1.系统的激励是 e(t) ,响应为 r(t) ,若满足de(t)r ( t) ,则该系统为线性、时不变、因果。

dt(是否线性、时不变、因果?)2 的值为 5。

2.求积分 (t1)(t2)dt3.当信号是脉冲信号f(t)时,其低频分量主要影响脉冲的顶部,其高频分量主要影响脉冲的跳变沿。

4.若信号f(t)的最高频率是2kHz,则 f(2t)的乃奎斯特抽样频率为8kHz。

5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为一常数相频特性为 _一过原点的直线(群时延)。

6.系统阶跃响应的上升时间和系统的截止频率成反比。

.若信号的F(s)=3s j37。

,求该信号的 F ( j)(s+4)(s+2) (j+4)(j+2)8.为使LTI 连续系统是稳定的,其系统函数H(s ) 的极点必须在S 平面的左半平面。

1。

9.已知信号的频谱函数是0)()F(( ,则其时间信号f(t)为0j)sin(t)js110.若信号 f(t)的F ( s ) ,则其初始值f(0)1。

2(s1 )得分二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题 2 分,共 10 分)《信号与系统》试卷第1页共 7页专业资料整理格式1.单位冲激函数总是满足 ( t )( t ) (√)2.满足绝对可积条件 f ( t ) dt 的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

(×)3.非周期信号的脉冲宽度越小,其频带宽度越宽。

(√)4.连续 LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

(√)5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

(×)得分三、计算分析题(1、 3、 4、 5 题每题 10 分, 2 题 5 分,6 题15 分,共 60 分)t 10t11.信号f(t)2eu(t) ,1,信号 f ,试求 f 1 (t)*f 2 (t)。

《信号与系统》期末试题1(含答案)


4
6
2
低抽样频率为
(A)
A、 6Hz B、 8Hz
C、10Hz
D、 12Hz
(6) 单边拉普拉斯变换 F (s) se s 的原函数是 s2 4
(D )
A、 cos(2t) (t 1)
B、 cos[2(t 1)] (t)
C、 cos(2t 1) (t 1)
D、 cos[2(t 1)] (t 1)
(7) 离散序列 f1(k) {1,0,2,1}( k 0,1,2,3)、 f2 (k) {3,7,2}( k 1,0,1, )设离散卷
积和 y(k) f1(k) f2 (k) ,则 y(2)
(B )
A、8
B、17
C、11
D、2
(8) 某离散信号的 z 变换为 F (z) z2 2z ,已知该序列为右边序列,则该序列的收 z2 2z 3
作出
f2 (t)
的导数
df2 (t) dt
的波形;
(3) 利用卷积积分的性质,作出 f1 (t) f2 (t) 的波形。
(D )
1 f1(t)
1 0
1
t
f2 (t) 1

t
1 f1(t)dt
1 0 1
t
1 0 1 t
f
2
(t
)
1
1 0 1 t
2
f1(t) f2 (t) 1
0
2t
期末考试试题
第 1-3 页
s
2
3
进行 laplace 反变换可得:
yzs (t)
(3 2
e t
2e 2t
1 e3t ) (t) 2
3. 全响应:
全响应为

信号与系统复习题(答案全)-信号与系统大题

36、若LTI系统无传输失真,则其冲激响应 k(t-td);其频率响应H(jω) = 。
37、单位阶跃序列的卷积和(k)*(k)=(k+1)(k).
38、已知时间连续系统的系统函数有极点 ,( 均为正实数),零点z = 0,该系统 为带通滤波器。
39、已知信号 ,则其Z变换为 。
40、 1。
41、 。
sin(k),该离散序列是周期序列?否。
7、周期信号 ,此信号的周期为1s、直流分量为 、频率为5Hz的谐波分量的幅值为2/5。
8、f (t) 的周期为0.1s、傅立叶级数系数 、其余为0。试写出此信号的时域表达式f (t) =5 + 6 cos ( 60t ) - 4 sin (100t )。
9、f (k) 为周期N=5的实数序列,若其傅立叶级数系数 、则F5(3 )= 、F5(4 )= 、F5(5 )=2;f(k) = 。
22、某LTI系统的冲激响应为 ,系统的频率响应 1-1/(1+jω)。若输入 ,则输出
23、某LTI系统的 ,若输入 ,则输出 2cos(2t+π/2)。
24、因果系统 的频率响应特性 不存在。
25、设离散因果系统 ,则其阶跃响应的终值 20/3。
26、现有系统函数 ,其频响特性H (jω)=不存在。
32、以10Hz为抽样频率对 Sa(t)进行冲激抽样 ,则fs(t) 的傅立叶变换为 。
33、f(k)=Sa (0.2k),则DTFT[f(k)] .
34、已知f (t) F(ω),则f (t) cos (200t) 的傅立叶变换为[F(ω+200)+ F(ω-200)]/2.
35、已知周期信号fT(t) = ,则其傅立叶变换为 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与系统复习题(含答案)试题一一.选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是。

A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是。

A.因果时不变B.因果时变C.非因果时不变D.非因果时变 3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u e t h t ,该系统是。

A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是。

A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇 5、一信号x(t)的傅立叶变换??><=2||02||1)(ωωω,,j X ,则x(t)为。

A. t t 22sinB. tt π2sin C. t t 44sin D.t t π4sin6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为。

A. ∑∞-∞=-k k )52(52πωδπ B. ∑∞-∞=-k k )52(25πωδπC. ∑∞-∞=-k k )10(10πωδπD. ∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为。

A.)}(Re{ωj e X j B. )}(Re{ωj e XC. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为。

A. 500B. 1000C. 0.05D. 0.001 9、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t =,其傅立叶变换)(ωj G 收敛,则x(t)是。

A. 左边B. 右边C. 双边D. 不确定10、一系统函数1}Re{1)(->+=s s e s H s,,该系统是。

A. 因果稳定B. 因果不稳定C. 非因果稳定D. 非因果不稳定二.简答题(共6题,40分)1、(10分)下列系统是否是(1)无记忆;(2)时不变;(3)线性;(4)因果;(5)稳定,并说明理由。

(1) y(t)=x(t)sin(2t);(2)y(n)= )(n x e2、(8分)求以下两个信号的卷积。

<<=值其余t T t t x 001)(, ??<<=值其余t T t t t h 020)( 3、 (共12分,每小题4分)已知)()(ωj X t x ?,求下列信号的傅里叶变换。

(1)tx(2t) (2) (1-t)x(1-t) (3)dtt dx t )(4. 求 22)(22++=-s s e s s F s 的拉氏逆变换(5分)5、已知信号sin 4(),t f t t tππ=-∞<<∞,当对该信号取样时,试求能恢复原信号的最大抽样周期T max 。

(5分),求系统的响应。

)若(应;)求系统的单位冲激响(下列微分方程表征:系统的输入和输出,由分)一因果三、(共)()(21)(2)(15)(8)(LTI 10422t u e t x t x t y dt t dy dtt dy t -==++四、(10分)求周期矩形脉冲信号的傅立叶级数(指数形式),并大概画出其频谱图。

不是因果的。

)系统既不是稳定的又()系统是因果的;(系统是稳定的;系统的单位冲激响应)求下列每一种情况下(的零极点图;,并画出)求该系统的系统函数(下列微分方程表征:系统的输入和输出,由分)一连续时间五、(共c b a t h s H s H t x t y dt t dy dt t dy )()(2)()(1)()(2)()(LTI 2022=--试题二一、选择题(共10题,每题3分,共30分,每题给出四个答案,其中只有一个正确的)1、卷积f 1(k+5)*f 2(k-3) 等于。

αωωδα+=+==-s e L s s t L t L t 1][)][cos(1)]([22;;tt t Sa j F t u e t f tsin )(1)()()(=+=?=-;注:ωαωαA )f 1(k)*f 2(k) Bf 1(k)*f 2(k-8) C )f 1(k)*f 2(k+8) D)f 1(k+3)*f 2(k-3) 2、积分dtt t ?∞∞--+)21()2(δ等于。

(A )1.25 (B )2.5 (C )3 (D )5 3、序列f(k)=-u(-k)的z 变换等于。

(A )1-z z (B )-1-z z (C )11-z (D )11--z4、若y(t)=f(t)*h(t),则f(2t)*h(2t)等于。

(A ))2(41t y (B ))2(21t y (C ))4(41t y (D ))4(21t y5、已知一个线性时不变系统的阶跃相应g(t)=2e -2t u(t)+)(t δ,当输入f(t)=3e —tu(t)时,系统的零状态响应y f (t)等于(A )(-9e -t +12e -2t )u(t) (B )(3-9e -t +12e -2t )u(t) (C ))(t δ+(-6e -t +8e -2t )u(t) (D )3)(t δ +(-9e -t +12e -2t )u(t) 6、连续周期信号的频谱具有(A )连续性、周期性(B )连续性、收敛性(C )离散性、周期性(D )离散性、收敛性7、周期序列2)455.1(0+k COS π的周期N 等于(A) 1 (B )2 (C )3 (D ) 4 8、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku 9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于()()t tu A ()()2-t tu B ()()()t u t C 2- ()()()22--t u t D10、信号()()23-=-t u te t f t 的单边拉氏变换()s F 等于()A ()()()232372+++-s e s s ()()223+-s e Bs()()()2323++-s se C s()()332++-s s e D s 二、填空题(共9小题,每空3分,共30分) 1、卷积和[(0.5)k+1u(k+1)]*)1(k -δ=________________________2、单边z 变换F(z)= 12-z z的原序列f(k)=______________________3、已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t ·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、单边拉普拉斯变换s s s s s F +++=2213)(的原函数 f(t)=__________________________6、已知某离散系统的差分方程为)1(2)()2()1()(2-+=----k f k f k y k y k y ,则系统的单位序列响应h(k)=_______________________ 7、已知信号f(t)的单边拉氏变换是F(s),则信号 ?-=20)()(t dxx f t y 的单边拉氏变换Y(s)=______________________________ 8、描述某连续系统方程为()()()()()t f t f t y t y t y +=++''''52 该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=kt 22三(8分)已知信号()()()><==?./1,0,/1,1s rad s rad jw F j F t f ωωω设有函数()(),dt t df t s =求?2ωs 的傅里叶逆变换。

四、(10分)如图所示信号()t f ,其傅里叶变换()()[]t f jw F F =,求(1) ()0F (2)()?∞∞-dw jw F五、(12)分别求出像函数()25232+-=z z zz F 在下列三种收敛域下所对应的序列(1)2z (2)5.0?z (3)25.0??z六、(10分)某LTI 系统的系统函数()1222++=s s s s H ,已知初始状态()(),20,00=='=--y y 激励()(),t u t f =求该系统的完全响应。

试题三一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。

每小题3分,共30分) 1.设:如图—1所示信号。

则:信号f(t)的数学表示式为( )。

(A)f(t)=t ε(t)-t ε(t-1) (B)f(t)=t ε(t)-(t-1)ε(t-1) (C)f(t)=(1-t)ε(t)-(t-1)ε(t-1)(D)f(t)=(1+t)ε(t)-(t+1)ε(t+1) 2.设:两信号f 1(t)和f 2(t)如图—2。

则:f 1(t)与f 2(t)间变换关系为( )。

(A)f 2(t)=f 1(21t+3)(B)f 2(t)=f 1(3+2t) (C)f 2(t)=f 1(5+2t)(D)f 2(t)=f 1(5+21t)3.已知:f(t)=SgN(t)的傅里叶变换为F(j ω)=ωj 2, 则:F 1(j ω)=j πSgN(ω)的傅里叶反变换f 1(t)为( )。

(A)f 1(t)=t 1 (B)f 1(t)=-t2(C)f 1(t)=-t1 (D)f 1(t)=t 24.周期性非正弦连续时间信号的频谱,其特点为( )。

(A)频谱是连续的,收敛的(B)频谱是离散的,谐波的,周期的(C)频谱是离散的,谐波的,收敛的 (D)频谱是连续的,周期的5.设:二端口网络N 可用A 参数矩阵{a ij }表示,其出端与入端特性阻抗为Z c2、Z c1,后接载Z L ,电源?U s 的频率为ωs ,内阻抗为Z s 。

则:特性阻抗Z c1、Z c2仅与( )有关。

(A){a ij },Z L (B){a ij },Z L ,Z s(C){a ij },ωs , *U s (D){a ij }6.设:f(t)?F(j ω) 则:f 1(t)=f(at+b) ?F 1(j ω)为( )(A)F 1(j ω)=aF(j aω)e -jb ω(B)F 1(j ω)=a 1F(j aω)e -jbω(C)F 1(j ω)= a 1F(j aω)ω-a bj e(D)F 1(j ω)=aF(j aω)ω-ab j e7.已知某一线性时不变系统对信号X(t)的零状态响应为4dtt dX )2(-,则该系统函数H(S)=( )。

相关文档
最新文档