分析仪表原理概述

合集下载

温度类仪表培训资料

温度类仪表培训资料

02
使用
温度类仪表的选型原则
根据测量范围选择
根据实际测温需求,选择量程 合适的温度仪表。
根据精度要求选择
根据测温的精度要求,选择具 有相应精度的温度仪表。
根据安装环境选择
考虑温度、湿度、压力等环境 因素对仪表的影响,选择适合 的仪表型号。
根据可靠性要求选择
选择具有高可靠性、长寿命的 温度仪表,以确保测温的准确
在物理、化学、生物学等科学研究中,温 度是重要的实验参数之一,需要使用高精 度的温度类仪表进行测量。
医疗保健
环境监测
在医疗领域,体温是常见的生理参数之一 ,而温度类仪表则是测量体温的重要工具 。
在环保和气象领域,温度类仪表用于监测 环境温度变化,为气象预报和环境评估提 供数据支持。
温度类仪表的选型与
性和稳定性。
温度类仪表的使用方法
安装与调试
按照说明书正确安装温 度仪表,并进行必要的
调试。
操作与使用
熟悉温度仪表的操作界 面和功能,正确设置参
数和使用。
数据读取
定期读取温度仪表的测 量数据,并记录在相应
的记录表中。
异常处理
发现温度仪表异常时, 应及时处理或联系专业
人员进行检修。
温度类仪表的维护与保养
温度类仪表的技术创新
精度提高
通过改进传感器材料、优 化信号处理算法等手段, 提高温度测量的精度和稳 定性。
智能化
借助物联网、云计算等技 术,实现温度仪表的远程 监控、数据分析和故障预 警等功能。
节能环保
开发低功耗、环保型的温 度仪表,减少对环境的负 面影响。
未来温度类仪表的应用前景
工业自动化
随着工业自动化程度的提高,温 度仪表将在智能制造、流程控制

仪器分析(第四版)第二章

仪器分析(第四版)第二章
一个板体积 3.试样开始都加在0号板上,且试样沿色谱方向的扩 散(纵向扩散)忽略不计 4.分配系数在各塔板上是常数


3
塔板高度
H
2 1 A 0
L
L H n
P12例
n>50,对称的峰形曲线 气相色谱中,n约为103-106,呈趋于正态分布曲线
理论塔板数(n)可根据色谱图上所测得的保留
时间(tR)和峰底宽(Y)或半峰宽( Y1/2 )按下
4)k与保留时间的关系
若流动相在柱内线速度为u(一定时间内载气在柱内
流动的距离,若固定相对组分有保留作用,组分在
柱内的线速度us小于u,两者比值为滞留因子
R S uS / u
也可用质量分数表示:
mM RS w mS m M
1 1 mS 1 k 1 mM

推导:
组分和流动相通过长度为L的色谱柱,所需时间为:

理论上可以推导出:
VS 1 kK K VM
相比,: VM / VS, 反映各种色谱柱柱型及其结构特征 填充柱(Packing column): 6~35 毛细管柱(Capillary column): 50~1500

结论:
分在两相中质量比,均与组分及固定相的热力学性
1)分配系数是组分在两相中的浓度之比,分配比是组
试样中各组分经色谱柱分离后,按先后次序经过检测 器时,检测器就将流动相中各组分浓度变化转变为相 应的电信号,由记录仪所记录下的信号——时间曲线 或信号——流动相体积曲线,称为色谱流出曲线,
常用术语:
基线: 在操作条件下,仅有纯流动相进入检 测器时的流出曲线。 稳定的基线为一直线
基线漂移:基线随时间定向缓慢变化

仪表标定方法

仪表标定方法

仪表标定方法引言:仪表标定是指根据已知标准或测量基准,对各种仪器仪表进行调整和校准,以保证其测量结果的准确性和可靠性。

本文将介绍仪表标定的基本原理和常用方法。

一、仪表标定的基本原理仪表标定的基本原理是通过与已知标准或测量基准相比较,找出仪表的误差,并对其进行修正,以使其测量结果更加准确。

仪表标定的目的是使仪表的示值尽可能接近被测量的真实值。

二、仪表标定的步骤1. 确定标定量程:首先要确定仪表的标定量程,即仪表能够测量的最大和最小值。

根据被测量的范围确定标定量程,以保证测量结果的准确性。

2. 准备标准器:准备与被测量相符的标准器,标准器的准确度要高于被测量仪表的要求。

3. 进行标定操作:将标准器与被测量仪表连接,按照标定程序进行操作。

根据需要可以进行多次标定,以提高标定的准确性。

4. 记录数据:在进行标定时,要准确记录标准器的示值和被测量仪表的示值,以便后续分析和比较。

5. 分析数据:通过对记录的数据进行分析,可以得出被测量仪表的误差和不确定度,从而确定是否需要进行调整和修正。

6. 修正仪表:根据分析结果,对仪表进行调整和修正,以减小误差,并提高测量结果的准确性。

7. 验证标定结果:修正后的仪表需要经过验证,与标准器进行比较,以确保修正后的仪表的测量结果的准确性。

三、常用的仪表标定方法1. 比较法:将被测量仪表与标准器同时连接,通过比较两者的示值,得出被测量仪表的误差。

比较法适用于一些简单的仪表,如温度计、压力计等。

2. 零位校准法:对于一些仪表,如电子天平、电子秤等,可以通过将被测量仪表置零,与零位标准器进行比较,来进行标定。

3. 多点校准法:通过选取多个标准点,对仪表进行多次标定,以得到更加准确的校准结果。

多点校准法适用于一些复杂的仪表,如光谱仪、电压表等。

4. 标定曲线法:通过对标准器和被测量仪表的示值进行多次比较,绘制标定曲线,然后将被测量仪表的示值与标定曲线进行比较,以得出被测量仪表的误差。

2024版全新仪表培训课件

2024版全新仪表培训课件
2024全新仪表培训课件
目录
• 仪表概述与基础知识 • 全新仪表产品介绍 • 仪表安装与调试 • 仪表使用与维护 • 仪表校准与验证 • 仪表选购与售后服务
01 仪表概述与基础知识
仪表定义及作用
仪表定义
仪表是用于测量、显示、记录和控制各种物理量或化学量的设备或装置,广泛 应用于工业、医疗、科研等领域。
仪表作用
仪表能够将被测物理量或化学量转换为可识别的信号,并进行显示、记录和控 制,从而实现对工业生产过程、实验室研究等应用场景的精确控制和监测。
仪表分类与特点
分类方式
仪表可根据测量原理、结构形式、使用场合等多种方式进行分类,如机械式仪表、 电子式仪表、智能仪表等。
特点比较
不同类型的仪表具有各自的特点和适用范围,例如机械式仪表结构简单、价格低廉, 但精度较低;电子式仪表精度高、响应速度快,但价格较高;智能仪表则具有自动 化、智能化等优点。
验证周期一般根据仪表的校准结果和使用情况来确定,可以是一个固 定的时间间隔,也可以是根据实际情况进行灵活调整。
校准与验证结果处理
校准证书和报告
校准完成后,应出具校准证书和报告,记录仪表 的校准结果和相关信息。
验证结果记录
验证完成后,应记录验证结果和相关信息,以便 后续追溯和分析。
ABCD
不合格仪表处理
参数设置菜单
进入仪表参数设置菜单, 可对测量范围、报警值等 进行调整。
历史数据查询
查询仪表历史测量数据, 方便用户进行数据分析和 处理。
仪表使用注意事项
使用前检查
确保仪表完好无损,测量范围符 合需求,电源连接正确。
正确操作
按照操作界面提示进行操作,避免 误操作导致仪表损坏或测量不准确。

自动化仪表培训(全)ppt课件

自动化仪表培训(全)ppt课件

CHAPTER 05
自动化仪表在工业生产中的 应用案例
石油化工行业应用案例
原油储罐液位测量
采用雷达液位计进行连续测量,实现 高精度、高可靠性的液位监测。
化学反应釜温度控制
采用温度变送器和控制器实现精确控 温,确保产品质量和生产安全。
石油管道流量测量
采用质量流量计进行贸易交接计量, 确保计量准确、公正。
CHAPTER 04
自动化仪表选型与使用注意 事项
选型原则及步骤
明确测量需求
根据工艺要求,确定测量参数(如压力、温 度、流量等)及测量范围。
选择合适型号
根据测量需求和仪表性能,选择适合的型号 和规格。
了解仪表性能
熟悉不同类型自动化仪表的测量原理、精度 等级、稳定性等性能指标。
考虑环境因素
根据安装环境和使用条件,选择具有相应防养建议
使用注意事项
遵守操作规程,避免超量程使用;保持仪表清洁干燥,防止腐蚀和损 坏。
日常维护
定期检查仪表显示是否正常,接线是否松动;清理表面积尘和油污等 杂物。
定期保养
按照厂家推荐的保养周期和方法进行保养,包括更换易损件、清洗内 部管路等。
故障处理
发现故障时及时停机检查,根据故障代码或现象判断故障原因并排除 ;若无法自行解决,请联系厂家或专业维修人员进行维修。
自动化仪表培训(全 )ppt课件
目 录
• 自动化仪表概述 • 自动化仪表基本原理 • 自动化仪表组成结构 • 自动化仪表选型与使用注意事项 • 自动化仪表在工业生产中的应用案例 • 自动化仪表市场前景与发展趋势
CHAPTER 01
自动化仪表概述
定义与分类
定义
自动化仪表是用于测量、显示、 记录和控制各种工业过程参数的 设备,具有自动化、智能化、高 精度等特点。

仪表基础知识(课件)

仪表基础知识(课件)

三、仪表信号分类、传输及处理
Ø 1、仪表信号的规范化: 1973年4月国际电工委员会(IEC)通过的标准规定, 过程控制系统的模拟信号为DC 4mA-20mA,电压信 号为DC 1V-5V。我国的自动化仪表规定,现场传输 信号用DC4mA-20mA,控制室内各仪表间的联络信 号用DC 1V-5V。 这两种标准都以直流信号作为联络标准,其优点是: 在传输过程中易于和交流感应干扰相区别。采用电流 制优点是:适于信号远距离传输,不受线路电阻变化 的影响。
7/3/2021 1:50 PM
三、仪的分类
➢ 1、按测量工艺参数的不同: 温度测量仪表 压力测量仪表 流量测量仪表 液位测量仪表 分析仪表 其他特殊测量仪表
7/3/2021 1:50 PM
三、仪表的分类
Ø 2、按仪表功能的不同:
一个完整的测量系统示意图:


一次敏

感元件

第一过程
变换
处理
第二过程
7/3/2021 1:50 PM
三、仪表信号分类、传输及处理
Ø 5、仪表信号的传输处理?
4-20mA DC
AI卡件
脉冲信号
DI卡件
DO卡件
执 行
控制器

热电阻信号
RTD卡件
AO卡件

热偶信号
热偶卡件
7/3/2021 1:50 PM
四、最常使用的一个工具
7/3/20212012:15/07/P3M
23
➢ 万用表又叫多用表、复用表。 ➢ 万用表分为指针式万用表和数字万用表。
➢ 是一种多功能、多量程的测量仪表,一般万用表可测量直 流电流、直流电压、交流电流、交流电压、电阻等,还可 以测交流电流、电容量、电感量。甚至是频率和三极管的 放大倍数。

化学分析的原理与方法

化学分析的原理与方法化学分析是化学科学中非常重要的一个分支,它可以帮助人们分析和检测各种化学物质的成分和性质,让我们能够更好地理解和掌握化学现象。

在化学分析中,分析的原理和方法是非常关键的,下面我们就来探讨一下化学分析的原理与方法。

一、分析的原理1.化学反应原理化学反应原理是化学分析的基本原理之一,它指的是利用不同化学物质之间发生反应的性质,对样品进行分析。

例如,在化学分析中常用的氧化还原反应、酸碱中和反应、沉淀反应等,都是基于不同化学物质之间的反应原理来进行的。

2.物理性质原理除了化学反应原理外,物理性质原理也是一种常用的分析原理。

物理性质包括分子量、密度、比旋光度、光吸收度等,这些性质可以通过测量来确定分析样品的成分。

例如,通过比色法测量样品的光吸收度,可以确定其含量等。

3.仪器分析原理仪器分析原理指的是利用现代科技发展的各种分析仪器仪表,对样品进行检测和分析。

例如,分子光谱仪、质谱仪、核磁共振仪等,这些仪器的出现和应用,让化学分析的准确性和精度得到了极大的提高。

二、分析的方法1.定量分析定量分析是指对样品中某种成分的数量进行定量测定的方法。

常用的定量方法有重量法、容量法、标准曲线法等。

其中,重量法是利用称量精确的物质来进行测量,并通过计算来得出样品中某种成分的含量,而容量法则是通过滴定法来测定含量。

2.定性分析定性分析是指对样品中所含成分的种类进行准确确定的方法。

常用的定性方法包括颜色反应法、沉淀法、离子交换法、纸层析法等。

其中,纸层析法是一种简便易行的分析方法,它可分离出不同种类的物质,并且使不同物质之间的分离效果更加明显。

3.半定量分析半定量分析则是介于定量分析和定性分析之间的一种方法,它通过测量样品的吸收度、发射度等物理性质,来计算样品中某种成分的含量范围。

半定量分析方法的优点在于能够得到比定性分析更加准确的结果,但是相较于定量分析,其分析结果仍有一定误差。

总之,化学分析是一门重要的科学技术,它涉及到许多不同的分析原理和方法。

常用仪表的结构和测量原理


弹性元件的特点:构造简单,价格便宜,测压范围宽,被 测压力低至几帕,高达数百兆帕都可使用,测量精度也较 高,在目前的测压仪表中占有统治地位。
第八采油厂培训站
中国石油
弹簧管式压力表是工业上应用最广泛的一 种测压仪表,并以单圈弹簧管为最多。弹簧管 式压力表可以直接测量蒸汽、油、水和气体等 介质的表压力、负压和绝压,其测量范围为 10-4~103MPa。 ——优点是结构简单,使用方便,操作安 全可靠。
第八采油厂培训站
中国石油
两种温标的换算关系如下:
T t 273 .15
我国法定的温度计量单位是热力学温标开 尔文,即K,也可以用摄氏温标,即℃。一 般温度计标的温度单位是℃,使用时可用上 式换算。
第八采油厂培训站
中国石油
三、膨胀式温度计
1.双金属温度计(固体膨胀式温度计) 采用膨胀系数不同的两种金属片,迭焊在 一起制成螺旋形感温元件,并置于金属保护 套管中,一端固定在套管底部,称为固定端, 另一端连接在一根细轴上,称为自由端,细 轴上安装有指针用以指示温度。
第八采油厂培训站
中国石油
磁浮子液位计
第八采油厂培训站
中国石油
流 量 测 量
一、流量测量的重要性 在石油、天然气开采过程中,石油、天然气、 水等流体是在管道中处于不断的流动状态。这时需 要对介质的流量进行测量和控制,以确保安全、优 质的生产;同时,流量测量也是进行贸易、经济核 算需要的重要参数。 石油、天然气的计量以总量计量为主,计量方 法有两类:质量法和体积法。质量法的计量单位为 吨,通常我国原油计量用质量法;体积法的计量单 位为立方米,国外用桶或加仑,我国天然气计量用 体积法。
二、流量的概念和单位 瞬时流量 单位时间内流过管道横截面积的流体数量 叫流量。流量可用体积流量 qv 和质量流量 qm 两种方法表示。 体积流量:单位时间内流过管道横截面积 的流体体积数量为体积流量。天然气流量常用 体积流量来表示,其法定单位为m3/s,m3/h, m3/d等。 质量流量:单位时间内流过管道横截面积 的流体质量数量为质量流量。

第六章 显示仪表全

29
第三节 新型显示仪表
一、无纸记录仪
以CPU为核心采用液晶显示的记录仪,直接把记录信 号转化成数字信号后,送到随机存储器加以保存,并 在大屏液晶显示屏上加以显示。
图6-13 无笔、无纸记录仪的原理方框图
30
第三节 新型显示仪表
一、无纸记录仪
无纸记录仪
有纸记录仪
31
无纸记录仪
无笔、无纸记录仪显示界面
R4
E I1
RG
RnP
1000 4
6.76 5.23
238 .01
根据式(6-2),可得
R3
E I2
R2
1000 2
5.33
494 .67
15
第一节 模拟式显示仪表
注意
以上计算都是粗略的,在进行精确的计算时, 还要考虑许多实际的情况,例如滑线电阻 RP的两 端一般是移不到头的。所以在计算RG、R4时必 须考虑这种情况。
R4
E I1
RG
RnP
(6-1)
(5)冷端温度补偿电阻 R2 降低了测量误差。
(6)下支路限流电阻R3 它与R2配合,保证了下支路回路 的工作电流为2mA。
R3
E I2
R2
(6-2)
12
第一节 模拟式显示仪表
例6-1 用镍铬-镍硅热电偶配电子电位差计测量某炉 举例 温,温度的测量范围在400~900℃。图6-4是电位差计
3
模拟式显示仪表
显示仪表
4
模拟式显示仪表
1.动圈式显示仪表
动圈表可以与热电偶、热电阻、压力变送器、差压变送器及 流量变送器相配合,用 来指示工业对象的温度、压力和流量参数,也可以对直流毫伏信号进行显示。各种被测 参数只要通过传感器或变送器转换成相应的电信号,就可由动圈表直接进行显示。在动 圈表中增加一些附加控制电路,还可以实现报警及控制功能。

仪表接地的原理和用意(SHT3081-2019补充资料)

仪表接地的原理和用意(SH/T3081-2019补充资料) SH/T3081-2019《石油化工仪表接地设计规范》详细规定了仪表及控制系统接地做什么、怎样做,由于只能按照标准规范编制的要求行文及用词,不能说明规范中条文的道理和背景,因而阅读时很乏味,有时甚至不容易理解。

本文从九个方面着重讨论了仪表接地的原理和用意,可以作为有关规范的补充资料,供读者参考。

接地的目的仪表及控制系统接地的目的主要有两个:一是保护人身安全和电气设备的运行安全,包括保护接地、本质安全系统接地、防静电接地和防雷接地等,称为安全接地或保护接地;二是信号传输和减少干扰的接地,称为工作接地或参考接地。

这两种接地的目的不同,接地连接方法也有所不同,但两者又是相关的,不能截然分开。

仪表及控制系统安全接地或保护接地,本文称为保护接地,是仪表用电而需要的接地。

仪表用电的来源是工业或民用的220V交流电,因此仪表专业的保护接地与电气专业的保护接地一样,属于电气低压供配电系统接地,因此应按电气专业的有关标准、规范和方法进行,并应接入电气专业的低压供配电系统接地装置。

保护接地与电气低压供配电系统的供电形式相关,并且有多种形式。

根据仪表及控制系统交流用电的性质与特点,普遍采用TNS形式,具有单独的接地线PE(protecting earthing),是较为安全的用电形式,TNS供电形式如图1所示。

仪表保护接地与来自电气专业的PE线是同一种接地,属于重复接地。

图1 TN-S接线图仪表及控制系统工作接地或参考接地,本文称为工作接地,是直流电源系统接地或公共点接地,属于电压公共参考点的连接,并不一定要真实接大地。

不同的文献对仪表工作接地有不同的用词、定义和分类,实质是一样的。

接地的作用1、保护接地的作用有三个:①在用电设备上形成与地面电位接近的电位,当用电设备绝缘损坏漏电时,不会对站在地上并且接触用电设备金属部件的人形成致人伤害的接触电压;②形成漏电回路电流,使漏电保护器件动作,起到保护作用;③用于电涌电流的泄放,电涌电流可能来自电源,也可能来自雷电。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析仪表原理概述
概述:
分析仪表是一种用于测量、监测和分析各种物质成分和性质的仪器设备。

它们
在各个领域,如化学、环境监测、生物医学、食品安全等方面都有广泛的应用。

分析仪表的原理是基于物质与能量之间的相互作用,通过测量这种相互作用的变化来获取样品的信息。

一、光学原理:
光学原理是分析仪表中常用的一种原理。

根据样品对光的吸收、散射、透射等
特性,可以通过光的强度变化来推断样品的成分和性质。

例如,紫外可见分光光度计利用样品对可见光的吸收来测量样品的浓度。

红外光谱仪则利用样品对红外光的吸收来分析样品的化学结构。

二、电化学原理:
电化学原理是另一种常用的分析仪表原理。

它利用电化学反应来测量样品的成
分和性质。

例如,pH计通过测量溶液中氢离子浓度的变化来确定溶液的酸碱性质。

电化学分析仪则通过测量电流、电压等电化学参数来分析样品的成分。

三、质谱原理:
质谱原理是一种高灵敏度的分析仪表原理。

它通过将样品中的分子离子化,并
在磁场中进行分离和检测,来确定样品的成分和结构。

质谱仪广泛应用于有机化学、环境监测、药物分析等领域。

四、色谱原理:
色谱原理是一种将混合物中的成分分离并进行定量分析的方法。

它利用样品中各组分在固定相或液相中的分配系数不同,通过在色谱柱中的运动速度差异来实现分离。

气相色谱、液相色谱等都是常见的色谱分析方法。

五、核磁共振原理:
核磁共振原理是一种利用核自旋共振现象来分析样品的原理。

它通过在外加磁场和射频场的作用下,使样品中的核自旋发生共振吸收,从而得到样品的结构和成分信息。

核磁共振广泛应用于有机化学、生物医学、材料科学等领域。

六、质量光谱原理:
质量光谱原理是一种利用质量光谱仪来分析样品的原理。

它通过将样品中的分子或离子离子化,并在磁场中进行分离和检测,来确定样品的成分和结构。

质量光谱仪广泛应用于有机化学、环境监测、药物分析等领域。

七、热分析原理:
热分析原理是一种利用样品在升温过程中的质量、体积、热量等性质的变化来分析样品的原理。

常见的热分析方法有差示扫描量热法、热重分析法等。

热分析广泛应用于材料科学、石油化工、环境监测等领域。

总结:
分析仪表原理多种多样,每种原理都有其适用的领域和特点。

通过了解和掌握这些原理,可以选择合适的分析仪表来满足不同领域的分析需求。

随着科学技术的不断发展,分析仪表的原理也在不断创新和完善,为各行各业的分析工作提供更加精确和高效的解决方案。

相关文档
最新文档