哈尔滨工业大学 航天器轨道动力学作业参考

哈尔滨工业大学 航天器轨道动力学作业参考
哈尔滨工业大学 航天器轨道动力学作业参考

《结构力学》作业答案

[0729]《结构力学》 1、桁架计算的结点法所选分离体包含几个结点 A. 单个 2、固定铰支座有几个约束反力分量 B. 2个 3、从一个无多余约束的几何不变体系上去除二元体后得到的新体系是 A. 无多余约束的几何不变体系 4、两刚片用三根延长线交于一点的链杆相连组成 A. 瞬变体系 5、定向滑动支座有几个约束反力分量 B. 2个 6、结构的刚度是指 C. 结构抵抗变形的能力 7、桁架计算的截面法所选分离体包含几个结点 B. 最少两个 8、对结构进行强度计算的目的,是为了保证结构 A. 既经济又安全 9、可动铰支座有几个约束反力分量 A. 1个 10、固定支座(固定端)有几个约束反力分量 C. 3个 11、改变荷载值的大小,三铰拱的合理拱轴线不变。 A.√ 12、多余约束是体系中不需要的约束。 B.× 13、复铰是连接三个或三个以上刚片的铰 A.√ 14、结构发生了变形必然会引起位移,结构有位移必然有变形发生。 B.×

15、如果梁的截面刚度是截面位置的函数,则它的位移不能用图乘法计算。 A.√ 16、一根连杆相当于一个约束。 A.√ 17、单铰是联接两个刚片的铰。 A.√ 18、连接四个刚片的复铰相当于四个约束。 B.× 19、虚功原理中的力状态和位移状态都是虚设的。 B.× 20、带拉杆三铰拱中拉杆的拉力等于无拉杆三铰拱的水平推力。 A.√ 21、瞬变体系在很小的荷载作用下会产生很大的内力,所以不能作为结构使用。 A.√ 22、一个无铰封闭框有三个多余约束。 A.√ 23、三铰拱的水平推力不仅与三铰的位置有关,还与拱轴线的形状有关。 B.× 24、三铰拱的主要受力特点是:在竖向荷载作用下产生水平反力。 A.√ 25、两根链杆的约束作用相当于一个单铰。 B.× 26、不能用图乘法求三铰拱的位移。 A.√ 27、零杆不受力,所以它是桁架中不需要的杆,可以撤除。 B.× 28、用图乘法可以求等刚度直杆体系的位移。 A.√ 29、连接四个刚片的复铰相当于四个约束。

哈工大结构动力学大作业2012春

结构动力学大作业 对于如下结构,是研究质量块的质量变化和在简支梁上位置的变化对整个系统模态的影响。 1 以上为一个简支梁结构。集中质量块放于梁上,质量块距简支梁的左端点距离为L. 将该简支梁简化为欧拉伯努利梁,并离散为N 个单元。每个单元有两个节点,四个自由度。 单元的节点位移可表示为: ]1122,,,e v v δθθ?=? 则单元内一点的挠度可计作: 带入边界条件: 1 3 32210)(x a x a x a a x v +++=0 1)0(a v x v ===3 322102)(L a L a L a a v L x v +++===1 10 d d a x v x ===θ2 321232d d L a L a a x v L x ++===θ1 0v a =

[]12 3 4N N N N N = 建立了单元位移模式后,其动能势能均可用节点位移表示。单元的动能为: 00111()222 l l T T T ke e e e e y E dx q N Ndxq q mq t ρρ?===??? 其中m 为单元质量阵,并有: l T m N Ndx ρ=? 带入公式后积分可得: 222215622541322413354 1315622420133224l l l l l l l m l l l l l l ρ-?? ??-??= ?? -?? ---? ? 单元势能可表示为 22 200 11()()22 2 T l l T T e pe e e e q y E EI dx EI N N dxq q Kq x ?''''== =??? 其中K 为单元刚度矩阵,并有 ()l T K EI N N dx ''''=? 2 23 2212 612664621261266264l l l l l l EI k l l l l l l l -????-??=??---??-?? 以上为单元类型矩阵,通过定义全局位移矩阵,可以得到系统刚度矩阵和系统质量矩 1 1θ=a )2(1)(3211222θθ+--=L v v L a )(1)(22122133θθ++-= L v v L a 1232133222231)(θ???? ??+-+???? ??+-=L x L x x v L x L x x v 2 2232332223θ??? ? ??-+???? ??-+L x L x v L x L x 2 4231211)()()()()(θθx N v x N x N v x N x v +++=

结构动力学作业1

2012学年《结构动力学》作业1 发布日期:3月9日上交日期:3月16日 1.采用牛顿第二定律推导复合摆的 运动方程,该复合摆由一根长L, 单位长度的质量为m的均质棒以 及半径为R质量为M的圆盘组成 (见图1)。 图1:复合摆示意图 2.推导图2中系统的等效弹簧常数。 图2:由弹簧通过刚性连杆支持的系统 3.承受弯曲的悬臂梁是由2个均匀段 组成,如图3所示。求对应于自由 端x=L处施加垂直力时的等效弹 簧常数。 图3:非均匀梁作为弹簧 4.如图4,比重计质量为0.0115 kg, 用于测定某液体的密度。比重计伸 出液面部分的玻璃管直径为0.8 cm,液体比重为1.02 (即是水的 密度的1.02倍)。现将比重计轻轻 地向下按一下,比重计将作上下自 由振动,求振动周期。 图4 5.如下图所示,重量为P的小车从斜面上高h处滑下,与缓冲弹簧相撞后,随同弹簧一起做自由振动。弹簧刚度为K,斜面倾角为 ,小车与斜面间摩擦不计。求小车的振动周期和振幅。(注意:振幅为相对于弹簧静平衡位置) 6.教材习题2-1 7.教材习题2-2

8. 如教材图2-7所示单自由度系统,假设m =1kg ,K =100N/m ,初始条件x(0)=0.1m , 0)0(=x ,a) 绘制 c =1 N ·s/m ,5N ·s/m ,10N ·s/m 条件下,t =0~10s 的响应;b )绘制 c =20 N ·s/m ,30N ·s/m ,40N ·s/m 条件下, t =0~10s 的响应。要求用Matlab 编程计算并绘图。对结果进行分析。 9. 教材习题2-4 10. 教材习题2-5 11. 一个有粘性阻尼的弹簧质量系统,作自由振动时测得振动周期为1.8s ,相邻两振幅之比 为4.2:1。求此系统的固有频率。 12. 列出下图系统的振动微分方程。已知m =98 N ,K =9800 N/m ,r =9800 N s/m ,a =L/3, b=2L/3。(1)求系统振动时的频率(注意:不是固有频率),并与无阻尼时的固有频率作比较;(2)求系统振动时振幅的对数衰减率。 13. 一质量弹簧系统的质量块重W =19.6 kN ,弹簧刚度系数K =48.02 kN/m ,今需在此系统 中配置一粘性阻尼,使系统的相对阻尼系数1.0=?,问阻尼器的粘性阻尼系数c 应为多少?系统自由振动时的频率为多少?

哈工大结构风工程课后习题答案

结构风工程课后思考题参考答案 二、大气边界层风特性 1 对地表粗糙度的两种描述方式:指数律和对数律(将公式写上)。 2 非标准地貌下的风速换算原则(P)和方法(P公式)。1514 3 脉动风的生成: 近地风在流动过程中由于受到地表因素的干扰,产生大小不同的涡旋,这些涡旋的迭加作用在宏观上表现为速度的随机脉动。在接近地面时,由于受到地表阻力的影响,导致风速减慢并逐步发展为混乱无规则的湍流。 脉动风的能量及耗散机制:而湍流运动可以看做是能量由低频脉动向高频脉动过渡,并最终被流体粘性所耗散的过程。在低频区漩涡尺度较大,向中频区(惯性子区)、高频区(耗散区)漩涡尺度逐渐减小,小尺度涡吸收由惯性子区传递过来的能量,能量最终被流体粘性所耗散。 4 Davenport谱的特点:先写出公式 通过不同水平脉动风速谱的比较: (1)D谱不随高度变化,而其他谱(如Kaimal谱、Solari谱、Karman谱)则考虑了近地湍流随高度变化的特点;(D谱不随高度变化,在高频区符合-5/3律,没有考虑近地湍流随高度变化的特点;) (2)D谱的谱值比其它谱值偏大,会高估结构的动力反应,计算结果偏于保守。(3)S(0)=0,意味着L=0,与实际不符。uu5 湍流度随高度及地面粗糙程度的变化规律:随地面粗糙度的增大而增大,随高度的增加而减小。 积分尺度随高度及地面粗糙程度的变化规律:大量观测结果表明,大气边界层中的湍流积分尺度是地面粗糙度的减函数,而且随着高度的增加而增加。 功率谱随高度及地面粗糙程度的变化规律:随着高度增大和粗糙度的减小,能量在频率上的分布趋于集中,谱形显得高瘦;随着高度减小和粗糙度的增大,能量在频率上的分布趋于分散,谱形显得扁平。 相干函数随高度及地面粗糙程度的变化规律:随地面粗糙度的增大而减小,随高度的增加而增大。 6 阵风因子与峰值因子的区别:阵风因子G=U'/U,是最大风速与平均风速的比/ σ是最大脉动风速与脉动风速均方根的比值。g=u 值;峰值因子umax联系:二者可以相互换算:G=(U'+gσ)/U'=1+gσ/U'=1+gI。Uuu 三、钝体空气动力学理论 1 钝体绕流的主要特征有: )粘性效应:气体粘性随温度升高而增大,液体粘性随温度升高而减小。1((2)边界层的形成:由于粘性效应,使靠近物体表面的空气流动速度减慢,形 成气流速度从表面等于零逐渐增大到与外层气流速度相等,形成近壁面流动现象。 (3)边界层分离:如果边界层内的流体微粒速度因惯性力减小到使靠近表面的气流倒流,便出现了边界层分离。 (4)再附:在一定条件下,自建筑物前缘分离的边界层会偶然再附到建筑物表面,这时附面层下会形成不通气的空腔,即分离泡。每隔一段时间分离泡破裂产生较大的风吸值,产生一个风压脉冲。 (5)钝体尾流:对于细长钝体,漩涡脱落是在其两侧交替形成的。漩涡脱落时导致建筑物出现横向振动的主要原因。

航天器总体设计答案总结(新)

航天器总体设计 (无平时成绩,考试试卷满分制,内容为21题中抽选13题) 1、航天器研制及应用阶段的划分。 主要划分为工程论证、工程研制、发射、在轨测试与应用四个阶段。 1)工程论证阶段:开展任务分析、方案可行性论证工作。 2)工程研制阶段:包括方案设计阶段、初样设计与研制阶段、正样设计与研制阶段。 3)发射阶段:发射场测试及发射。 4)在轨测试与应用阶段:在轨测试阶段、在轨应用阶段。 2、航天工程系统的组成及各自的任务。 组成:航天工程系统是由航天器、航天运输系统、航天发射场、航天测控网、应用系统组成的完成特定航天任务的工程系统。 任务: 1)航天器:指在地球大气层以外的宇宙空间执行探索、开发和利用太空以及地球以外天体的特定任务飞行器,又称空间飞行器。 2)航天运输系统:指在地球和太空之间或在太空中运送航天器、人员或物资的飞行器系统,包括运载器、运输器、轨道机动飞行器和轨道转移飞行器等。 3)航天发射场:系指发射航天器的基地,包括测试区、发射区、发射指挥控制中心、综合测量设施、勤务保障设施等。 4)航天测控网:系指对航天运输系统、航天器进行跟踪、测量、监视、指挥和控制的综合系统,包括发射指挥控制中心、测控中心、航天指挥控制中心、测控站和多种传输线路及设备。 5)应用系统:系指航天器的用户系统,一般是地面应用系统,如各类应用卫星的地面应用系统、载人航天器的地面应用系统、空间探测器的地面应用系统。 3、航天器总体设计概念及主要阶段划分。 概念:航天器总体设计是指为完成航天任务规定的目标所开展的以航天器为对象的一系列设计活动。 主要阶段划分:主要分为任务分析、总体方案可行性论证、总体方案设计、总体详细设计四个阶段。总体详细设计又分为总体初样设计和总体正样设计。 4、航天器总体设计的基本原则。 满足用户需求的原则、系统整体性原则、系统层次性原则、研制的阶段性原则、创新性和继承性原则、效益性原则。 5、航天器技术从成熟程度上可分为哪四类技术,各自的含义。 1)成熟技术:已经过在轨飞行考验,沿用原有的分系统方案、部件、电路和结构。 2)成熟技术基础上的延伸技术:在成熟技术基础上需要进行少量修改设计的分系统方案、部件、电路和结构。 3)不成熟技术(关键技术):必须经过研究、生产和试验(攻关)后才能在卫星上应用的技术。 4)新技术(关键技术):尚未在卫星上使用过的技术。 6、航天器总体方案设计阶段的主要工作。 1)用户使用要求及技术指标要求的确定。 2)总体方案的确定。 3)总体技术指标的分析、分配及预算。 4)分系统方案及技术指标的确定。

结构动力学大作业

结构动力学作业 姓名: 学号:

目录 1.力插值法 (1) 1.1分段常数插值法 (1) 1.2分段线性插值法 (4) 2.加速度插值法 (7) 2.1常加速度法 (7) 2.2线加速度法 (9) 附录 (12) 分段常数插值法源程序 (12) 分段线性插值法源程序 (12) 常加速度法源程序 (13) 线加速度法源程序 (13)

1.力插值法 力插值法对结构的外荷载进行插值,分为分段常数插值法和分段线性插值法,这两种方法均适用于线性结构的动力反应计算。 1.1分段常数插值法 图1-1为一个单自由度无阻尼系统,结构的刚度为k ,质量为m ,位移为y (t ),施加的外力为P (t )。图1-2为矩形脉冲荷载的示意图,图中t d 表示作用的时间,P 0表示脉冲荷载的大小。 图1-1 单自由度无阻尼系统示意图 图1-2 矩形脉冲荷载示意图 对于一个满足静止初始条件的无阻尼单自由度体系来说,当施加一个t d 时间的矩形脉冲荷载,此时结构在t d 时间内的位移反应可以用杜哈梅积分得到: 0()sin ()2 (1cos )(1cos ) (0) t st st d P y t t d m t y t y t t T ωττω πω=-=-=-≤≤? (1-1) 如果结构本身有初始的位移和速度,那么叠加上结构自由振动的部分,结构的位移反应为: 02()cos sin (1cos ) (0 )st d y t y t y t t y t t T πωωω =+ +-≤≤ (1-2)

图1-3 分段常数插值法微段示意图 对于施加于结构任意大小的力,将其划分为Δt 的微段,每一段的荷载都为一个常数(每段相当于一个矩形的脉冲荷载),如图1-3所示,则将每一段的位移和速度写成增量的形式为: 1cos t sin t (1cos t)i i i i y P y y k ωωωω +=?+ ?+-? (1-3) i+1/sin t cos t sin t i i i y P y y k ωωωωω =-?+ ?+ ? (1-4) 程序流程图如下

结构力学作业86036

西南交《结构力学E》离线作业 一、单项选择题(只有一个选项正确,共13道小题) 1. 瞬变体系在一般荷载作用下( C) (A) 产生很小的内力 (B) 不产生内力 (C) 产生很大的内力 (D) 不存在静力解答 2. 图示体系为:B (A) 几何不变无多余约束 (B) 几何不变有多余约束; (C) 常变体系; (D) 瞬变体系。 3. 图示某结构中的AB杆的隔离体受力图,则其弯矩图的形状为( B)

(A) 图a (B) 图b (C) 图c (D) 图d 4. 图示结构:B (A) ABC段有内力; (B) ABC段无内力; (C) CDE段无内力; (D) 全梁无内力。 5. 常变体系在一般荷载作用下(D) (A) 产生很小的内力 (B) 不产生内力 (C) 产生很大的内力 (D) 不存在静力解答 6. 图示体系的几何组成为D

(A) 几何不变,无多余联系; (B) 几何不变,有多余联系; (C) 瞬变; (D) 常变。 7. 在弯矩图的拐折处作用的外力是(B)。 (A) 轴向外力 (B) 横向集中力 (C) 集中力偶 (D) 无外力 8. 对于图示结构,下面哪个结论是正确的。(B) (A) 该结构为桁架结构; (B) 该结构是组合结构,其中只有57杆是受拉或受压杆(二力杆); (C) 只有杆34的内力有弯矩; (D) 除杆123外,其余各杆均为二力杆。

9. 在径向均布荷载作用下,三铰拱的合理轴线为:( A) (A) 圆弧线; (B) 抛物线; (C) 悬链线; (D) 正弦曲线。 : 10. 如图示各结构弯矩图的形状正确的是( B) (A) 如图a (B) 如图b (C) 如图c (D) 如图d 11. 静定结构在支座移动时,会产生:( C) (A) 内力; (B) 应力; (C) 刚体位移; (D) 变形。 12. 图示桁架,各杆EA为常数,除支座链杆外,零杆数为:(A )

哈工大结构力学题库七篇(I)

第七章影响线 一判断题 1. 图示梁AB与A0B0,其截面C与C0弯矩影响线和剪力影响线完全相同。(X) 题1图题2图 2. 图示结构Q E影响线的AC段纵标不为零。(X) 3. 图示梁K截面的M K影响线、Q K影响线形状如图a、b所示。 4. 图示梁的M C影响线、Q C影响线形状如图a、b所示。 5. 图示梁的M C影响线、M B影响线形状如图a、b所示。 6. 图示结构M B影响线的AB段纵标为零。 7. 图示梁跨中C截面弯矩影响线的物理意义是荷载P=1作用在截面C的弯矩图形。(X) 8. 用静力法作静定结构某量值的影响线与用机动法作该结构同一量值的影响线是不等价 的。(X) 9. 求某量值影响线方程的方法,与恒载作用下计算该量值的方法在原理上是相同的。(√) 10. 影响线是用于解决活载作用下结构的计算问题,它不能用于恒载作用下的计算。(X) 11. 移动荷载是指大小,指向不变,作用位置不断变化的荷载,所以不是静力荷载。(X) 12. 用静力法作影响线,影响线方程中的变量x代表截面位置的横坐标。(X) 13. 表示单位移动荷载作用下某指定截面的内力变化规律的图形称为内力影响线。(√) 14. 简支梁跨中截面弯矩的影响线与跨中有集中力P时的M图相同。(X) 15. 简支梁跨中C截面剪力影响线在C截面处有突变。(√) 16. 绝对最大弯矩是移动荷载下梁的各截面上最大的弯矩。(√) 17. 静定结构及超静定结构的内力影响线都是由直线组成。(X) 18. 图示结构Q C影响线的CD段为斜直线。 19. 图示结构K断面的剪力影响线如图b所示。(√) 题19图 20. 用机动法作得图a所示Q B左结构影响线如图b。 题20图题21图 21. 图示结构a杆的内力影响线如图b所示 22. 荷载处于某一最不利位置时,按梁内各截面得弯矩值竖标画出得图形,称为简支梁的弯

结构动力学大作业

目录 一、结构特性矩阵 1.1框架设计 (2) 1.2截面尺寸 (2) 1.3动力自由度 (2) 1.4结构的一致质量矩阵 (3) 1.5结构的一致刚度矩阵 (13) 二、频率与振型 2.1简化的质量矩阵 (25) 2.2简化的刚度矩阵 (25) 2.3行列式法求频率与振型 (27) 2.4Stodola法求频率与振型 (27) 三、时程分析 3.1框架资料 (31) 3.2地震波波形图 (31) 3.2瑞利阻尼 (32) 3.4操作步骤 (33) 3.5各楼层位移时程反应图 (37)

一、结构特性矩阵 1.1框架设计 框架平面图如图1所示,跨度均为6.0m,层高均为3.6m,混凝土采用C30。 图1 框架平面图 1.2截面尺寸 梁均为300mm600mm ? ?,柱均为500mm500mm 1.3动力自由度 框架结构可以理想化为在节点处相互连接的梁柱单元的集合。设梁、柱的轴向变形均忽略不计,只考虑横向平面位移,则该框架有3个平动自由度和12个角自由度,共15个自由度,并对梁柱单元分别编号,如图2所示: 图2 单元编号及自由度

将结构分成在有限个节点处相互连接的○1~○21个离散单元体系,通过计算各个单元的一致质量矩阵、一致刚度矩阵,并将相关的单元叠加求得整个单元结构的一致质量矩阵、一致刚度矩阵。 1.4结构的一致质量矩阵 在节点位移作用下框架梁和柱上所引起的变形形状采用三次Hermite 多项式,因此均布质量梁的一致质量矩阵为: ??? ???? ???????4 3 2 1 I I I I f f f f =420L m ?? ? ?? ???????------222 2432213341322221315654132254156 L L L L L L L L L L L L ???? ????????? ????? (4) .. 3 2 1 v v v v 梁:m =250060.030.0??=450kg/m, L=6m;

航天器轨道力学实验一

实验一卫星轨道参数仿真 一、实验目的 1、了解STK的基本功能; 2、掌握六个轨道参数的几何意义; 3、掌握极地轨道、太阳同步轨道、地球同步轨道等典型轨道的特点。 二、实验环境 卫星仿真工具包STK 三、实验原理 (1)卫星轨道参数 六个轨道参数中,两个轨道参数确定轨道大小和形状,两个轨道参数确定轨道平面在空间中的位置,一个轨道参数确定轨道在轨道平面内的指向,一个参数确定卫星在轨道上的位置。 ? 轨道大小和形状参数: 这两个参数是相互关联的,第一个参数定义之后第二个参数也被确定。 第一个参数第二个参数 semimajor axis 半长轴Eccentricity 偏心率 apogee radius 远地点半径perigee radius 近地点半径 apogee altitude 远地点高度perigee altitude 近地点高度 Period 轨道周期Eccentricity 偏心率 mean motion平动Eccentricity 偏心率

图1 决定轨道大小和形状的参数 ?轨道位置参数: 轨道倾角(Inclination)轨道平面与赤道平面夹角 升交点赤经(RAAN)赤道平面春分点向右与升交点夹角 近地点幅角(argument of perigee)升交点与近地点夹角 ?卫星位置参数: 表1 卫星位置参数 (2)星下点轨迹 在不考虑地球自转时,航天器的星下点轨迹直接用赤经α、赤纬δ表示(如图2)。直接由轨道根数求得航天器的赤经赤纬。

图2 航天器星下点的球面解法 在球面直角三角形SND 中: ?? ???+==??+Ω=+==)tan(cos tan cos tan )sin(sin sin sin sin f i u i f i u i ωαα αωδ (1) 由于地球自转和摄动影响,相邻轨道周期的星下点轨迹不可能重合。设地球自转角速度为E ω,t 0时刻格林尼治恒星时为0G S ,则任一时刻格林尼治恒星时G S 可表示成: )(00t t S S E G G -+=ω (2) 在考虑地球自转时,星下点地心纬度? 与航天器赤纬δ仍然相等,星下点经度(λ)与航天器赤经α的关系为: ???=---=-=δ ?ωααλ)(00t t S S E G G (3) 将(1)代入上式,得到计算空间目标星下点地心经纬度()?λ,的公式,即空间目标的星下点轨迹方程为: ? ???=---?+Ω=)sin arcsin(sin )()tan arctan(cos 00u i t t S u i E G ?ωλ (4) 其中? 为星下点的地理纬度,λ 为星下点的地理经度,u 是纬度幅角,ωE 为地球自转角速度。由(4)中的第二式可知,i =90?时,? 取极大值?max 。i =-90?时,? 取极小值

实验一 航天器轨道计算

实验一航天器轨道要素与空间位置关系 一、实验目的 1.了解航天器轨道六要素与空间位置的关系。 2.掌握航天器轨道要素的含义。 二、实验设备 安装有Matlab的计算机。 三、实验内容 1.实验原理 航天器的六个轨道要素用于描述航天器的轨道特性,有明显的几何意义。它们决定轨道的大小、形状和空间的方位,同时给出航天器运动的起始点。这六个轨道要素分别是: ①轨道半长轴(a):它的长度是椭圆长轴的一半,可用公里或地球赤道半径或天文单位为单位。根据开普勒第三定律,半长轴与运行周期之间有确定的换算关系。 ②轨道偏心率(e):为椭圆两焦点之间的距离与长轴的比值。偏心率为0时轨道是圆;偏心率在0~1之间时轨道是椭圆,这个值越大椭圆越扁;偏心率等于1时轨道是抛物线;偏心率大于1时轨道是双曲线。抛物线的半长轴是无穷大,双曲线的半长轴小于零。 ③轨道倾角(i):轨道平面与地球赤道平面的夹角,用地轴的北极方向与轨道平面的正法线方向之间的夹角度量,轨道倾角的值从0°~180°。倾角小于90°为顺行轨道,卫星总是从西(西南或西北)向东(东北或东南)运行。倾角大于90°为逆行轨道,卫星的运行方向与顺行轨道相反。倾角等于90°为极轨道。 ④升交点赤经(Ω):它是一个角度量。轨道平面与地球赤道有两个交点,卫星从南半球穿过赤道到北半球的运行弧段称为升段,这时穿过赤道的那一点为升交点。相反,卫星从北半球到南半球的运行弧段称为降段,相应的赤道上的交点为降交点。在地球绕太阳的公转中,太阳从南半球到北半球时穿过赤道的点称为春分点。春分点和升交点对地心的张角为升交点赤经,并规定从春分点逆时针量到升交点。轨道倾角和升交点赤经共同决定轨道平面在空间的方位。

结构动力学哈工大版课后习题集解答

第一章 单自由度系统 1.1 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。 1、 牛顿第二定律法 适用围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析和动量距分析; (2) 利用动量距定理J ∑=M θ ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θ θ??-???L L dt )( =0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用围:所有无阻尼的单自由度保守系统的振动。

解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= , 因为ζ较小, 所以有 π δζ2= 。 方法二:共振法求单自由度系统的阻尼比。 (1)通过实验,绘出系统的幅频曲线, 如下图:

结构动力学大作业

结 构 动 力 学 大 作 业 姓名: 学号:

习题1 用缩法减进行瞬态结构动力学分析以确定对有限上升时间得恒定力的动力学响应。实际结构是一根钢梁支撑着集中质量并承受一个动态荷载。 钢梁长L ,支撑着一个集中质量M 。这根梁承受着一个上升时间为t τ,最大值为F1的动态荷载F(t)。梁的质量可以忽略,需确定产生最大位移响应时间max t 及响应max y 。同时要确定梁中的最大弯曲应力bend σ。 已知:材料特性:25x E E MPa =,质量M =0.03t ,质量阻尼ALPHAD=8; 几何尺寸:L =450mm I=800.64 mm h=18mm; 荷载为:F1=20N t τ=0.075s 提示:缩减法需定义主自由度。荷载需三个荷载步(0至加质量,再至0.075s , 最后至1s ) ANSYS 命令如下: FINISH /CLE$/CONFIG,NRES,2000 /prep7 L=450$H=18 ET,1,BEAM3 ET,2,MASS21,,,4 R,1,1,800.6,18 R,2,30 !MASS21的实常数顺序MASSX, MASSY, MASSZ, IXX, IYY, IZZ MP,EX,1,2E5$MP,NUXY ,1,0.3 N,1,0,0,0 N,2,450/2,0,0 N,3,450,0,0 E,1,2$E,2,3 !创建单元 TYPE,2$REAL,2 E,2 M,2,UY FINISH /SOLU !进入求解层 ANTYPE,TRANS

TRNOPT,REDUC OUTRES,ALL,ALL$DELTIM,0.004 !定义时间积分步长 ALPHAD,8 !质量阻尼为8 D,1,UY$D,3,UX,,,,,UY !节点1Y方向,约束节点3X、Y方向约束 F,2,FY,0 LSWRITE,1 !生成荷载步文件1 TIME,0.075 FDELE,ALL,ALL F,2,FY,20 LSWRITE,2 !生成荷载步文件2 TIME,1 LSWRITE,3 !生成荷载步文件3 LSSOLVE,1,3,1 !求解荷载文件1,2,3 FINISH /SOLU EXPASS,ON$EXPSOL,,,0.10000 !扩展处理 SOLVE FINISH /POST26 NUMV AR,0 FILE,fdy,rdsp !注意,建立的项目名称为fdy,否则超出最大变量数200,结果无效NSOL,2,2,U,Y,NSOL PLV AR,2 !时间位移曲线 PRV AR,2 !得出在0.10000该时间点上跨中位移最大 /POST1 !查看某个时刻的计算结果 SET,FIRST PLDISP,1 !系统在0.10000秒时总变形图 ETABLE,Imoment,SMISC,6 !单元I点弯矩 ETABLE,Jmoment,SMISC,12 !单元J点弯矩 ETABLE,Ishear,SMISC,2 !单元I点剪力 ETABLE,Jshear,SMISC,8 !单元J点剪力 PLLS,IMOMENT,JMOMENT,1,0 !画出弯矩图 PLLS,ISHEAR,JSHEAR,,1,0 !画出剪力图 结果如下; 随着时间位移的大小:

哈工大结构动力学作业_威尔逊_θ法

结构动力学大作业(威尔逊- 法) : 学号: 班级: 专业:

威尔逊-θ法原理及应用 【摘要】在求解单自由度体系振动方程时我们用了常加速度法及线加速度法等数值分析方法。在多自由度体系中,也有类似求解方法,即中心差分法及威尔逊-θ法。实际上后两种方法也能求解单自由度体系振动方程。对于数值方法,有三个重要要求:收敛性、稳定性及精度。本文推导了威尔逊-θ法的公式,并利用MATLAB 编程来研究单自由度体系的动力特性。 【关键词】威尔逊-θ法 冲击荷载 阻尼比 【正文】威尔逊-θ法可以很方便的求解任意荷载作用下单自由度体系振动问题。实际上,当 1.37θ>时,威尔逊-θ法是无条件收敛的。 一、威尔逊-θ法的原理 威尔逊-θ法是线性加速度法的一种拓展(当1θ=时,两者相同),其基本思路和实现方法是求出在时间段[],t t t θ+?时刻的运动,其中1θ≥,然后通过插得到i t t +?时刻的运动(见图 1.1)。 图 1.1 1、公式推导 推导由t 时刻的状态求t t θ+?时刻的状态的递推公式: 对τ积分

{}{}{}{}{}{})(623 2 t t t t t t t y y t y y y y &&&&&&&-?+++=?++θτ θτττ {}{}{}{}{})2(6)(2t t t t t t t y y t y t y y &&&&&+?+?+=?+?+θθθθ {}{}{}{}{}t t t t t t t y y t y y t y &&&&&26 )()(62-?--?=?+?+θθθθ []{}{} {}[]{}{}{}[]{}{}{})223()26)(6( )(2t t t t t t t t t t y t y y t c y y t y t m P P P R &&&&&&?++?++?+?+-+=?+θθθθθ 2、MA TLAB 源程序: clc;clear; K=input('请输入结构刚度k(N/m)'); M=input('请输入质量(kg)'); C=input('请输入阻尼(N*s/m)'); t=sym('t');%产生符号对象t Pt=input('请输入荷载); Tp=input('请输入荷载加载时长(s)'); Tu=input('请输入需要计算的时间长度(s) '); dt=input('请输入积分步长(s)'); Sita=input('请输入θ'); uds=0:dt:Tu;%确定各积分步时刻 pds=0:dt:Tp; Lu=length(uds); Lp=length(pds); if isa(Pt,'sym')%荷载为函数 P=subs(Pt,t,uds); %将荷载在各时间步离散 if Lu>Lp P(Lp+1:Lu)=0; end elseif isnumeric(Pt)%荷载为散点 if Lu<=Lp

结构力学全部作业答案 (2)

1:[论述题] 1、(本题10分)作图示结构的弯矩图。各杆EI相同,为常数。图 参考答案: 先对右下铰支座取整体矩平衡方程求得左上活动铰支座反力为0,再对整体竖向投影平衡求得右下铰支座竖向反力为0;再取右下直杆作为隔离体可求出右下铰支座水平反力为m/l(向右),回到整体水平投影平衡求出左下活动铰支座反力为m/l(向左)。反力求出后,即可绘出弯矩图如图所示。图 2:[填空题]2、(本题3分)力矩分配法适用于计算无结点超静定刚架。 参考答案:线位移 3:[单选题] 7、(本题3分)对称结构在对称荷载作用下,内力图为反对称的是 A:弯矩图B:剪力图C:轴力图D:弯矩图和剪力图

参考答案:B 4:[填空题]1、(本题5分)图示梁截面C的弯矩M C = (以下侧受拉为正)图 参考答案:F P a 5:[判断题]4、(本小题2分)静定结构受外界因素影响均产生内力,内力大小与杆件截面尺寸无关。 参考答案:错误 6:[判断题]3、(本小题 2分)在温度变化与支座移动因素作用下静定与超静定结构都有内力。 参考答案:错误 7:[判断题]1、(本小题2分)在竖向均布荷载作用下,三铰拱的合理轴线为圆弧线。 参考答案:错误 8:[论述题]2、(本小题10分)试对下图所示体系进行几何组成分析。 参考答案:结论:无多余约束的几何不变体系。 9:[单选题]1、(本小题3分)力法的基本未知量是 A:结点角位移和线位移B:多余约束力C:广义位移D:广义力 参考答案:B 10:[单选题]2、(本小题3分)静定结构有温度变化时 A:无变形,无位移,无内力B:有变形,有位移.无内力 C:有变形.有位移,有内力D:无变形.有位移,无内力 参考答案:B 11:[判断题]2、(本小题2分)几何可变体系在任何荷载作用下都不能平衡。 参考答案:错误 12:[判断题]5、(本小题2分) 按虚荷载原理所建立的虚功方程等价于几何方程。 参考答案:正确 13:[单选题]3、(本小题3分)变形体虚功原理 A:只适用于静定结构B:只适用于线弹性体C:只适用于超静定结构

结构动力学作业

结构动力学在建筑结构中的抗震分析及应用 学号:1108150912 水利水电学院 研1118班 姜琦昇 摘要:结构动力学在建筑结构设计中起着重要作用,在抗震结构设计在抗震结构设计中两者是相互依存、缺一不可的整体。本文针对结构动力学在建筑结构设计中的应用,分析建筑结构设计中不但要考虑建筑结构的使用功能、建筑结构的安全度、建筑使用年限等。在建筑结构设计中要考虑到,当地震来临时使建筑物遵循小震不坏、中震可修、大震不倒的抗震原则为结构设计提供理论依据。根据地震中的动力学原理,提出了防震、减振的措施并对其工作机理进行了分析。 1、 动力学中的结构动力特性 (1)结构动力特性与结构的刚度及结构 的质量有关。对于多自由度体系结构的自振频率表达式为: n n n M K w = 其中: {}[]{}n T n n K K φφ=;{}[]{}n T n n M M φφ= n K :称为阵型刚度 n M :称为阵型质量 {}n φ:多自由度体系的阵型 结构动力学在建筑结构中反映抗震性质主要体现在有阻尼体系的简谐振动中,分析如下: 根据运动方程: t p ku u c u m ωsin 0=++ 根据初始条件: ()00u u t == ()00u u t == 同时利用ζωn m c 2= 解得运动方程的:| 通解 ()()t B t A e t u D D t c n ωωζωsin cos +=- 特解 ()t D t C t u p ωωc o s s i n += 通过求解可得: ()()[]()[]222211n n n st u C ωωζωωωω+--= ()[]()[]22 2212n n n st u D ωωζωωωωζ+--= 因此运动方程的全解:()t c u u t u +=

结构力学-在线作业_d

结构力学-在线作业_D用户名:最终成绩:100.0 一判断题 1. 在忽略轴向变形的条件下,图示结构只有轴力。() TRUE FALSE 本题分值: 5.0 用户得分: 5.0 用户解答: TRUE 知识点: 3.3 静定平面刚架的内力分析 2. 结构及荷载如图所示,当结点不平衡力矩(约束力矩)为0.125ql2时,其荷载应是q1=q,M=ql2/4。()

TRUE FALSE 本题分值: 5.0 用户得分: 5.0 用户解答: FALSE 知识点: 3.3 静定平面刚架的内力分析|5.5 用力法计算超静定刚架3. 图示结构,EI=常数,M CA为Pl/4(左侧受拉)。() FALSE TRUE

本题分值: 5.0 用户得分: 5.0 用户解答: FALSE 知识点: 5.7 用力法计算铰接排架 4. 图(a)对称结构可简化为图(b)结构来计算。() FALSE TRUE 本题分值: 5.0 用户得分: 5.0 用户解答: TRUE 知识点: 5.6 对称性的利用 5. 图示结构在所示荷载作用下,其A支座的竖向反力与B支座的反力相比为.二者相等,方向相反。()

FALSE TRUE 本题分值: 5.0 用户得分: 5.0 用户解答: FALSE 知识点: 3.2 多跨静定梁的内力分析 6. 结构及荷载如图所示,当结点不平衡力矩(约束力矩)为0.125ql2时,其荷载应是q1=q,M=-ql2/4。() TRUE FALSE

本题分值: 5.0 用户得分: 5.0 用户解答: FALSE 知识点: 5.5 用力法计算超静定刚架 7. 图示结构在所示荷载作用下,其A支座的竖向反力与B支座的反力相比为前者小于后者。() TRUE FALSE 本题分值: 5.0 用户得分: 5.0 用户解答: TRUE 知识点: 3.2 多跨静定梁的内力分析 8. 计算图示桁架中指定杆件内力,各杆EA=常数,N2=?P/2。()

结构力学作业3

1. 用力矩分配法计算图示结构,各杆l相同,EI =常数。其分配系数,,分别为_____。 (6分) (A) 0.8, 0.2,0 (B) 0.4 , 0.4, 0.2 (C) 0.445, 0.333 , 0.222 (D) 0.5, 0.375 , 0.125 参考答案:D 解题思路:无 2. 若图中各杆件线刚度 i相同,则各杆A端的转动刚度S分别为_____。 (6分) (A) 4 i , 3 i , -i (B) 4 i , 3 i , i (C) 3 i , 3 i , i (D) 3i , 3 i , -i 参考答案:B 解题思路:无 3. 图中不能用力矩分配法计算的是 _____。(6分) (A) (B)

(C) (D) 参考答案:D 解题思路:无 4. 图示结构用力矩分配法计算时,分配系数为_____。(6 分) (A) 1/4 (B) 12/21 (C) 1/2 (D) 6/11 参考答案:B 解题思路:无 5. 在力矩分配法中,分配系数表示_____。(6分) (A) 结点A 有单位转角时,在AB 杆A 端产生的力矩; (B) 结点A 转动时,在AB杆A 端产生的力矩; (C) 结点A 上作用单位外力偶时,在AB 杆A 端产生的力矩; (D) 结点A 上作用外力偶时,在AB杆A 端产生的力矩。 参考答案:A 解题思路:无

6. 图示结构,EI =常数,杆BC两端的弯矩和的比值是_____。 (6分) (A) -1/4 (B) -1/2 (C) 1/4 (D) 1/2 参考答案:D 解题思路:无 判断题(共48分) 说明:() 7. 图示刚架可利用力矩分配法求解。(6分) 正确错误 参考答案:错误 解题思路:无 8. 单结点结构的力矩分配法计算结果是精确的。 (6分) 正确错误 参考答案:正确 解题思路:无 9. 力矩分配中的传递系数等于传递弯矩与分配弯矩之比,它与外因无关。 (6分) 正确错误 参考答案:正确 解题思路:无 10. 图示杆AB与CD 的EI、l 相等,但A 端的转动刚度大于C端的转动刚度

《结构动力学》课程作业解析

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:结构动力学大作业教师: 姓名:学号: 专业:岩土工程类别:专硕 上课时间:2015年9 月至2015 年11 月 考生成绩: 卷面成绩平时成绩课程综合成绩阅卷评语: 阅卷教师(签名)

重庆大学研究生院制 土木工程学院2015级硕士研究生考试试题 1 题目及要求 1、按规范要求设计一个3跨3层钢筋混凝土平面框架结构(部分要求如附件名单所示;未作规定部分自定)。根据所设计的结构参数,求该结构的一致质量矩阵、一致刚度矩阵; 2、至少采用两种方法求该框架结构的频率和振型; 3、输入地震波(地震波要求如附件名单所示),采用时程分析法,利用有限元软件或自编程序求出该框架结构各层的线性位移时程反应。

2 框架设计 2.1 初选截面尺寸 取所设计框架为3层3跨,跨度均为4.5m ,层高均为3.9m 。由于基础顶面离室内地面为1m ,故框架平面图中底层层高取 4.9m 。梁、柱混凝土均采用C30, 214.3/c f N mm =,423.010/E N mm =?,容重为325/kN m 。 估计梁、柱截面尺寸如下: (1)梁: 梁高b h 一般取跨度的 112 1 8 ,取梁高b h =500mm ; 取梁宽300b b mm =; 所以梁的截面尺寸为:300500mm mm ? (2)柱: 框架柱的截面尺寸根据柱的轴压比限值,按下列公式计算: ①柱组合的轴压力设计值...E N F g n β= 其中:β:考虑地震作用组合后柱轴压力增大系数; F :按简支状态计算柱的负荷面积; E g :折算在单位建筑面积上的重力荷载代表值,可近似取为 21214/KN m ; n :验算截面以上的楼层层数。 ②c N c N A u f ≥ 其中:N u :框架柱轴压比限值;8度(0.2g ),查抗震规范轴压比限值0.75N u =; c f :混凝土轴心抗压强度设计值,混凝土采用30C ,2 14.3/c f N mm =。

相关文档
最新文档