航天器动力学基本轨道演示文稿
哈工大航天学院课程-空间飞行器动力学与控制-第3课-空间飞行器轨道动力学上PPT课件

(2)运载火箭的 主动段轨道
在主动段飞行时,作用 在火箭上的力和力矩 如图3.6所示
图3.6 在主动段作用于火箭上的力系
第15页/共48页
XOY 为发射平面坐标, X1O1Y1为速度坐标。图中 为地心角, 为俯仰角, 为 速度方向角, 为火箭飞行 攻角。
第16页/共48页
把作用在火箭上所有的力,
第30页/共48页
春分点:黄道与天赤道的一 个交点。
黄道:地球绕太阳公转的轨 道面(黄道面)与以地心为球心 的天球相交的大圆。
“黄赤交角”:黄道面与赤 道面约相交成23°27′。
太阳的周年视运动:由于地 球公转观测到太阳在恒星间移动, 周期为1年。
黄道就是天球上的太阳周年 视运动轨迹。太阳由南向北过天 赤道的交点叫“春分点”,另一 个交点是秋分点。
co s2
2
k
vk2
v
2 k
rk2
co s2
k
2 2
rk
4 vk2rk2 cos2 k
co s(0
(3-8) )
式中, 3.8961014 m3/s2 称为地球引力常
数可见。,自由飞行段的轨道方程,完全取决于主动段终点的速度 ,速度方向角
和径向距离。
第23页/共48页
在图3.7中,如果火 箭在 B点,再一次点 火加速,使火箭的速 度达到航天飞行器在 该点的运行速度,它 就进入绕地球运动的 的轨道,此轨道称为 “卫星轨道”。卫星 的轨道高度和形状, 由运载火箭主动段终 点的速度矢量和空间 位置决定。
在运载火箭方案论证初期,可以依据发射航天 飞行器的速度要求,用齐氏公式计算出理想速度, 再减去约2000m/s的速度损失,进行方案估计。
第20页/共48页
空间飞行器动力学与控制第3课空间飞行器轨道动力学上

火箭在主动段飞行时,通常攻角都很小,所飞
越的地心角也很小,若略去不计,即得:
dv P D g sin
dt m m
(3-5)
其中火箭的推力 P 为
P mve ( pe pa )Se
代入式(3-5)得到
dv
ve
dm mdt
dt
1 m
Se (
pe
pa
)dt
D m
dt
g
s in dt
(3-6)
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
积分上式,得到主动段终点的速度为:
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
把作用在火箭上所有的力,
投影到速度方向(
X
轴)上,
1
推力: 重力:
阻力:
升力:
得到运动方程为: dv 1 (P cos D) g sin( )
dt m
(3-4)
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
dv 1 (P cos D) g sin( )
图3.3 CD与马赫数 Ma 和攻角 的关系
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
图3.4
C
与马赫数
L
Ma和攻角
的关系
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
“俯仰力矩”的产生
火箭发动机工作时,推进剂在不断消耗,所以火 箭质心位置随时在变。
同时,气动阻力和升力也随飞行速度和大气条件 而变化,所以压心也随之变化。
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
第三种方案:与第二方案基本相同,只是要求自由飞行 段要绕地球半圈,即自由飞行段起点和终点正好在地心 的连线上。
(优选)航天器动力学基本轨道

一些尝试
假设引力公式为
F
G msm r
r r
其中η不一定为2;Gη为相应的引力常数。
你估计会出现什么现象?
η=1.0
η=2.0 我们的世界
你对 此有 何看 法?
η=1.5 η=2.5
§1.3 航天器运动微分方程的积分
(优选)航天器动力学基本轨 道
2020年9月20日星期日
Page 1
航天器的开普勒三大定律
面积定律:航天器与地球中 心的连线在相同的时间内扫 过的面积相等。
航天器的开普勒三大定律
谐和定律:航天器轨道半长 轴的三次方同轨道周期的平 方成正比。
a3 T2
k
a 是轨道半长轴
T 是航天器的运行周期
k 是与轨道无关的常数
S
p
r
O
P
c
a
p a(1 e2) b 1 e2
c ae
轨道的微分描述
设 Oxyz 为参考坐标系,O为
z
地球中心,xyz 指向三颗恒星。
设 me 为地球质量,m为航天器
质量,r为航天器的矢径。
E
O
ma
d2r m dt2
F
Gmem r2
r r
x
FS
r
y
d 2r dt 2
r
r3
G 6.671011m3 / kg s2 万有引力常数 Gme 3.99105 km3 / s2 地心引力常数
由于已经知道航天器的轨道是圆锥曲线,根据 第(2)点,E<0时r有界,因此是椭圆轨道。
根据第(1)点,E>0时r可以无界,因此是 双曲线轨道。
航天器动力学基本轨道

机械能守恒 角动量守恒
是否存在其它 积分?为什么 要求积分?
Page 10
1、能量积分
d 2r r 3 2 dt r
方程两边点乘 v r
v v
vv
r
3
r r
rr 利用 r r
v2 积分后为 E 2 r
2018年11月25日星期日 Page 6
算例
为解决这 些问题, 需要对轨 道进行深 入研究
问题: (1)如果参数不适当,航天器可能会撞上地球! (2)如何得到希望的轨道?
2018年11月25日星期日 Page 7
一些尝试
假设引力公式为
G ms m r F r r
其中η 不一定为2;Gη为相应的引力常数。 你估计会出现什么现象?
a k 2 T
3
a
T
是轨道半长轴 是航天器的运行周期
k
是与轨道无关的常数
a
a
Page 3
2018年11月25日星期日
轨道的几何描述
O为地球的质心, 也是椭圆的一个焦点. S为航天器的质心.
S
b A
p
r
O
P
P 是近地点 (perigee) A 是远地点 (apogee) a 是半长轴 (semi-major axis) b 是半短轴 (semi-minor axis) p 是半通径 (semi-parameter) e 是偏心率 (eccentricity) c 是半焦距 (semi-focus)
航天器的开普勒三大定律
椭圆定律:航天器绕地球运 动的轨道为一椭圆,地球位 于椭圆的一个焦点上。
2018年11月25日星期日
【PPT课件】航天器的轨道与轨道力学

G
n j 1
mj rj3i
(
ji )
ji
(2.13)
不失一般性,假定m2为一个绕地球运行的航天器,m1为地
球,而余下的 m3, m4,L mn 可以是月球、太阳和其他行 星。于是对i=1的情况,写出方程式(2.13)的具体形式,
得到
&rr& rr 1
G
n j2
mj rj31
(
j1 )
第二运动定律 动量变化速率与作用力成正比,且与作 用力的方向相同。
第三运动定律 对每一个作用,总存在一个大小相等的 反作用。
万有引力定律:
任何两个物体间均有一个相互吸引的力,这个力与
它们的质量乘积成正比,与两物体间距离的平方成反比。
数学上可以用矢量形式把这一定律表示为
r Fg
GMm r2
rr
r
第二章 航天器的轨道与轨道力学
2.1航天器轨道的基本定律 2.2二体轨道力学和运动方程 2.3航天器轨道的几何特性 2.4航天器的轨道描述 2.5航天器的轨道摄动
第二章 航天器的轨道与轨道力学
“1642年圣诞节,在柯斯特沃斯河畔的沃尔索普庄 园,诞生了一个非常瘦小的男孩。如同孩子的母亲后来 告诉他的那样,出生时他小得几乎可以放进一只一夸脱 的杯子里,瘦弱得必须用一个软垫围着脖子来支起他的 头。这个不幸的孩子在教区记事录上登记的名字是 ‘伊 萨克和汉纳·牛顿之子伊萨克 ’。虽然没有什么贤人哲 士盛赞这一天的记录,然而这个孩子却将要改变全世界 的思想和习惯。”
d dt
(mivri
)
r F总
(2.9) (2.10)
把对时间的导数展开,得到
2006航天器动力学03-基本轨道解析

见章仁为“卫星轨道姿 态动力学与控制”,p5 -7
根据上式可由平近点角 M 迭代求出偏近点角 E 、 再求出真近点角 f。 从而确定航天器的运动。
a(1 e ) r 1 e cos f
2
2018年10月8日星期一
因此,利用轨道根数可以很直观地 表示航天器的运动,并且只需求解 代数方程。
p h2
πab 1 A h T 2 2π ab T p
p a(1 e2 ) b 1 e2
T 2π
a3
2π 因此轨道平均角速度 n 为: n f 3 T a
2018年10月8日星期一 Page 27
定义:
平近点角M :航天器从 近地点开始按平均角速 度 n 转过的角度。
航天器的开普勒三大定律
谐和定律:航天器轨道半长 轴的三次方同轨道周期的平 方成正比。
a k 2 T
3
a
T
是轨道半长轴 是航天器的运行周期
k
是与轨道无关的常数
a
a
Page 4
2018年10月8日星期一
轨道的几何描述
O为地球的质心, 也是椭圆的一个焦点. S为航天器的质心.
S
b A
p
r
O
P
P 是近地点 (perigee) A 是远地点 (apogee) a 是半长轴 (semi-major axis) b 是半短轴 (semi-minor axis) p 是半通径 (semi-parameter) e 是偏心率 (eccentricity) c 是半焦距 (semi-focus)
2018年10月8日星期一 Page 20
航天器动力学基本轨道演示文稿
但在航天领域,一般习惯用另外的六个独立 参数来描述轨道的状况。
1、问题的提出
如果用航天器的初始位置和速度 (x0, y0, z0, x0, y0, z0 ) 来描述航天器的运动,则在任一时刻,需要求解 微分方程才能确定航天器的位置,不方便。
另一方面,我们已知航天器在某一个平面内的运动 轨迹为圆锥曲线,如果已知: (1)轨道平面在空间惯性坐标系中的方位; (2)圆锥曲线的方向(长半轴方向); (3)在某一时刻航天器在轨道的某一个点上, 则可以通过求解代数方程确定任一时刻航天器的位 置。
关于e的大小,你有何直觉? 椭圆轨道: E 0 e[0, 1)
e的物理意义
e 1 (v h r )
r
两边叉乘r
e r 1 (v h) r
v
S
r
E
e
可以看出,在一般情况下,er 0
但如果r与v垂直,则 er 0
所以,e平行于椭圆长轴方向,再根据其大小,e 指向近地点。
思考
我们已找到了5个积分常数E, h, e。 问题是:当我们求出常数E,h,并为其中所 使用的技巧而得意时,拉普拉斯利用更复杂的技巧 又找到了一个积分常数e…… 那么我们是否求出了微分方程全部的积分常数? 难到这些微分方程的积分常数会没完没了吗?
积分后为 v2 E
2r
v v
r
3
r r
vv
r
2
r
r
r
r
r
动能 势能
物理意义:航天器单位质量的机械能守恒。
不同轨道的能量积分E
v2 E
2r
v2
2
E
r
(1)如果E>0,r可以为任何正值;
(2)如果E<0,r必须满足
航天器动力学04-轨道计算_47810946
办 公 室:逸夫技科楼1211室,62795926
email: jiangfh04@
2011年9月30日星期五
积分回顾 Page 1
§1.2 轨道要素(回顾)
二体问题4个积分常数(机械能ξ, 角动量h, 偏心
率矢量e, 过近地点时刻τ),只有6个独立的参数。
M E e sin E 设:M=2; e=0.4
10
(1)直接求解非线性方程
8
y1 E
(Matlab中有求解函数fsolve,solve) 6
4
(2)几何法求解
E M esin E
设
y1 E y2 M esin E 两条曲线的交线就是解。
2011年9月30日星期五
2
y2 M esin E
z1
x1
x2
x2
x2
y1
A1 21
y2
A12
y2
A2T1
y2
z1
z2
z2
z2
(3)传递性 A31 A32 A21
2011年9月30日星期五
Page 17
特殊坐标转换矩阵
坐标系OXYZ沿OX轴逆时针旋转α角得坐标系OXY1Z1 ,向 量在原坐标系中的投影若为(X, Y, Z)T,则在新坐标系中的投
轨道速度与矢端曲线
径向与横向速度: vr
r
h
e sin
f
v
rf
(1 e cos
h
f)
速度大小: v 1 e2 2e cos f
h
飞行角: tan vr e sin f
2 r
1 a
v 1 e cos f
航空航天工程师的航天器轨道动力学
航空航天工程师的航天器轨道动力学航天工程是现代科技领域中最为复杂和挑战性的领域之一。
而在航天工程中,轨道动力学是十分重要的学科之一。
作为航空航天工程师,了解航天器的轨道动力学是必不可少的。
本文将探讨航天器轨道动力学的基本概念和应用。
一、轨道动力学的基本概念航天器的轨道动力学是研究航天器在空间中运动的学科。
它涉及到航天器的运行状态、运行路径以及运动参数等方面的理论与计算。
在轨道动力学中,常用的概念有轨道、轨道高度、轨道倾角等。
1.1 轨道轨道是航天器绕行星体(如地球)运行的路径。
根据轨道的形状和特性,轨道可以分为圆轨道、椭圆轨道、偏心轨道等。
通过设定不同的轨道,航天器可以实现不同的任务目标,如通信卫星通过地球同步轨道可以实现全球通信覆盖。
1.2 轨道高度轨道高度是指航天器距离地球表面的垂直距离。
通常以海平面为基准点,可以分为低地球轨道、中地球轨道、高地球轨道等。
轨道高度的选择与航天器的任务和设计要求密切相关,不同的高度对应着不同的应用场景。
1.3 轨道倾角轨道倾角是指轨道平面与地球赤道面之间的夹角。
轨道倾角的大小直接影响着航天器与地球的相对位置和轨道运动形式。
通常情况下,轨道倾角为0°的轨道被称为赤道轨道,而倾角较大的轨道则会呈现出椭圆形的轨道运动。
二、航天器轨道动力学的应用轨道动力学对于航天器的设计、运行和任务实施都有着重要的指导意义。
航天工程师在进行航天器设计和任务规划时需要充分考虑轨道动力学的相关因素。
2.1 轨道设计与控制航天工程师需要根据不同任务的需求,合理选择适当的轨道参数,确保航天器能够按照预定轨道进行运行。
同时,在航天器运行过程中,轨道控制也是一个关键问题。
通过调整姿态、推进系统等手段,航天工程师可以实现对航天器轨道的精确控制和调整。
2.2 轨道机动与转移航天器在任务实施过程中,可能需要进行轨道机动和转移,以满足不同的任务需求。
轨道机动是指改变航天器轨道的运动,包括姿态调整、轨道升降、轨道平面变换等。
航天器轨道动力学与控制(上)
轨道周期
入轨点位置
考虑
因素
轨道倾角
发射时间
近地点位置
近地轨道的主要摄动
摄动类型 地球形状 大气阻力 调姿喷气 太阳光压 日月摄动 潮汐摄动 地球磁场
摄动
摄动
摄动
摄动
摄动和轨
控喷气摄
动
量级
近地轨道
寿命
一阶小量 二阶小量 二阶小量 三阶小量 三阶小量 三阶小量 三阶小量
近地轨道的应用实例
神舟号飞船
2012年4月30日4时50分
长征三号乙
第十二、十三颗北斗导航系统组网卫星
2012年9月19日3时10分
长征三号乙
2012年10月25日23时33分
长征三号丙
第十六颗北斗导航卫星 [6]
2015年3月30日21时52分
长征三号丙
第十七颗北斗导航卫星 [7]
2015年7月25日20时29分
长征三号乙
第十八、十九颗北斗导航卫星
术发展,无线电测量技术逐渐成熟,应用雷达不但可以测量角度,还可以测量距离,使轨道计
算更加准确和方便。
2
太阳系、坐标系和时间系统
近地空间环境
近地空间环境
地球大气
大
大
大
大
气
气
气
气
密
温
压
成
度
度
力
分
地球磁场
地面上100km到10个地球半径的距离
太阳电磁
地球电离
空间粒子
辐射
层
辐射
磁
太
暴
阳
辐
射
压
力
坐标系
研究航天飞行器的运动要用到多种坐标系,我们将介绍航天运用到的多种坐标系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v
h
r3
[ rrr
r 2r]
v
h
r3
[ rrr
r 2r]
v
h
[
r r2
r
1 r
r]
0
积分后为 1 (v h r?) e
r
e的方向
e h 1 (v h) h r (r v)
r
0
?
e的大小
e2 e e 1 2Eh2
2
所以 e 在轨道平面内,且只有一个独立的量。 物理意义此处还不太明确。
由于已经知道航天器的轨道是圆锥曲线,根据 第(2)点,E<0时r有界,因此是椭圆轨道。
根据第(1)点,E>0时r可以无界,因此是 双曲线轨道。
2、动量矩积分
d 2r dt 2
r
r3
方程两边叉乘 r: r v 0
v
S
r
hE
积分后为 r v h
h rer (rer reθ) r2
物理意义: 航天器对地球中心的动量矩守恒。并且表明,
数学概念:微分方程的定解由初始条件确定;而方程的积分常数 是初始条件的某种组合。因此方程独立的积分常数数目不超过初 始条件的数目。在轨道问题中,积分常数不超过6个。
因此可能还存在另1个积分常数…
4、时间积分
利用 h r 2
及 r p
1 e cos
再利用 p h2
可得到
t
p3
dt
0 (1 e cos )2
问题: (1)如果参数不适当,航天器可能会撞上地球! (2)如何得到希望的轨道?
一些尝试
假设引力公式为
F
G msm r
r r
其中η不一定为2;Gη为相应的引力常数。
你估计会出现什么现象?
η=1.0
η=2.0 我们的世界
你对 此有 何看 法?
η=1.5 η=2.5
§1.3 航天器运动微分方程的积分
S
p
rห้องสมุดไป่ตู้
O
P
c
a
p a(1 e2) b 1 e2
c ae
轨道的微分描述
设 Oxyz 为参考坐标系,O为
z
地球中心,xyz 指向三颗恒星。
设 me 为地球质量,m为航天器
质量,r为航天器的矢径。
E
O
ma
d2r m dt2
F
Gmem r2
r r
x
FS
r
y
d 2r dt 2
r
r3
G 6.671011m3 / kg s2 万有引力常数 Gme 3.99105 km3 / s2 地心引力常数
航天器动力学基本轨道演示文 稿
(优选)航天器动力学基本轨 道
航天器的开普勒三大定律
面积定律:航天器与地球中 心的连线在相同的时间内扫 过的面积相等。
航天器的开普勒三大定律
谐和定律:航天器轨道半长 轴的三次方同轨道周期的平 方成正比。
a3 T2
k
a 是轨道半长轴
T 是航天器的运行周期
k 是与轨道无关的常数
E, h,e, 。
但在航天领域,一般习惯用另外的六个独立 参数来描述轨道的状况。
1、问题的提出
如果用航天器的初始位置和速度 (x0, y0, z0, x0, y0, z0 ) 来描述航天器的运动,则在任一时刻,需要求解 微分方程才能确定航天器的位置,不方便。
另一方面,我们已知航天器在某一个平面内的运动 轨迹为圆锥曲线,如果已知: (1)轨道平面在空间惯性坐标系中的方位; (2)圆锥曲线的方向(长半轴方向); (3)在某一时刻航天器在轨道的某一个点上, 则可以通过求解代数方程确定任一时刻航天器的位 置。
积分后为 v2 E
2r
v v
r
3
r r
vv
r
2
r
r
r
r
r
动能 势能
物理意义:航天器单位质量的机械能守恒。
不同轨道的能量积分E
v2 E
2r
v2
2
E
r
(1)如果E>0,r可以为任何正值;
(2)如果E<0,r必须满足
r
E
(3)如果E=0,临界情况,满足 vp
2
r
双曲线 椭圆 抛物线
a
a
轨道的几何描述
O为地球的质心, 也是椭圆的一个焦点. b S为航天器的质心.
A P 是近地点 (perigee) A 是远地点 (apogee) a 是半长轴 (semi-major axis) b 是半短轴 (semi-minor axis) p 是半通径 (semi-parameter) e 是偏心率 (eccentricity) c 是半焦距 (semi-focus)
(过程略)
S
r
E
e
物理意义: 为积分常数,表示矢径 r 与 e 重合的 时刻,称为过近地点时间。
§1.4 航天器的轨道要素
前面介绍了航天器轨道的特点及积分情况,
导出了一些积分常数( E, h, e, ),根据轨道
运动方程,只有六个参数是独立的。
原则上,要唯一确定航天器的轨道,六个独 立的参数可以有多种选取方法,比如取航天器的 初始位置和速度:(x0, y0, z0, x0, y0, z0 ) ,也可以取
这就是航天器绕地球运动的运动微分方程。
如果在直角坐标系中进行计算:
d2r r
dt 2
r3
x
x
r3
0
y
y
r3
0
z
z
r3
0
r x2 y2 z2
如果给定初始条件: x0 , y0 , z0 , x0 , y0 , z0
就可以计算出以后任意时刻航天器的位置和速度。
算例
为解决这 些问题, 需要对轨 道进行深 入研究
关于e的大小,你有何直觉? 椭圆轨道: E 0 e[0, 1)
e的物理意义
e 1 (v h r )
r
两边叉乘r
e r 1 (v h) r
v
S
r
E
e
可以看出,在一般情况下,er 0
但如果r与v垂直,则 er 0
所以,e平行于椭圆长轴方向,再根据其大小,e 指向近地点。
思考
我们已找到了5个积分常数E, h, e。 问题是:当我们求出常数E,h,并为其中所 使用的技巧而得意时,拉普拉斯利用更复杂的技巧 又找到了一个积分常数e…… 那么我们是否求出了微分方程全部的积分常数? 难到这些微分方程的积分常数会没完没了吗?
r 与 v 始终在垂直于 h 的同一平面内,该平面称为 轨道平面。
3、拉普拉斯积分
d 2r dt 2
r
r3
两边叉乘 h r v
r
r
v h h (r v)
r3
r3
利用 a (b c) (a c)b (a b)c
v h
r3
[( r
r)r
(r
r)r]
利用 r r rr
正如拉氏方程存在首次积分,航天器的运
动方程也存在一些积分。微分方程积分的本质 是寻找机械系统的不变量。这些积分通常有明 显的物理意义。
直观想象:
“保守力场” 引力的方向
机械能守恒 角动量守恒
是否存在其它 积分?为什么 要求积分?
1、能量积分
d 2r dt 2
r
r3
方程两边点乘 v r
利用 r r rr