三角形的等积变换

三角形的等积变换
三角形的等积变换

三角形的等积变形

【知识点与基本方法】

1.全等形:如果两个平面图形叠合在一起,能够处处重合,则称这两个图形为全等形。

2.等积形:面积相等的两个图形称为等积形。

3.把一个封闭的图形分成若干部分,则这个图形的面积等于分成的所有各个部分面积的总和。

4.三角形的等积变形指的是使三角形面积相等的变换。前三条是等积变形理论的基础,同时也为我们计算某些图形的面积提供了方法。

5.三角形面积计算公式: 2÷?=?高底S

6.三角形的等积变形中常用的几个重要结论: (1)平行线间的距离处处相等. (2)等底等高的两个三角形面积相等.

(3)底在同一条直线上并且相等,他们所对的角的顶点是同一个,这样的两个三角形的面积相等.

(4)若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形的面积的几倍.

(5)若几个三角形的底边相等,并在两条平行线中的同一条直线上,而且相等的底边所对的顶点在两条平行线中的另一条边上,则这几个三角形的面积相等.

【例题精讲】

例1:用三种不同的方法把任意一个三角形分成四个面积相等的三角形.

方法一:如图1-a ,将BC 四等分,连AD 、AE 、AF ,则△ABD 、△ADE 、△AEF 和△AFC 等积.

方法二:如图1-b 先将BC 两等分,连AD ,得到两个等积的三角形△ADC 和△ABD ,再取AD 的中点E ,连BE ,CE ,可将这两个等积的三角形分成两个等积的三角形. 方法三:先将BC 四等分,即BD=

BC 4

1,连AD ,再将AD 三等分,即AE=EF=FD=

,

1AD 所得的四个三角形△ABD 、

△CFD 、△CEF 和△CEA 等积.(如图1-c)

1-a

1-b

1-C

C

例2:(如图4)已知正方形ABCD 和正方形DEFG ,且正方形ABCD 的边长为8分米。请问图中阴影部分的面积是多少平方分米? 解:连接FD.

FG AD S AFD ??=

?2

1,FE DC S FDC ??=

?2

1,由于AD=DC,FG=FE,

所以FDC AFD S S ??=,

而△FHD是它们的公共部分,因此,△FHD是它们的公共部分,因此,△AHD与△HCD的面积相等. 可得 ).(32642

121平方分米正方形

=?=

=

=+=????ABCD

ADC HCD AHC AFC S S S S S

例3.如图5,正方形ABCD的变长为8厘米,长方形EBGF的长为BG为10厘米.求长方形的宽.

分析:长方形的长知,为求长方形的宽,须知长方形的面积.问题转化为如何从已知正方形的面积(8×8=64(平方厘米))来寻长方形的面积.为此,连接AG.

在正方形ABCD中,△ABG的底和高分别为正方形边AB与BC.所以,它的面积是正方形ABCD面积的一半.同样,在长方形EBGF中,三角形ABG的底为长方形的长BG,高为长方形的宽EB,所以它的面积也是长方形EBGF面积的一半.由此说明长方形EBGF的面积与正方形的面积相等.即长方形EBGF的面积也为6

图4

4平方厘米.

解:连AG,由分析可知,

长方形EBGF的面积=长方形ABCD的面积 =8×8=64(平方厘米), 所以,长方形EBGF的宽为

64÷10=6.4(厘米).

例4.如图6,已知正方形ABCD的边长是4,E、P、F分别是AD 、CE 、BP 的中点,求△DBF 的面积

解:如图连接PD 和BE. 因为 ;

,所以正方形

8162

1164

2

=?=

==?DBC ABCD

S S 因为 E 是AD 的中点,所以 .44

1==?A B C D

D E C S S 正方形

又因为 P 是CE 的中点,所以 ;22

1==??D E C D P C S S ;42

1==

??EBC PBC S S

从而 .1=?DBF S 所以 △DBF 的面积为1.

例5.如图7,已知梯形ABCD 的面积为5,DA 与EB 平行,ED 与CA 平行,求四边形EDAC 的面积. 解:如图7,连接EA ,DB , 由 ED//CA,得 ,E D A E D C S S =? 由DA//EB,得,DAB EDA S S ??=

由DC//AB ,得,CAB DAB S S ??=综上述:.CAB EDC S S =? 所以=

=+=+=??ABCD CDA CAB CDA EDC EDAC

S S S S S S 梯形四边形

【课后练习】

1.在△ABC 中,E 、D 、G 分别是AB 、BC 、AD 的中点,图中与△AGC 等积的三角形一共有多少个?. 2图10,在△ABC 中,BD=DE=EC ,BF=FA ,△EDF 的面积是1,那么△ABC 的面积是多少?

3.如图11中由等边三角形ABO ,AOD ,DOC 围成的等腰梯形,它的面积是1,又知M 是AB 的中点,那么△COM 面积等于 ( )

4.如图12,在△ABC 中,EF//BC ,AB=3AE ,那么三角形甲、乙、丙面积的连比是( )

5.如图13,△ABC 的面积是52平方厘米,AC=13,△FDC 是等腰三角形,又△ADC 与△ABD 等积,则△ADF 面积是___________ 。

6.画图:把任意一个三角形(如图14)分成三个小三角形,使它们的面积比为2:3:5.

7.如图15,在平行四边形ABCD 中,E 为DC 的中点.DF=2BF.三角形DEF (图中阴影部分)的面积是8平方厘米.求:平行四边形的面积

9.如图16,四边形EFGH 的面积是66平方米.EA=AB,CB=BF,DC=CG ,HD=DA.求四边形ABCD 的面积.

10. 一个三角形的底长5米,如果底延长1米,那么面积就增加1.5平方米,(如图),那么原来三角形的面积是多少平方米?

图5

G

D

B

图6

D

B

A

图7

B

A

图11

O C

D

图15

图16

F

小学五年级奥数精讲等积变形求面积(含答案)

小学奥数精讲:等积变形求面积 “三角形的面积等于底与高的积的一半”这个结论是大家熟知的,据此我们立刻就可以知道: 等底等高的两个三角形面积相等. 这就是说两个三角形的形状可以不同,但只要底与高分别相等,它们的面积就相等,当然这个问题不能反过来说成是“面积相等的两个三角形底与高一定分别相等”. 另一类是两个三角形有一条公共的底边,而这条底边上的高相等,即这条底边的所对的顶点在一条与底边平 行的直线上,如右图中的三角形A 1BC 与A 2BC 、A 3BC 的面积都相等。 图形割补是求图形面积的重要方法,利用割补可以把—些形状不规则 的图形转换成与之面积相等但形状规则的图形,或把不易求面积的图形转 换成易求面积的图形. 利用添平行线或添垂线的办法,常常是进行面积割补的有效方法,利 用等底等高的三角形面积相等这个性质则是面积割补的重要依据,抓住具体的图形的特点进行分析以确定正确的割补方法则是面积割补的关键. 进行图形切拼时,应该有意识地进行计算,算好了再动手寻找切拼的方案.不要盲目 地乱动手.本讲中.的几个例子都是经过仔细计算才切拼成功的。 例1、已知三角形ABC 的面积为1,BE = 2AB ,BC =CD ,求三角形BDE 的面积? 例2、如下图,A 为△CDE 的DE 边上中点,BC=3 1 CD ,若△ABC(阴影部分)面积为5平方厘米,求△ABD 及△ACE 的面积. 例3、 2002年在北京召开了国际数学家大会,大会会标如下图所示,它是由四个相同的直角 基本概念 例题分析

三角形拼成(直角边长为2和3),问:大正方形面积是多少? 例4、下图中,三角形ABC和DEF是两个完全相同的直角边长等于9厘米的等腰直角三角形,求阴影部分的面积. 1、如图,已知平行四边形ABCD的面积是60平方分米,E、F分别是AB、AD边上的中点,图中阴影部分的面积是多少平方分米? 2、右图中的长方形ABCD的长是20厘米,宽是12厘米,AF=BE,图中阴影部分的面积是多少 平方厘米? 练习提高

三角函数与解三角形知识点总结

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异 于原点),它与原点的距离 是0r =>,那么sin ,cos y x r r αα== , ()tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号:(一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系:2 222 1 sin cos 1,1tan cos αααα +=+= (2)商数关系:sin tan cos α αα = (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换

4.三角函数的诱导公式 诱导公式(把角写成 απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)?????=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?? ???=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)??? ????-=+=+α απααπsin )2cos(cos )2sin( 5.特殊角的三角函数值

小学奥数——三角形的等积变形

小学奥数三角形的等积变形 我们已经掌握了三角形面积的计算公式: 三角形面积=底×高÷2 这个公式告诉我们:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小).同样若三角形的高不变,底越大(小),三角形面积也就越大(小).这说明;当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来 角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.本讲即研究面积相同的三角形的各种形状以及它们之间的关系. 为便于实际问题的研究,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等. ②底在同一条直线上并且相等,该底所对的角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等. ③若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍. ,它们所对的顶点同为A点,(也就是它们的高相等)那么这两个三角形的面积相等.同时也可以知道△ABC的面积是△ABD或△AEC面积的3倍. 例如在右图中,△ABC与△DBC的底相同(它们的底都是BC),它所对的两个顶点A、D在与底BC平行的直线上,(也就是它们的高相等),那么这两个三角形的面积相等. 例如右图中,△ABC与△DBC的底相同(它们的底都是BC),△ABC的高是△DBC高的2倍(D 是AB中点,AB=2BD,有AH=2DE),则△ABC的面积是△DBC面积的2倍. 上述结论,是我们研究三角形等积变形的重要依据. 例1 用三种不同的方法,把任意一个三角形分成四个面积相等的三角形. 方法2:如右图,先将BC二等分,分点D、连结AD,得到两个等积三角形,即△ABD与△ADC 等积.然后取AC、AB中点E、F,并连结DE、DF.以而得到四个等积三角形,即△ADF、△BDF、△DCE、△ADE等积. 例2 用三种不同的方法将任意一个三角形分成三个小三角形,使它们的面积比为及1∶3∶4.方法 1:如下左图,将BC边八等分,取1∶3∶4的分点D、E,连结AD、AE,从而得到△ABD、△ADE、△AEC的面积比为1∶3∶4. DE,从而得到三个三角形:△ADE、△BDE、△ACD.其面积比为1∶3∶4.

三角函数与解三角形-专题复习

专题一 三角函数与解三角形 一、任意角、弧度制及任意角的三角函数 1、弧度制的定义与公式: 定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角. 弧度记作rad. 公式 角的弧度数公式 r =α 角度与弧度的换算 ①rad 180 1π=? ② 弧长公式 扇形面积公式 2、任意角三角函数(正弦、余弦、正切)的定义 第一定义:设是任意角,它的终边与单位圆交于点P(x,y),则 第二定义:设 是任意角,它的终边上的任意一点 P(x,y),则 . 考点1 三角函数定义的应用 例1 .已知角α的终边在直线043=+y x 上,则=++αααtan 4cos 5sin 5 . 变式:(1)已知角α的终边过点)30sin 6,8(? --m P ,且5 4 cos - =α,则m 的值为 . (2)在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________. (3)4tan 3cos 2sin 的值( ) A .小于0 B .大于0 C .等于0 D .不存在 考点2 扇形弧长、面积公式的应用 例 2.已知扇形的半径为10cm,圆心角为? 120,则扇形的弧长为 面积为 . 变式:已知在半径为10的圆O 中,弦AB 的长为10,则弦AB 所对的圆心角α的大小 为 ,α所在的扇形弧长 为 ,弧所在的弓形的面积S 为 .

二、同角三角函数的基本关系及诱导公式 1、1cos sin 2 2=+αα α αcos tan = 2、三角函数的诱导公式 例1.已知α是三角形的内角,且.5 cos sin =+αα (1)求αtan 的值; (2)把α α22sin cos 1 +用αtan 表示出来,并求其值. 变式:1、已知α是三角函数的内角,且3 1 tan -=α,求ααcos sin +的值. 2、已知.34tan -=α(1)求α αααcos 2sin 5cos 4sin +-的值;(2)求αααcos sin 2sin 2 +的值. 3.若cos α+2sin α=-5,则tan α=________.

三角形等积变形

三角形 (1 )三角形有()条边、() 个角和()个顶点 1 .垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线叫做另一条直线的垂线。 2.画三角形高的方法口诀:三角尺,直角边,这边找到底,那边过顶点。 线段,标直角符号,四步画完。 3.你能在右图中找出几条高?标在图中。 4.标出下面各三角形的底和高。 6.画出每个三角形底边上的高。 cn两个面规柑舞的二的膨一定可以拼成一个平轩四边饮c > (2)二角石面枳等丁严厅四边应面积的一也〔) (3)一伞二角形的底S 10 ffi米,高是2厘米,面积是2Q平方匣米”(作垂直 5.我会判断对与错。下面每个三角形的高画得对吗?

1.填空题. (】)用两个()的??角形可以拼成一个平行四边形?这个平行四边形的底等于三用形的(),¥行四边形的岛等于◎角形的()。毎个三角形的面积是平行四边形的< ),所以三角形的面积=(' ),用字母表示为(). (2)—个*行四边形与一个三角形竽底停高,如果平行四边形的面积是12平方厘米,那么三 角形的面枳是()y?方健米;如果三角形的面积是12平方厘米?那么¥行【囚边形的 而枳是()平方厘米. (3)—个三角形的底是5剤米?高是4用米?这个三角形的面积是()平方厘米。2?计算下面图形的面枳. ⑴一个[角形的面枳羽4平方分米滴是4分米,那么底 )分米。 (2)右图阴影部分面积是15平方庵米?则平行四边形而积是 ()平方煙米. (3)一个三角形的底乘3.高 乘6?面积(). (1)一个平行四边形的面积是m平方用米?与它等底等高的三角形 的面积是()平方厘米。 (5)一个平行四边形的面枳是17.1平方厘米?底是4. 5厘米.高是 ( 等底的三角形的高建(”里*。 选择臥 (1)求右图三角形面积 的算式中不正确的是()o A. cX. C. 0X3X3) A.①②③II D.①③ )厘米?与它等面枳

三角函数与解三角形(师)

三角函数与解三角形 一、 y=Asin (ωx+φ)函数的图像与性质重难点突破 二、经验分享 【知识点1 用五点法作函数y=Asin (ωx+φ)的图象】 用“五点法”作sin()y A x ω?=+的简图,主要是通过变量代换,设z x ω?=+,由z 取3 0,,,,222 π πππ来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 【知识点2 由y=sinx 得图象通过变换得到y=Asin (ωx+φ)的图象】 1.振幅变换: sin y A x x R =∈,(A>0且A≠1)的图象可以看作把正弦曲线上的所有点的纵坐标伸长(A>1)或缩短 (0≠,且的图象,可看作把正弦曲线上所有点的横坐标缩短()1ω>或伸长()01ω<<到原来的1 ω 倍(纵坐标不变).若0ω<则可用诱导公式将符号“提出”再作图.ω决定了函数的周期. 3.相位变换: 函数()sin y x x R ?=+∈,(其中0?≠)的图象,可以看作把正弦曲线上所有点向左(当?>0时)或向右(当?<0时)平行移动?个单位长度而得到.(用平移法注意讲清方向:“左加右减”). 一般地,函数()sin()0,0y A x A x R ω?ω=+>>∈,的图象可以看作是用下面的方法得到的: (1) 先把y=sinx 的图象上所有的点向左(?>0)或右(?<0)平行移动?个单位; (2) 再把所得各点的横坐标缩短()1ω>或伸长()01ω<<到原来的 1 ω 倍(纵坐标不变); (3) 再把所得各点的纵坐标伸长(A>1)或缩短(0

小学数学《三角形的等积变形》练习题

小学数学《三角形的等积变形》练习题 基础班 1.如图(1),在△ABC中,D是BC中点,E是AD中点,连结BE、CE,那么与△ABE等积的三角形一共有哪几个三角形? 解答:3个。△AEC、△BED、△DEC 。 2.如图(2),在平行四边形ABCD中,EF平行AC,连结BE、AE、CF、BF那么与△BEC等积的三角形一共有哪几个三角形? 解答:△AEC、△AFC、△ABF。 3.如图(3),在梯形ABCD中,共有八个三角形,其中面积相等的三角形共有哪几对? 解答:△ABD与△ACD ,△ABC与△DBC,△ABO与△DCO 。 4.右图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是()平方厘米。解答:4×4÷2=8 5.如右图,D、E、F分别是BC、AD、BE的三等分点,已知S△ABC=27平方厘米,求S△DEF. 解答: 提高班

习题二 1.如图(1),在△ABC中,D是BC中点,E是AD中点,连结BE、CE,那么与△ABE等积的三角形一共有哪几个三角形? 解答:3个。△AEC、△BED、△DEC 。 2.如图(2),在平行四边形ABCD中,EF平行AC,连结BE、AE、CF、BF那么与△BEC等积的三角形一共有哪几个三角形? 解答:△AEC、△AFC、△ABF。 3.如图(3),在梯形ABCD中,共有八个三角形,其中面积相等的三角形共有哪几对? 解答:△ABD与△ACD ,△ABC与△DBC,△ABO与△DCO 。 4.如图,在梯形ABCD中,AC与BD是对角线,其交点O, 求证:△AOB与△COD面积相等. 证明:∵△ABC与△DBC等底等高, ∴S△ABC=S△DBC 又∵S△AOB=S△ABC—S△BOC S△DOC=S△DBC—S△BOC ∴S△AOB=S△COD. 5.右图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是()平方厘米。解答:4×4÷2=8 6.如右图,D、E、F分别是BC、AD、BE的三等分点,已知S△ABC=27平方厘米,求S△DEF.

小学五年级奥数 等积变形

奥数拓展:等积变形 (一)故事导入: 有一个富翁留了一块三角形的土地给两个儿子,两个儿子要求平分这块地,这可伤透了他们的脑筋,因为他们不知道怎样去测量、平分。同学们,你们能想出多少种方法将这块土地平分成2个面积相等的三角形吗? 根据这个问题,你能得出什么结论? 结论一:。 (二)即学即练: 1.你有什么方法将任意一个三角形分成3个面积相等的三角形? 2.如图,把△ABC的底边BC四等分,那么甲、乙两个三角形的面积谁大,为什么? 如图.三角形ABC中.D是AB的中点.点E、F.G、H把BC平均分成五份.阴影部分的面积占三角形ABC面积的几分之几? (三)思维探索: (平行线间的等积变形)如下图,△ACD和△BCD夹在一组平行线之间,且有公共底边,那么△ACD和△BCD的面积关系是怎样的?为什么? 结论2:夹在间的一组同底三角形面积相等(四)即学即练: 1.如图,在梯形ABCD中共有8个三角形,其中面积相等的三角形有哪几对?

(五)结论总结: 一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化。同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状。为便于实际问题的研究,我们还会常常用到以下结论: (1)等底等高的两个三角形面积相等; (2)底在同一条直线上并且相等,该底所对的角的的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等; (3)若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍。 (六)例题梳理 【例1】等积变形的等分点应用 1.如图,在直角三角形ABC中,D、E分别是AB、AC的中点,如果△AED的面积是30平方厘米.求△ABC 的面积? 2.如图,A为三角形DE边上的中点,BF为CD边上的三等分点,如果三角形ABC的面积为5,求三角形ABD和三角形ACE的面积。 3.在平行四边形ABCD中,直线CF交AB于E,交DA延长线于F,若三角形ADE的面积是1,求三角形BEF的面积。 【例2】平行线中的等积变形

三角形等积变形

三角形 (1)三角形有( )条边、( )个角和( )个顶点 1.垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线叫做另一条直线的垂线。 2.画三角形高的方法口诀:三角尺,直角边,这边找到底,那边过顶点。作垂直线段,标直角符号,四步画完。 3.你能在右图中找出几条高?标在图中。 4.标出下面各三角形的底和高。 5.我会判断对与错。下面每个三角形的高画得对吗? 6.画出每个三角形底边上的高。

1、如图1-a,将BC四等分,连AD、AE、AF,则△ABD、△ADE、△AEF和△AFC的面积有什么关系?. A 1-a 2、如图,三角形ABC和BCD的面积是否相等? 3、如图,在梯形ABCD中,共有几个三角形?其中面积相等的三角形共有哪几对? 4.

5、如图,AD 垂直于BC ,AD=12cm ,DE=3cm ,求三角形ABC 的面积是三角形EBC 面积的多少倍? 6、如图,ABCD 是平行四边形,E 是BC 的中点,平行四边形ABCD 的面积比三角形ABE 的面积多多少倍? 7、如图,三角形ABC 的面积为1,其中AE=3AB,BD=2BC,三角形BDE 的面积是多少? 8、把图中三角形ABC 的底边平均分成4份,D 是BC 的中点。已知三角形EFD 的面积是1平方分米。求三角形ABC 的面积。

9、如下各图,长方形ABCD的长均为20,宽均为12,分别求阴影部分的面积。 10、如图,平行四边形ABCD的面积是50,EF∥AD,求阴影部分的面积。 三角形的等积变形 前言 我们都已经知道三角形的面积计算公式:三角形的面积=底×高÷2 从这个公式我们可以发现三角形的面积大小取决于三年级的底和高的乘积.所以一个三角形在面积不改变的情况下,可以有无数个不同的形状. 成功秘诀 1.如果三角形的底(高)不变,高(底)越大则面积越大,高(底)越小则面积越小; 2.等底等高的三角形面积一定相等,形状不一定相等; 3.如果两个三角形的底(高)相等,高(底)成倍数关系,面积也成相同的倍数关系. 王牌例题

高考真题_三角函数与解三角形真题(加答案)

全国卷历年高考三角函数及解三角形真题归类分析 三角函数 一、三角恒等变换(3题) 1.(2015年1卷2)o o o o sin 20cos10cos160sin10- =( ) (A ) (B (C )12- (D )12 【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=1 2 ,故选D. 考点:本题主要考查诱导公式与两角和与差的正余弦公式. 2.(2016年3卷)(5)若3 tan 4 α= ,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625 【解析】由3tan 4α=,得34sin ,cos 55αα==或34 sin ,cos 55αα=-=-,所以 2161264 cos 2sin 24252525 αα+=+?=,故选A . 考点:1、同角三角函数间的基本关系;2、倍角公式. 3.(2016年2卷9)若π3 cos 45α??-= ???,则sin 2α= (A ) 7 25 (B )15 (C )1 5 - (D )725 - 【解析】∵3cos 45πα??-= ???,2ππ 7sin 2cos 22cos 12425ααα????=-=--= ? ????? ,故选D . 二、三角函数性质(5题) 4.(2017年3卷6)设函数π ()cos()3 f x x =+,则下列结论错误的是() A .()f x 的一个周期为2π- B .()y f x =的图像关于直线8π 3 x =对称 C .()f x π+的一个零点为π6x = D .()f x 在π (,π)2 单调递减 【解析】函数()πcos 3f x x ? ?=+ ?? ?的图象可由cos y x =向左平移π3个单位得到, 如图可知,()f x 在π,π2?? ??? 上先递减后递增,D 选项错误,故选D.

解三角形与三角函数专题

三角函数与解三角形 1.已知函数f (x )=sin x -23sin 2x 2. (1)求f (x )的最小正周期; (2)求f (x )在区间??????0,2π3上的最小值. 2.(2019·济南调研)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin A =4b sin B ,ac =5(a 2-b 2-c 2). (1)求cos A 的值; (2)求sin(2B -A )的值. 3.已知函数f (x )=sin 2x -cos 2x +23sin x cos x (x ∈R ). (1)求f (x )的最小正周期; (2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=2,c =5,cos B =1 7,求△ABC 中线AD 的长.

4.(2018·湘中名校联考)已知函数f (x )=cos x (cos x +3sin x ). (1)求f (x )的最小值; (2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若f (C )=1,S △ABC =334,c =7,求△ABC 的周长. 5.已知△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,向量m =(2sin B ,-3),n =(cos 2B ,2cos 2B 2-1),B 为锐角且m ∥n . (1)求角B 的大小; (2)如果b =2,求S △ABC 的最大值. 6.(2019·信阳二模)已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且满足(a +b +c )(sin B +sin C -sin A )=b sin C . (1)求角A 的大小; (2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值.

一、三角形的等积变形

一、三角形的等积变形 ①等底等高的两个三角形面积相等。 ②底在同一条直线上并且相等,该底所对的角的顶点是同一个点或在与底平行的直线上,这两个 三角形面积相等。 ③若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三 角形的面积也是另一个三角形面积的几倍。 【例1】 如右图,已知在△ABC中,BE=3AE,CD=2AD。若△ADE的面积为1平方厘米。求三角形ABC的面积。 二、鸟头模型 在△ABC中,D、E分别是AB、AC上的点如图⑴(或D在BA的延长线上,E在AC上), 则S△ABC∶S△ADE=(AB×AC)∶(AD×AE) 【例2】 如图,三角形ABC的面积是308,D,E,F分别为三角形三边上的点。其中AD∶CD=5∶3,BF∶CF=4∶7,AE∶BE=1∶6。问:阴影部分的小三角形的面积是多少 必备几何模型

【例3】 如图,三角形两边上的点都是各边上的五等分点。问:阴影部分与空白部分的面积比为多少 三、相似三角形性质(沙漏模型): ①AD AE DE AF AB AC BC AG === ②S△ADE∶S△ABC=AF2∶AG2 所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下: ⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; 【例4】 如图,在平行四边形ABCD中,直线CF交AB于E,交DA延长线于F,若S△ADE=1,求△BEF的面积。

四、蝴蝶模型 任意四边形中的比例关系(“蝴蝶定理”) ①S1×S3=S2×S4 ②AO∶OC=(S1+S2)∶(S4+S3) ①S1∶S3=a2∶b2 ②S1∶S2∶S3∶S4=a2∶ab∶b2∶ab ③梯形面积S的对于份数是(a+b)2 【例5】 如图面积为12平方厘米的正方形ABCD中,E、F是BC边上的三等分点,求阴影部分的面积。 【例6】 在直角梯形ABCD中,AB=15厘米,AD=12厘米,阴影部分的面积为15平方厘米。梯形ABCD的面

2015届高考数学文二轮专题训练专题三第2讲三角变换与解三角形

第2讲 三角变换与解三角形 考情解读 1.高考中常考查三角恒等变换有关公式的变形使用,常和同角三角函数的关系、诱导公式结合.2.利用正弦定理或余弦定理解三角形或判断三角形的形状、求值等,经常和三角恒等变换结合进行综合考查. 1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β?sin αsin β. (3)tan(α±β)=tan α±tan β1?tan αtan β . 2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α. (2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan 2α=2tan α 1-tan 2α. 3.三角恒等式的证明方法 (1)从等式的一边推导变形到另一边,一般是化繁为简. (2)等式的两边同时变形为同一个式子. (3)将式子变形后再证明. 4.正弦定理 a sin A = b sin B = c sin C =2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C . sin A =a 2R ,sin B =b 2R ,sin C =c 2R . a ∶ b ∶ c =sin A ∶sin B ∶sin C . 5.余弦定理 a 2= b 2+ c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C . 推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 2 2ac , cos C =a 2+b 2-c 2 2ab .

专题 三角函数及解三角形(解析版)

专题 三角函数及解三角形 1.【2019年高考全国Ⅰ卷理数】函数f (x )= 在[,]-ππ的图像大致为 A . B . C . D . 2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数 ②f (x )在区间( 2 π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③ 3.【2019年高考全国Ⅱ卷理数】下列函数中,以2 π为周期且在区间( 4 π, 2 π)单调递增的是 A .f (x )=|cos2x | B .f (x )=|sin2x | C .f (x )=cos|x | D .f (x )=sin|x | 4.【2019年高考全国Ⅱ卷理数】已知α∈(0, 2 π),2sin2α=cos2α+1,则sin α= A . 15 B . 5 C 3 D 5 5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5 x ωπ + )(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 2 sin cos ++x x x x

③()f x 在(0, 10 π )单调递增 ④ω的取值范围是[1229 510 ,) 其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④ 6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ω?ω?=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π ,且4g π?? = ???38f π??= ??? A .2- B . C D .2 7.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________. 8.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π 6,2,3 b a c B === ,则ABC △的面积为_________. 9.【2019年高考江苏卷】已知 tan 2π3tan 4αα=-??+ ?? ?,则πsin 24α? ?+ ???的值是 ▲ . 10.【2019年高考浙江卷】在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在线段AC 上,若 45BDC ∠=?,则BD =___________,cos ABD ∠=___________. 11.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设 22(sin sin )sin sin sin B C A B C -=-. (1)求A ; (2 2b c +=,求sin C . 12.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 2 A C a b A +=. (1)求B ;

(精心整理)三角变换与解三角形

第2讲 三角变换与解三角形 一、选择题 1.(2010·福建卷)计算1-2sin 222.5°的结果等于 ( ) A.12 B.22 C.33 D.32 解析:1-2sin 222.5°=cos 45°=22 . 答案:B 2.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ= ( ) A .-43 B.54 C .-34 D.45 解析:sin 2θ+sin θ·cos θ-2cos 2θ=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-2 tan 2θ+1,又 tan θ=2,故原式=4+2-24+1=45. 答案:D 3.已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为 ( ) A .75° B .60° C .45° D .30° 解析:由题知,12×4×3×sin C =33,∴sin C =3 2. 又00)的两根为 tan α、tan β,且α、β∈ ? ?? ??-π2,π2,则tan α+β2 的值是 ( ) A.12 B .-2 C.43 D.1 2或-2

解析:∵a >0,∴tan α+tan β=-4a <0,tan α·tan β= 3a +1>0,又∵α、β∈? ?? ??-π2,π2, ∴α、 β∈? ????-π2,0,则α+β2∈? ???? -π2,0,∴tan(α+β)= tan α+tan β 1-tan α·tan β=-4a 1-(3a +1) = 43 ,∴tan(α+β)=2tan α+β 2 1-tan 2 α+β 2 =4 3,整理得2tan 2α+β2+3tan α+β2-2=0,解得tan α+β2 =-2或1 2 (舍去).故选B. 答案:B 5.(2010·北京卷)某班设计了一个八边形的班徽(如图),它 由腰长为1,顶角为α的四个 等腰三角形,及其底边构成的正方形所组成.该八 边形的面积为 ( )

小升初几何重点考查内容————(五大模型——三角形等积变形、共角模型)

(★★★) 已知三角形DEF 的面积为 18,AD∶BD=2∶3,AE∶CE=1∶2,BF∶CF=3∶2,则三角形ABC 的面积为

如图,已知三角形 ABC 面积为 1,延长 AB 至 D ,使 BD =AB ;延长 BC 至 E ,使 CE =2BC ; 延长 CA 至 F ,使 AF =3AC ,求三角形 DEF 的面积。 (★★★★) 如图将四边形 ABCD 四条边 AB 、CB 、CD 、AD 分别延长两倍至点 E 、F 、G 、H ,若四边形ABCD 的面积为 5cm 2 ,则四边形 EFGH 的面积是多少 (★★★) 图中三角形 ABC 的面积是 180 平方厘米,D 是 BC 的中点,AD 的长是 AE 长的 3 倍,EF 的长是 BF 长的 3 倍。那么三角形 AEF 的面积是多少平方厘米 (★★★★) 如图,大长方形由面积是 12 平方厘米、24 平方厘米、36 平方厘米、48 平方厘米的四个小长方形组合而成。求阴影部分的面积。 (★★★)

(2009 年“学而思杯”六年级) 如图 BC =45,AC =21,△ABC 被分成 9 个面积相等的小三角形,那么 DI +FK = 。 在线测试题 温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。 1. ★★★★设 AD 1 AB , BE 1 BC , FC 1 AC , 如果三角形 DEF 的面积为 19 平方厘米, 3 4 5 那么三角形 ABC 的面积是多少平方厘米 A . B . C . D . (★★★★★)

F E S G 2. ★★★如下图,将三角形 ABC 的 BA 边延长 1 倍到 D ,CB 的边延长 2 倍到 E ,AC 边延长 1 倍到 F 。如果三角形 ABC 的面积等于 1,那么三角形 DEF 的面积是多少 A .10 B .8 C .9 D .11 3. ★★★★★如图,把四边形 ABCD 的各边都延长 3 倍,得到一个新四边形 EFGH ,如果 ABCD 的面积是 6,则 EFGH 的面积是( ) A .130 B .145 C .160 D .150 4. ★★★★如图, D 是 BC 的中点,AD 的长是 AE 长的 3 倍,EF 的长是 BF 长的 3 倍. 三角形 AEF 的面积是 18 平方厘米,三角形 ABC 的面积是( )平方厘米 A .144 B .168 C .72 D .100 5. ★★图中的 E 、F 、G 分别是正方形 ABCD 三条边的三等分点,如果正方形的边长是12 , 那么阴影部分的面积是( ) A .50 B .48 C .56 D .45 6. ★★★如图, S 1 , BC 5BD , AC 4EC , DG GS SE , AF FG 。三角形 FGS 的面积是( )。 A. 4 13 B. 2 5 C. 2 3 D. 1 10 A B C

三角函数与解三角形练习题

三角函数及解三角形练习题 一.解答题(共16小题) 1.在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大小. 2.已知3sinθtanθ=8,且0<θ<π. (Ⅰ)求cosθ; (Ⅱ)求函数f(x)=6cosxcos(x﹣θ)在[0,]上的值域. 3.已知是函数f(x)=2cos2x+asin2x+1的一个零点. (Ⅰ)数a的值; (Ⅱ)求f(x)的单调递增区间. 4.已知函数f(x)=sin(2x+)+sin2x. (1)求函数f(x)的最小正周期; (2)若函数g(x)对任意x∈R,有g(x)=f(x+),求函数g(x)在[﹣,]上的值域. 5.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值; (2)求f(x)的单调递增区间. 6.已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π. (Ⅰ)求ω和φ的值; (Ⅱ)若f()=(<α<),求cos(α+)的值. 7.已知向量=(cosx,sinx),=(3,﹣),x∈[0,π]. (1)若∥,求x的值; (2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值. 8.已知函数的部分图象如图所示.

(1)求函数f(x)的解析式; (2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a﹣c)cosB=bcosC,求的取值围. 9.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,M 为最高点,该图象与y轴交于点F(0,),与x轴交于点B,C,且△MBC的面积为π. (Ⅰ)求函数f(x)的解析式; (Ⅱ)若f(α﹣)=,求cos2α的值. 10.已知函数. (Ⅰ)求f(x)的最大值及相应的x值; (Ⅱ)设函数,如图,点P,M,N分别是函数y=g(x)图象的零值点、最高点和最低点,求cos∠MPN的值. 11.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f ()=0.

三角变换与解三角形

知识改变命运,学习成就未来 第六讲:三角恒等变换与解三角形 1.cos300?=( ) A.2- 12- C.1 2 D.2 2.已知α是第二象限的角,1 tan 2 α=- ,则cos α=__________ 3.计算sin 43cos13sin13cos43??-??的值等于( ) A . 12 B C D 4.sin163sin 223sin 253sin313??+??等于( ) A.12- B.1 2 C. 5.若12cos()(0)6 132 π π αα+= <<,则cos α= 6.若(4tan 1)(14tan )17αβ+-=,则tan()αβ-的值为( ) A.14 B.1 2 C.4 D.12 7.若02 π α<< ,02π β- <<,1cos()43πα+=,cos()423πβ-= ,则cos()2 β α+=( ) A . 3 B .3- C . 9 D .9 - 8.(sin 75sin15)(cos15cos75)?-??+?的值是( ) A. 1 2 2 D.1 9.求值:(1)5cos cos 12 12 π π =

(2)2 12sin 22.5-?= (3) 2 1tan 12tan 12 π π -= 等于( ) A.2cos5-? B.2cos5? C.2sin5-? D.2sin5? 11.若tan 3α=,则 2sin 2cos a α 的值等于( ) A .2 B .3 C .4 D .6 12.已知2 sin 3 α= ,则cos(2)πα-=( ) A.3- B.19- C.1 9 D.3 13.设1 sin( )43π θ+=,则sin 2θ=( ) A.79- B.19- C.19 D.79 14.已知a 是第二象限的角,4 tan(2)3 a π+=-,则tan a = 15.已知α为第三象限的角,3cos 25α=-,则tan(2)4 π α+= 16.已知1sin cos 2α= +α,且0,2πα∈(),则 cos 2sin()4 πα α-的值为_______ 17.记cos(80)k -?=,那么tan100?=( ) 18.下列函数中,周期为π,且在[ ,]42 ππ 上为减函数的是( )

小学数学《三角形的等积变形》练习题(含答案)

小学数学《三角形的等积变形》练习题(含答案) 内容概述 我们已经知道三角形面积的计算公式:三角形面积=底×高÷2 从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小); 这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的1/3,则三角形面积与原来的一样。这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状. 在实际问题的研究中,我们还会常常用到以下结论: ① 等底等高的两个三角形面积相等. ②若两个三角形的高相等,其中一个三角形的底是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍. 若两个三角形的底相等,其中一个三角形的高是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍. ③夹在一组平行线之间的等积变形,如下图,ACD ?和BCD ?夹在一组平行线之间,且有公共底边CD 那么BCD ACD S S ??=;反之,如果 BCD ACD S S ??=,则可知直线AB 平行于CD 。 例题精讲 【例1】 如右图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线长。 ① 求三角形ABC 的面积是三角形ABD 面积的多少倍? ② 求三角形ABD 的面积是三角形ADC 面积的多少倍? 【例2】 如右图,E 在AD 上,AD 垂直BC , AD=12厘米,DE=3厘米。 ① 求三角形ABC 的面积是三角形EBC 面积的几倍? A C D B

高三数学理科《三角函数与解三角形》专题训练

高三数学理科《三角函数与解三角形》专题训练 1.已知点P (tan α,cos α)在第三象限,则角α的终边在第几象限( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.若扇形圆心角的弧度数为2,且扇形弧所对的弦长也是2,则这个扇形的面积为( ) A.1sin 21 B.2sin 22 C.1cos 21 D.2cos 22 3.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-4 5 ,则m 的值为( ) A .-12 B.12 C .-32 D.32 4.已知α是第一象限角,tan α=3 4 ,则sin α等于( ) A.45 B.35 C .-45 D .-35 5.若点P (m ,n ) (n ≠0)为角600°终边上一点,则m n =________. 6.已知tan α tan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α (2)sin 2α+sin αcos α+2. 7.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (2 009)=3,则f (2 010)的值是( ) A .-1 B .-2 C .-3 D .1 8.已知sin(2π-α)=4 5,α∈() 3,22 ππ,则sin α+cos αsin α-cos α等于 ( ) A.17 B .-17 C .-7 D .7 9.已知cos(π-α)=8 17,α∈() 3,2 ππ,则tan α=________. 10.已知sin(3π+θ)= 13 ,求 cos(π+θ) cos θ[cos(π-θ)-1] + () ()()() cos 233sin cos sin 22 θπππθθπθ ----+的值. 11.如果函数y =3cos (2x +φ)的图象关于点 ( ) 4,03 π 中心对称,那么|φ|的最小值为( ) A.π6 B.π4 C.π3 D.π2 12.已知函数y =sin πx 3 在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是( ) A .6 B .7 C .8 D .9 13.已知在函数f (x )=3sin πx R 图象上,相邻的一个最大值点与一个最小值点恰好在 x 2+y 2=R 2上,则f (x )的最小正周期为 ( ) A .1 B .2 C .3 D .4 14.已知f (x )=sin ( ) 3 x π ω+ (ω>0),()() 63f f π π =,且f (x )在区间 ( ) ,63 ππ 上有最小值,无最大值,则ω=________. 15.关于函数f (x )=4sin ( ) 23 x π + (x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改写为y =4cos ( )26 x π - ③y =f (x )的图象关于点( ) ,06 π - 对称;④y =f (x )的图象关于直线x =-π 6对称. 其中正确的命题的序号是________.(把你认为正确的命题序号都填上) 16.设函数f (x )=cos ωx (3sin ωx +cos ωx ),其中0<ω<2. (1)若f (x )的周期为π,求当-π6≤x ≤π 3 时f (x )的值域; (2)若函数f (x )的图象的一条对称轴为x =π 3 ,求ω的值. 17.若函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π 2 ,直线x = π 3 是其图象的一条对称轴,则它的解析式是( ) A .y =4sin ()46x π + B .y =2sin () 23x π ++2 C .y =2sin () 43x π++2 D .y =2sin () 46x π++2 18.若将函数y =tan ()4x πω+(ω>0)的图象向右平移π 6 个单位长度后,与函数y = tan () 6x πω+的图象重合,则ω的最小值为( )

相关文档
最新文档