数学竞赛解题规律及方法

数学竞赛解题规律及方法
数学竞赛解题规律及方法

数学竞赛集训材料

姓名

一、速算与巧算:

项数=(末项-首项)÷公差+1

1、等差数列总和=(首项+末项)×项数÷2

末项=首项+(项数-1)×公差

首项=末项-(项数-1)×公差

2、速算:

(1)、13+23+33+……+n3=(1+2+3…+ n)2

(2)、1+3+5+7+9+…+ n=项数的平方(n为奇数)

二、数的整除

(1)能被4整除的数:末两位数要能被4整除。

(2)能被25整除的数:末两位要能被25整除。

(3)能被8或125整除的数:末三位数要能被8(或125)整除。

(4)能被9整除的数:各位数字之和要能被9整除。

(5)能被11整除的数:奇位数字之和与偶数位上数字之和的差要能被11整除。

(6)能被7、13整除的数:末三位数字所表示的数与末三位以前的数字所表示的数的差要能被7或13整除。

例:(1)用0-9这十个不同的数字可以组成许许多多不同的十位数。在这众多的十位数中能被11整除的最大的十位数是()。

(2)请你只修改“970405”中的某一位数字,使这个六位数能被225整除。

(3)一个四位数能被45整除,它的千位数字与个位数字的积等于20,百位数字与十位数字组成的二位数是9的四倍。这个是四位数是()。

三、数的奇偶性:

奇+奇 =偶偶+偶=偶偶+奇=奇

奇+奇+…… +奇=奇奇+奇+ …… +奇=偶奇数个偶数个

奇-奇=偶偶-偶=偶奇-偶=奇

偶-奇=奇奇×奇=奇偶×偶=偶奇×偶=偶

四、同余和剩余问题:

1、如果两整数被N除时,余数相同,则它们的差必能被N整除。

2、被除数加上除数的倍数,再除以除数、余数不变。

3、如果整数A1和B1,除以同一个自然数M,所得的余数相同;A2和B2除以同一个自然数M,余数也相同,那么A1+A2,B1+B2除以M所得的余数也相同。

4、如果整数A和B除以自然数M所得的余数相同,那么A N和B N除以M所得的余数也相同。

5、如果一个数A除以M有余数为R,那么这个数的K倍,(KA)除以M的余数与KR除以M的余数相等。

6、几个数的和(或积)除以M的余数,等于这几个数分别除以M的余数的和(或积),再除以M得到的余数。

7、A N÷B的余数与A4K+R中(N=4K+R)A R÷B的余数相同。

例:(1)如果13511、13903和14589三个数被自然数M除,所得的余数相同。那么,M的最大值是()。

(2)用某数去除56、108和162,都不能整除。又知它们相除后三个余数之和为20。这个数是()。

(3)A=1×1999+2×1999+3×1999+…+1999×1999,A被11除的余数是()。

(4)有一个整数,用它去除300、262和205,得到的余数都相同。这个数是()。

五、一笔画问题。

给定一个连通图,如果

1、这个图没有奇顶点,即所有顶点都是偶顶点,那么能从任何一个顶点出发,一笔画完图中的所有的边恰好一次,再回到原出发顶点。

2、图中只有两个奇个顶点,则可以从任意一个奇顶点出发一笔画完所有的边恰好一次,最后停笔于另一个顶点。

3、除以上两种情况外,其他连通图都不能不重复地一笔画成。

六、加法原理和乘法原理。

1、加法原理:做一件事,完成它可以有几类办法。在第一类办法中有M种不同的方法,在第二类办法中有M2种不同的方法…,在第N类办法中有MN种不同的方法。那么完成这件事共有N=M1+M2+……+M N种不同的方法。

2、乘法原理:做一件事,完成它需要分成几个步骤,做第一步有M1种不同的方法,做第二步有M2种不同的方法……,做第几步有M N种不同的方法,那么完成这件事菜有N=M1×M2×…×MN种不同的方法。

七、容斥原理:

1、设有N件事物,其中有N1件具有性质1;N2件具有性质2;N1、、2件同时具有性质1和性质2,则几件事物中,既不具性质1又不具性质2的事物共有:N-N1-N2+N1、2

2、设有几件事物,其中N1件具有性质1,N2件具有性质2,N3件具性质3, N1、2件具有性质1和2,N1,3件具有性质1和3,N2,3件具有性质2和3,N1,2,3具有1,2,3,则N件事物中,既不具有性质1,也不具有性质2,也不具有性质3的事物共有: N-N1-N2-N3+N1,2+N1,3+N2,3+N1,2,3(件)

八、抽屉原理

1、若N=KM,则必有一个抽屉里装的苹果至少有K个;

2、若N=KM+R(0

(2)某校五年级有91名学生是在4月份出生的,那么其中至少有()名学生的生日是在同一天。

九、四则运算的位数问题:

1、和的位数:两个N位数的和(N是自然数),最多是(N+1)位数,最少是N位数。

2、差的位数:两个N位数的差(N是自然数),最多是N位数。

3、积的位数:两个N位数的积(N是自然数),最多是2N位数,最少是(2N-1)位数。

4、商的位数:两个N位的商(N是自然数),当商是自然数时,它是一位数。

5、一个M位数除以一个N位数(M>N,M、N是自然数),当商是自然数时,它最多是(M-N+1)位数,最少是(M-N)位数。

十、估算方法:

在自然数里,两个数的和如果一定,这两个数的差越小,则这两个数的乘积就越大,(当两个数相等时,乘积最大)

例:两条铁线同样长,一条围成边长16分米的正方形,另一条围成长方形(长、

宽均为整分米数),那么围成的长方形中,面积最大是( )平方分米。

十一、配对法:

1、平面上有N 条直线,当它们两两相交且没有三条直线交于一点时,划分平面的部分F (N )=2

1×(N 2+N+2)

例:平面上有30条直线,最多可以把这个平面划分成( )部分。

2、正方形的各边都N 等分,若F (N )表示正方形的总数,则

F (N )=N 2+(N-1)2+(N-2)2+……+32+22+12

例:一个正方形各边被10等分,现在的图形中一共有( )个正方形。

3、平面上画N 个圈,这些圈划分的部分是N 2-N+2。

十二、格点法

顶点全部是格点的封闭图形,【面积数=图形内部的格点数+(图形

四周边上的格点数-2)×21】,面积单位是每个方格。 方格的纵横两组平行线的交点,就叫做格点。

例:(1).如图,每一个方格代表1平方厘米,阴影部分面积是

十三、约数问题

任何合数的约数个数等于这个合数的各个质因数的指数加上1后的乘积。

十四、循环小数

1、纯循环小数化成分数,可以将一个循环节所表示的数作为分子,分母的各位数字都是9,9的个数同循环节的位数相同。

2、混循环小数化成分数,可以将小数点后面的第一个数字到另一个循环节的末位数字所组成的数减去不循环部分数字所组成的数,所得的差作为分子;分母的头几位数字是9,9的个数同循环节的位数相同,

末几位数字是0,0的个数同不循环部分的位数相同。1.0.12+0.23+0.34+0.45+0.56+0.67+ 0.78+0.89=___________

十五、植树问题

1、不封闭的线路上植树

棵树=段数+1 段数=棵树-1

每个相隔的长=路长÷段数=路长÷(棵树-1)

棵树=路长÷间隔长+1

路长=每个隔长×间段数=每个隔长×(棵数-1)

2、封闭的路线上植树

棵数=段数路长=每个间隔长×棵树(段数)

棵树=路长÷间隔长

间隔长=路长÷棵数(或段数)

例:(1)一个正方形花坛四周摆满了鲜花,四个角上也各摆了一盆花。从每一边看去,它都有15盆,花坛周围一共摆了()盆花。

(2)一个圆形大花圃,直径10米,在它的周围每隔2分米栽一棵花,共可栽()棵花。

(3)一个正六边形的苗圃,里面等距离地栽满小树苗。已知它最外边一圈一共栽了90棵小树苗。这个苗圃共有树苗()棵。

十六、行程问题

追及时间=距离差÷(快行速度-慢行速度)

相差距离=快行距离-慢行距离

十七、方阵问题

1、实心方阵

总人数=每边数×每边数

一周的总数=(每边数-1)×4

每边数=一周总数÷4+1=(一周总数+4)÷4

2、空心方阵

总人数=(最外层每边数-层数)×层数×4

外层每边人数=总人数÷4÷层数+层数

十八、流水问题

逆水速度=船速-水速水速=(顺水速度-逆水速度)÷2 顺水速度=船速+水速

静水速度=(顺水速度+逆水速度)÷2

十九、多边形内角和、外角和:

内角和=1800×(边数-2)

外角和=3600

二十、盈亏问题

1、一盈一亏:(盈+亏)÷两次分物数的差=分物个数

2、一盈一尽:盈数÷两次分物的差=分物个数

3、一亏一尽:亏数÷两次分物的差=分物个数

4、两盈:(大盈-小盈)÷两次分物的差=分物个数

5、两亏:(大亏-小亏)÷两次分物的差=分物个数

二十一、和差问题

1、(两数和+两数差)÷2=大数

2、(两数和-两数差)÷2=小数

二十二、最大公约数和最小公倍数

自然数A和B: 1、A与B的最大公约数与它们的最小公倍数的乘积等于这两个数的乘积。

2、A±B与B的最大公约数等于A与B的最大公约数。

二十三、图形问题

1、等高两个三角形的面积倍数关系和两底之间的倍数相同。

2、等底等高的三角形的面积相等。

3、正方体:三个面都油漆:8个

二个面的:(N-2)×12

一个面的:(N-2)×(N-2)×6

都没有的:(N-2)3

4、三角形最多划分平面部分:2+3N(N-1)

四边形最多将平面分成4N×(N-1)

长方形:3N×(N-1)+2

5、直角三角形A2+B2=C2 A和B是三角形的直角边,C是斜边。

6、重量问题:20、21、22、23、2N称2N±1种不同重量的物体

N×(N-1)÷2

二十四、平均数问题

总量÷总份数=平均数

例:(1)有五个数,它们的平均数为73。小黄把其中的一个数改写成“96”,平均数就变成81。被改动的数是()。

(2)A种酒精中纯酒精的含量为78﹪,B种酒精中纯酒精的含量为43﹪。要用它们配制成纯酒精含量为50﹪的酒精,所取A、B两种酒精重量的比为():()。

(3)有一列连续自然数。如果前五个连续自然数的和是65,那么紧接着它们后面的七个连续自然数的和是()。

二十五、工程问题

工程总量÷工作效率=工作时间

例:(1)一项工程,8人干需15天完成。若先让18人做3天,

3。那么,后三余下的由另一部分人做3天,共完成这项工程的

4

天共有()人在工作(每人的工效相同)。

(2)某学校准备一笔钱购买课桌椅,如果单独购买椅子,可买60把;如果单独购买课桌,可买40张。那么,这笔钱可买课桌椅()套。

(3)一项工程,甲乙二人合作需要8天完成。若甲先做7天,乙接着做10天也正好完成。若由乙单独做,()天完成。

(4)甲、乙、丙三人每天的工作量的比是3:2:1。现有一项工作,三人合作5天正好完成全部工作的三分之一。然后,甲休息4天后继续工作;乙休息3天后继续工作;丙一直没休息。当他们完成这项工作时,乙实际工作了()天。

二十六、推向极端

例:(1)一个三位数能同时被2、3和7整除,把这样的三位数由小到大排列,排在正中间的一个数是()。

(2)有一个六位数,能被11整除。这个六位数最高位是7,其余各位数字均不相同,这个六位数最小是(701239 ),最大是( 798534 )。

(3)有长长一列连续自然数,小明从中间选了20个连续偶数,计算出它们的和是1700。那么“夹”在20个连续偶数中间的那些连续奇数的和是()。

二十七、联想转化

(1)光明小学图书室共有故事书和科技书6300本,其中故事书占3

2。这学期又买来一批科技书,这时故事书占这两种书总数的60℅。新买来的科技书有( )本。

(2)甲乙两桶油共若干千克,其中甲桶油占两桶之和的60℅,如果将甲桶里的油倒20千克给乙桶,两桶油恰好相等。乙桶原来有油( )千克。

(3)李师傅用一定的时间加工300个零件,前一半时间,每小时加工20个;后一半时间,每小时加工30个。李师傅加工这300个零件一共用了( )小时。

(4)完成某一项工程,甲单独做要40天,乙单独做要30天。甲先单独做若干天后,因其他工作需要调走了,由乙接着做完余下的工程。已知两人完成这项工程前后一共花了36天。乙完成这余下的工程用了( )天。

(5)如图,ABCD 是边长4厘米的正方形。又知AE=5厘米,那么,DF 长( )厘米。

(6)如图,ABCD 是正方形,三角形DEF 的面积比三角形ABF 大6平方厘米,又知CD 长6厘米,DE 长( )厘米。

初中数学竞赛常用解题方法(代数)

初中数学竞赛常用解题方法(代数) 一、 配方法 例1练习:若2 ()4()()0x z x y y z ----=,试求x+z 与y 的关系。 二、 非负数法 例21 ()2 x y z =++. 三、 构造法 (1)构造多项式 例3、三个整数a 、b 、c 的和是6 的倍数.,那么它们的立方和被6除,得到的余数是( ) (A) 0 (B) 2 (C) 3 (D) 不确定的 (2)构造有理化因式 例4、 已知(2002x y =. 则2 2 346658x xy y x y ----+=___ ___。 (3)构造对偶式 例5、 已知αβ、是方程2 10x x --= 的两根,则4 3αβ+的值是___ ___。 (4)构造递推式 例6、 实数a 、b 、x 、y 满足3ax by +=,2 2 7ax by +=,3 3 16ax by +=,4 4 42ax by +=.求5 5 ax by +的值___ ___。 (5)构造几何图形 例7、(构造对称图形)已知a 、b 是正数,且a + b = 2. 求u =___ ___。 练习:(构造矩形)若a ,b 形的三条边的长,那么这个三角形的面积等于___________。 四、 合成法 例8、若12345,,,x x x x x 和满足方程组

123451234512345123451234520212 224248296 x x x x x x x x x x x x x x x x x x x x x x x x x ++++=++++=++++=++++=++++= 确定4532x x +的值。 五、 比较法(差值比较法、比值比较法、恒等比较法) 例9、71427和19的积被7除,余数是几? 练习:设0a b c >>>,求证:222a b c b c c a a b a b c a b c +++>. 六、 因式分解法(提取公因式法、公式法、十字相乘法) 1221()(...)n n n n n n a b a b a a b ab b -----=-++++ 1221()(...)n n n n n n a b a b a a b ab b ----+=+-+-+ 例10、设n 是整数,证明数3 231 22 M n n n =++为整数,且它是3的倍数。 练习:证明993 991993 991+能被1984整除。 七、 换元法(用新的变量代换原来的变量) 例11、解方程2 9(87)(43)(1)2 x x x +++= 练习:解方程 11 (1) 11 (1x) x =. 八、 过度参数法(常用于列方程解应用题) 例12、一商人进货价便宜8%,售价保持不变,那么他的利润(按进货价而定)可由目前的 %x 增加到(10)%x +,x 等于多少? 九、 判别式法(24b ac ?=-判定一元二次方程20ax bx c ++=的根的性质) 例13、求使2224 33 x x A x x -+=-+为整数的一切实数x. 练习:已知,,x y z 是实数,且 2 2 2 212 x y z a x y z a ++=++=

高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数 b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ?表示 {1,2,…,m }中与m 互质的整数的个数,并称)(m ?为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系. 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=. 定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑≥1 k k p n . 定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模 m 的完全剩余系; (2)若{)(21,...,,m r r r ?}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ?}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ???=. (2)若n 的标准分解式为k k p p p n ααα (2) 121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相

高中数学竞赛解题方法篇(不等式)

高中数学竞赛中不等式的解法 摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。 希望对广大喜爱竞赛数学的师生有所帮助。 不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个著名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用. 1.排序不等式 定理1 设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有 1211...n n n a b a b a b -+++ (倒序积和) 1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和) 其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或 12...n b b b ===时成立.

(说明: 本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.) 证明:考察右边不等式,并记1 2 12...n r r n r S a b a b a b =+++。 不等式 1 2 12...n r r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n ===时,S 达到 最大值1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有 .n n k n n r k r n n a b a b a b a b +≤+ (1-1) 事实上, ()()()0n n n n n k r k n n r n r n k a b a b a b a b b b a a +-+=--≥ 不等式(1-1)告诉我们当n r n <时,调换n b 和n r b 的位置(其余n-2项不 变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了 1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++. 再证不等式左端, 由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端, 得 1211(...)n n n a b a b a b --+++1212(...)n r r n r a b a b a b ≥-+++

历年全国高中数学联赛二试几何题汇总汇总

历年全国高中数学联赛二试几何题汇总 2007 联赛二试 类似九点圆 如图,在锐角?ABC 中,AB

初中数学竞赛题中方程解的讨论问题解题策略(一)

- 1 - 初中数学竞赛题中方程解的讨论问题解题策略(一) 安徽省巢湖市教学研究室 张永超 (本讲适合初中) 方程是一种重要的数学模型,也是重要的数学思想之一。有关方程的解的讨论问题一直是初中数学竞赛试题的热点与难点。解决有关方程的解的讨论问题往往涉及到分类讨论、数形结合等数学思想。 一、知识要点 1.形如 方程的解的讨论: ⑴若=0,①当=0时,方程有无数个解; ②当≠0时,方程无解; ⑵若≠0,方程的解为=。 2.关于一元二次方程(≠0)根的讨论,一般需应用到根的判别式、根与系数的关系等相关 知识。 ⑴若 ,则它有一个实数根=1;若 ,则它有一个实数根=-1。 ⑵运用数形结合思想将方程(≠0)根的讨论与二次函数 (≠0)的图象结合 起来考虑是常用方法。 3.涉及分式方程根的讨论,一般考虑使公分母为零的整式方程的根(即原分式方程的增根)。 4.关于含绝对值的方程解的讨论,一般使用分类讨论的方法去掉绝对值符号,有时也应用到数形结合思想与绝对值的几何意义。 5.解决有关方程整数根的问题时,一般要应用到整数的知识,要理解整除、质数等相关概念。 二、例题选讲 1.方程整数根的讨论 例1.已知 ,且方程 的两个实数根都是整数,则其最大的根是 。 解:设方程的两个实数根 为 、 , 则 ,所 以 。因为 、都是整数,且97是质数,若设 < ,则 , ,或 , ,因此最大的根是98。 评注:此题解答应用了一元二次方程根与系数的关系,分解质因数的知识等方法与技能。这种方法在有关一元二次方程整数根的讨论问题中经常用到,如:

- 2 - 类题.(2004年四川)已知,为整数,关于的方程有两个相同的实数 根,则-等于( ) A.1; B.2; C.±1; D.±2. 分析:依题意得⊿=,所以 ,由,为整 数得 ,或 ,或 ,或 , 所以-=± 1。 例2.(2000年全国竞赛)已知关于的方程的根都是整数,那么符合条件的整数 有______个。 解:上述方程没有说明是一次方程还是二次方程,因此需要分类讨论。 ①当时, ,符合题意; ②当 时,原方程是一元二次方程,易知 是方程的一个整数根。设是方程的另一个整数根, 由一元二次方程根与系数的关系得。因为 是整数,所以 ±1,或±2,∴ =-1,0,2, 3。 结合①、②得,本题符合条件的整数有5个。 评注:本例首先对项的系数是否为零进行了分类讨论。对于 时方程解的讨论方法具有一般性, 即由 是整数判断得 ±1,或±2。 延伸拓展:例2关于一元二次方程整数解的讨论方法应用到整除知识与分解变形技巧,是初中数学竞赛常考的内容,如: (2004年信利杯)已知、是实数,关于、的方程组有整数解(,),求、满 足的关系式。 解:原方程组可化 为 ,所 以 ,显然方程中≠-1,因 此 。因为、是整数,所以 ,即=0,或-2。 当=0时,=0,此时、满足的关系式是=0(为任意实数); 当=-2时,=8,此时、满足的关系式。 例3.(2004年全国联赛)已知方程 的根都是整数,求整数的值。

小学数学竞赛一几种解题方法

一几种解题方法 1.28分。提示:按从多到少顺序枚举。如果小军是两个1角硬币,那么小红的三枚硬币不可能是18分;当小军是一个1角一个5分时,小红是一个1角,一个2分,一个1分。 2.5种。 3.495。解:因为93>700,所以只有下面三种可能: 13+33+53=153 13+33+73=371, 33+53+73=495,其中只有495是11的倍数。 4.286。解:此数是13的偶数倍,必能被26整除。由260依次往小试验,260-26=234,234-26=208,都不符合题意。再由260往大试验,260+26=286符合题意。 5.15。解:1与不小于4的任何自然数都不满足题意,所以四个数中没有1。取2,3,4,a,前三个数满足条件,a=5不满足条件,a=6满足条件。所求数为2+3+4+6=15。 6.8种。解:将四个瓶子依次记为A,B,C,D,将四张标签依次记为a,b,c,d。假设A贴对了,其余的都贴错了,有两种情况: ①Aa,Bc,Cd,Db;②Aa,Bd,Cb,Dc。 同理B,C,D贴对了,其余的都贴错了,也各有两种情况。共8种。 7.10种。提示:有0,0,3;0,1,2;0,2,1;0,3,0;1,0,2;1,1,1;1,2,0;2,0,1;2,1,0;3,0,0十种方法。 8.7。解:不拆盒可买的节数有3,5,8,9,10,…因为超过10的数都可以由8,9,10中的某个数加3的倍数形成,而8,9,10都可以不拆盒,所以买7节以上(不含7)都不必拆盒。 9.11。提示:与第8题类似。 10.18支、10支、6支、4支。提示:因为总的铅笔数不多,故可依次假设丁有2支、3支、4支……铅笔。 11.21个。 提示:乙的红球、白球都是偶数。因为甲的红球数是乙的白球数的2倍,并且不超过10,所以乙的白球数只能是2或4。

高中数学竞赛解题方法篇不等式

高中数学竞赛解题方法篇 不等式 The pony was revised in January 2021

高中数学竞赛中不等式的解法 摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。希望对广大喜爱竞赛数学的师生有所帮助。 不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个着名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用. 1.排序不等式 定理1 设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有 1211...n n n a b a b a b -+++(倒序积和) 1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和) 其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或 12...n b b b ===时成立. (说明:本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.) 证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。

不等式1212...n r r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n ===时,S 达到最大值 1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有 .n n k n n r k r n n a b a b a b a b +≤+(1-1) 事实上, 不等式(1-1)告诉我们当n r n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++. 再证不等式左端, 由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端, 得 即1211...n n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++. 例1(美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3 ()a b c a b c a b c abc ++≥. 思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设a b c ≥≥,则有lg lg lg a b c ≥≥ 根据排序不等式有: 以上两式相加,两边再分别加上lg lg lg a a b b c c ++

高中数学竞赛基础知识讲解

高中数学竞赛基本知识集锦 广州市育才中学数学科 邓军民 整理 一、三角函数 常用公式 由于是讲竞赛,这里就不再重复过于基础的东西,例如六种三角函数之间的转换,两角和与差的三角函数,二倍角公式等等。但是由于现在的教材中常用公式删得太多,有些还是不能不写。先从最基础的开始(这些必须熟练掌握): 半角公式 2cos 12 sin α α -± = 2 cos 12 cos α α +± = α α ααααα cos 1sin sin cos 1cos 1cos 12 tan +=-=+-± = 积化和差 ()()[]βαβαβα-++= sin sin 21 cos sin ()()[]βαβαβα--+=sin sin 21 sin cos ()()[]βαβαβα-++=cos cos 21 cos cos ()()[]βαβαβα--+-=cos cos 2 1 sin sin 和差化积 2cos 2sin 2sin sin β αβ αβα-+=+ 2sin 2cos 2sin sin β αβαβα-+=- 2cos 2cos 2cos cos β αβαβα-+=+ 2 sin 2sin 2cos cos β αβαβα-+-=- 万能公式 α αα2 tan 1tan 22sin += α α α2 2tan 1tan 12cos +-= α α α2 tan 1tan 22tan -=

三倍角公式 ()() αααααα+-=-=οο60sin sin 60sin 4sin 4sin 33sin 3 ()() αααααα+-=-=οο60cos cos 60cos 4cos 3cos 43cos 3 二、某些特殊角的三角函数值 三、三角函数求值 给出一个复杂的式子,要求化简。这样的题目经常考,而且一般化出来都是一个具体值。要熟练应用上面的常用式子,个人认为和差化积、积化和差是竞赛中最常用的,如果看到一些不常用的角,应当考虑用和差化积、积化和差,一般情况下直接使用不了的时候,可以考虑先乘一个三角函数,然后利用积化和差化简,最后再把这个三角函数除下去 举个例子 求值:7 6cos 74cos 72cos π ππ++ 提示:乘以7 2sin 2π ,化简后再除下去。 求值:??-?+?80sin 40sin 50cos 10cos 2 2 来个复杂的 设n 为正整数,求证 n n n i n i 21 212sin 1 += +∏=π 另外这个题目也可以用复数的知识来解决,在复数的那一章节里再讲 四、三角不等式证明 最常用的公式一般就是:x 为锐角,则x x x tan sin <<;还有就是正余弦的有界性。 例 求证:x 为锐角,sinx+tanx<2x

初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法. 而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式a ac b b x 2422 ,1-±-= 内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美. 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决. 解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个. 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程. 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=. 【例3】 解关于x 的方程02)1(2=+--a ax x a . 思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】 设方程04122=---x x ,求满足该方程的所有根之和. 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+ 1 111, 试求x 的值. 思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值. 注:一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x . 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==.

高中数学竞赛讲义_平面几何

平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则 .1''''''=??B C AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=??B C AC A B CB C A BA 则',','C B A 三点共线。 塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=??B C AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=??B C AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。 角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠?∠∠?∠∠BA B CBB CB C ACC AC A BAA 广义托勒密定理 设ABC D 为任意凸四边形,则AB ?CD+BC ?AD ≥AC ?BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。 斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2?BC PC +AC 2?BC BP -BP ?PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理 三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴) 欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.2 1GH OG = 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠ PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。 [证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以 CQ AC QP AP =1 ,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有

【数学竞赛各阶段书籍推荐】

金牌学生推荐(可参照选择) 一、第零阶段:知识拓展 《数学选修4-1:几何证明选讲》 《数学选修4-5:不等式选讲》 《数学选修4-6:初等数论初步》 二、全国高中数学联赛各省赛区预赛(即省选初赛) 1、《五年高考三年模拟》B版或《3年高考2年模拟》第二轮复习专用 2、《高中数学联赛备考手册》华东师范大学出版社(推荐指数五颗星) 3、《奥赛经典:超级训练系列》高中数学沈文选主编湖南师范大学出版社(推荐指数五颗星) 4、单樽《解题研究》(推荐指数五颗星) 5、单樽《平面几何中的小花》(个别地区竞赛会考到平几) 6、《平面几何》浙江大学出版社 7、奥林匹克小丛书第二版《不等式的解题方法与技巧》苏勇熊斌著 三、第二阶段:全国高中数学联赛 一试 0、《奥林匹克数学中的真题分析》沈文选湖南师范大学出版社(推荐指数五颗星) 1、《高中数学联赛考前辅导》熊斌冯志刚华东师范大学出版社 2、《数学竞赛培优教程(一试)》浙江大学出版社 3、命题人讲座《数列与数学归纳法》单樽 4、《数列与数学归纳法》(小丛书第二版,冯志刚) 5、《数列与归纳法》浙江大学出版社韦吉珠 6、《解析几何的技巧》单樽(建议买华东师大出版的版本) 7、《概率与期望》单樽 8、《同中学生谈排列组合》苏淳 9、《函数与函数方程》奥林匹克小丛书第二版 10、《三角函数》奥林匹克小丛书第二版 11、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 12、《圆锥曲线的几何性质》 13、《解析几何》浙江大学出版社 二试 平几 1、高中数学竞赛解题策略(几何分册)沈文选(推荐指数五颗星)

2、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 3、奥林匹克小丛书第二版《平面几何》 4、浙大小红皮《平面几何》 5、沈文选《三角形的五心》 6、田廷彦《三角与几何》 7、田廷彦《面积与面积方法》 不等式 8、《初等不等式的证明方法》韩神 9、命题人讲座《代数不等式》计神 10、《重要不等式》中科大出版社 11、奥林匹克小丛书《柯西不等式与平均值不等式》 数论 (9,10,11选一本即可,某位大神说二试改为四道题以来没出过难题) 12、奥林匹克小丛书初中版《整除,同余与不定方程》 13、奥林匹克小丛书《数论》 14、命题人讲座《初等数论》冯志刚 组合 15、奥林匹克小丛书第二版《组合数学》 16、奥林匹克小丛书第二版《组合几何》 17、命题人讲座刘培杰《组合问题》 18、《构造法解题》余红兵 19、《从特殊性看问题》中科大出版社 20、《抽屉原则》常庚哲 四、中国数学奥林匹克(Chinese Mathematical Olympiad)及以上 命题人讲座《圆》田廷彦 《近代欧式几何学》 《近代的三角形的几何学》 《不等式的秘密》范建熊、隋振林 《奥赛经典:奥林匹克数学中的数论问题》沈文选 《奥赛经典:数学奥林匹克高级教程》叶军 《初等数论难题集》 命题人讲座《图论》 奥林匹克小丛书第二版《图论》 《走向IMO》

全国高中数学联赛平面几何题

全国高中数学联赛平面几何题 1.(2000) 如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE =∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等. 2. (2001) 如图,△ABC 中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N . 求证:(1) OB ⊥DF ,OC ⊥DE ; (2) OH ⊥MN . 3.(2002) 4.(2003) 过圆外一点P 作圆的两条切线和一条割线,切点为A ,B 所作割线交圆于C ,D 两点,C 在P ,D 之间,在弦CD 上取一点Q ,使∠DAQ =∠PBC .求证:∠DBQ =∠PAC . A B C D E F M N

5.(2004)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K 。已知BC=25,BD=20,BE=7,求AK 的长。 6.(2005) 7.(2006)以B 0和B 1为焦点的椭圆与△AB 0B 1的边AB i 交于点 C i (i =0,1). 在AB 0的延长线上任取点P 0,以B 0为圆心,B 0P 0 为半径作圆弧P 0Q 0⌒ 交C 1B 0的延长线于Q 0;以C 1为圆心,C 1Q 0 为半径作圆弧Q 0P 1⌒ 交B 1A 的延长线于点P 1;以B 1为圆心,B 1P 1 为半径作圆弧P 1Q 1⌒ 交B 1C 0的延长线于Q 1;以C 0为圆心,C 0Q 1 为半径作圆弧Q 1P 0'⌒ ,交AB 0的延长线于P 0'. 试证: ⑴ 点P 0'与点P 0重合,且圆弧P 0Q 0⌒与P 0Q 1⌒ 相切于点P 0; ⑵ 四点P 0,Q 0,Q 1,P 1共圆. P B 1 B 0 C 1P 1 P 0 Q 1Q 0 A C 0

初中数学奥林匹克竞赛解题方法大全(配PDF版)-第06章-几何基础知识

第六章几何基础知识 第一节线段与角的推理计算 【知识点拨】 掌握七条等量公理: 1、同时等于第三个量的两个量相等。 2、等量加等量,和相等。 3、等量减等量,差相等。 4、等量乘等量,积相等。 5、等量除以等量(0除外),商相等。 6、全量等于它的各部分量的和。 7、在等式中,一个量可以用它的等量来代替(等量代换)。 【赛题精选】 例1、如图,∠AOB=∠COD,求证:∠AOC=∠BOD。 例2、C、D为线段AB上的两点,AD=CB,求证:AC=DB。 例3、AOB是一条直线,∠AOC=600,OD、OE分别是∠ AOC和∠BOC的平分线。问图中互为补角关系的角共有多少对? 例4、已知B、C是线段AD上的任意两点,M是AB的中 点,N是CD的中点,若MN=a,BC=b,求CD的长。

例5、已知OM是∠AOB的平分线,射线OC在∠BOM内部,ON是∠BOC的平分线,且∠AOC=800。求∠MON的度数。 例6、已知A、O、B是一条直线上的三个点,∠BOC比∠AOC 大240,求∠BOC、∠AOC的度数。 例7、如图,AE=8.9CM,BD=3CM。求以A、B、C、D、 E这5个点为端点的所有线段长度的和是多少? 例8、线段AB上的P、Q两点,已知AB=26CM,AP=14CM, PQ=11CM。求线段BQ的长。 例9、已知∠AOC=∠BOD=1500,∠AOD=3∠BOC。

求∠BOC的度数。 例10、已知C是AB上的一点,D是CB的中点。若图中线段的长度之和为23CM,线段AC的长度与线段CB 的长度都是正整数。求线段AC的长度是多少厘米?

【针对训练】

山西太原市高中数学竞赛解题策略-几何分册第1章直角三角形

第一编 点击基本图形 第1章 直角三角形 直角三角形是含有内角为90?的特殊三角形,它是一类基本图形. 直角三角形的有趣性质在处理平面几何问题中常发挥重要作用. 性质1 一个三角形为直角三角形的充要条件是两条边长的平方和等于第三条边长的平方(勾股定理及其逆定理). 性质2 一个三角形为直角三角形的充要条件是一边上的中线长等于该边长的一半. 推论1 直角三角形的外心为斜边的中点. 性质3 ABC △为直角三角形,且C 为直角顶点的充要条件是当C 在边AB 上的射影为D 时,下列五个等式之一成立. (1)2AC AD AB =?. (2)2BC BD AB =?. (3)2CD AD DB =?. (4)22 BC AB CD AD =. (5)22AC AB CD DB = . 事实上,由2AC AD AB =?,有 AB AC AC AD = .注意到A ∠公用,知ACB △∽ADC △.而90ADC ∠=?,故90ACB ∠=?.即可得(1)的充分性. 我们又由 22222BC AB BC CD AB AD CD AD CD AD --=?= 22 DB DB CD AD ?=,即2CD AD DB =?. 即可证得(4)的充分性. 其余的证明略. 推论2 非等腰ABC △为直角三角形,且C 为直角顶点的充要条件是当C 在边AB 上的射 影为D 时,22AC AD BC DB = . 事实上,由性质3中的(1)、(2)相除或(4)、(5)相除即证.下面,另证充分性.由 222 222 AD AC AD CD DB BC CD DB +== +, 有 2()()0CD AD DB AD DB -?-=. 而AD DB ≠,即有2CD AD DB =?.由此即可证. 性质4 ABC △为直角三角形,且C 为直角顶点的充要条件是当C 在边AB 上的射影为点D ,过CD 中点P 的直线AP (或BP )交BC (或AC )于E ,E 在AB 上的射影为F 时,2EF CE EB =?(或2EF = CE EA ?) . 证明 必要性.如图11-,过D 作DG AE ∥交BC 于G ,则

高中数学竞赛讲义---代数式的恒等变换方法与技巧

1—1 代数式的恒等变换方法与技巧 一、代数式恒等的一般概念 定义1 在给定的数集中,使一个代数式有意义的字母的值,称为字母的允许值。字母的所有允许值组成的集合称为这个代数式的定义域。对于定义域中的数值,按照代数式所包含的运算所得出的值,称为代数式的值,这些值的全体组成的集合,称为代数式的值域。 定义2 如果两个代数式A、B,对于它们定义域的公共部分(或公共部分的子集)内的一切值,它们的值都相等,那么称这两个代数式恒等,记作A=B。 两个代数式恒等的概念是相对的。同样的两个代数式在它们各自的定义域的某一个子集内是恒等,但 x =,在x≥0时成立,但在x<0时不成立。因此,在研究两个代数式恒等时,一定要首先弄清楚它们在什么范围内恒等。 定义3 把一个代数式变形成另一个与它恒等的代数式,这种变形称为恒等变换。 代数式的变形,可能引起定义域的变化。如lgx2的定义域是(,0)(0,) -∞+∞,2lgx的定义域是(0,) +∞,因此,只有在两个定义域的公共部分(0,) +∞内,才有恒等式lgx2=2lgx。由lgx2变形为2lgx时,定义域缩小了;反之,由2lgx变形为lgx2时,定义域扩大了。这种由恒等变换而引起的代数式定义域的变化,对研究方程和函数等相关问题时也十分重要。由于方程的变形不全是代数式的恒等变形,但与代数式的恒等变形有类似之处,因此,在本节里,我们把方程的恒等变形与代数式的恒等变形结合起来讨论。 例1:设p x =有实根的充要条件,并求出所有实根。 由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。这样可避免增根和遣根的出现。 解: 原方程等价于 22 2 ( 0,0 x p x x x ?-=- ? ? -≥ ?? 2 2 2 22 2 (4) 4448(2) 44 1 33 0440,0 p x x p p x x x x p x ?- = ? ?=+-- ? ? ? ? ?≤≤?≤ ?? ?? ≥ ??+-≤≥ ?? ? 2 2 2 (4) 8(2) 44 ,0 43 p x p p x x ?- = ??- ?? - ?≤≤≥ ?? 由上式知,原方程有实根,当且仅当p满足条件 2 4(4)44 48(2)33 p p p p -- ≤≤?≤≤ - 这说明原方程有实根的充要条件是 4 3 p ≤≤ 。这时,原方程有惟一实根x=。 二、恒等变换的方法与技巧 恒等变换的目的是使问题变得简单,便于求解。因此,式的恒等变换是根据需要进行的,根据不同问题的特点,有其不同的规律性。 1.分类变换 当式的变换受到字母变值的限制时,可对字母的取值进行分类,然后对每一类进行变换,以达到求解的目的。分类变换方法适用于式的化简与方程(组)的化简、求解。

初中物理竞赛中常用解题方法

第16讲初中物理竞赛中常用解题方法 一【知识梳理】 (1)等效法:把复杂的物理现象、物理过程转化为简单的物理规律、物理过程来研究和处理的思维方法叫做等效法。 (2)极端法:根据已知的条件,把复杂的问题假设为处于理想的极端状态,站在极端的角度去分析考虑问题,从而迅速的做出正确的判断的思维方法叫极端法。 (3)整体法:一种吧具有多个物体的变化过程组合为一个整体加以研究的思维方法叫整体法。 (4)假设法:对于待求解的问题,在与原题所给的条件不违背的前提下,人为的加上或减去某些条件,以使原题方便求解的思维方法叫假设法。 (5)逆推法:运用逆向思维的将问题倒过来思考的思维方法叫做逆推法。 (6)图像法:根据题意表达成物理图像,再将物理问题转化成一个几何问题,通过几何知识求解的思维方法叫做图像法。 (7)对称法:根据对称性分析和处理问题的方法叫做对称法。 (8)赋值法:在探究中只选择个别有代表性的数值进行讨论,然后再将讨论的结果推回到一般性问题上的思维方法叫赋值法。 ^ (9)代数法:根据条件列出数学方程式,然后再利用方程式的一些基本法则和运算方法求解方程的思维方法叫代数法。 二【例题解析】

题型一:等效法 应用等效法研究问题时,要注意并非指事物的各个方面效果都相同,而是强调某一方面的效果。例如:力学中合力与分力是等效替代、运动学中合运动与分运动的等效替代、电学中的电路是等效等。例1:某空心球,球体积为V,球强的容积是球体积的一半,当它漂浮在水面上时,有一半露出水面。如果在求腔内注满水,那么() A 球仍然漂浮在水面上,但露出水面的部分减少 B 球仍然漂浮在水面上,露出水面的部分仍为球体积的一半 C 球可以停留在水中任意深度的位置 D 球下沉直至容器底 【解析】把空心球等效看成一个1/2的实心球和另一个不计重力的体积为1/2的空气球。因为球在水中静止,且有V/2的体积在水中,固可以看成V/2的实心球恰好悬浮,另一个V/2飞空气球则露出水面,如图16-1所示,固将空气球注满水,再投入水中,将悬浮。整个大球悬浮。 1 ~ 例2:有一水果店,所用的称是吊盘式杆秤,如图16-2所示,量程为十千克。现在有一个超大的西瓜,超过此秤的量程。店员找到另一秤砣,与此秤砣完全相同,把它和原秤砣接在一起作为秤砣经行称量。平衡时,双秤砣位于刻度处。他将此西瓜以13千克作为西瓜的质量卖给顾客。店员乙对这种称量方法表示怀疑。为了检验,他取另一个西瓜,用单秤砣正常称量得8千克,用双秤砣称量读数为3千克,乘以2得6

初中数学奥林匹克竞赛解题方法大全(配PDF版)一元一次方程及汇总

第四章一元一次方程及其应用 第一节一元一次方程 例1、在解方程的过程中,为了使得到的方程和原方程同解,可在原方程的两边() A、乘以同一个数 B、乘以同一个整式 C、加上同一个代数式 D、都加上同一个数 例2、方程甲3(x-4)=3x与方程乙x-4=4x同解,其根据是() 4 A、甲方程两边都加上了同一个整式 B、甲方程两边都乘以了4/3x C、甲方程两两边都乘以了4/3 D、甲方程两边都乘以了3/4 例3、方程1?1?1?1???x-1?-1?-1?-1=2001的根x=__________。?? 2?2?2?2??? 例4、1992+1994+1996+1998=5000- 成立,则中应当填的数是() A、5 B、-900 C、-1900 D、-2980 例5、若P、Q都是质数,以X为未知数的方程PX+5Q=97的根是1。则P2-Q=____。 例6、有理数111xz、、8恰是下列三个方程的根,则-=________。 25yx (1)2x-110x+12x+1-=-1 (2)3(2y+1)=2(1+y)+3(y+3) 3124 (3) 1?1?2z-(z-1)=(z-1) ?2?2??327 例7、解方程:x-=1990 的去处时,某同学误将3.57 错写成3.57,结果与正确答案例8、在计算一个正数乘以3.57 相差1.4,求正确的乘积应是多少? 28 29

第二节列方程解应用题 例1、海滩上有一堆核桃,第一天猴子吃了这堆核桃的2/5,又将4个扔到大海里;第二天猴子吃掉的核桃数加上3个就是第一天所剩核桃数的5/8。若第二天剩下6个核桃。问海滩上原有多少个核桃?(20个) 例2、古希腊数学家丢番图的墓志铭上记载:“坟中安葬着丢番图,多幺令人惊讶,它忠实地记录了所经历的道路。上帝给予的童年占六分之一,又过十二分之一,两颊长胡,再过七分之一,点燃起结婚的蜡烛。五年之后天赐贵子,可怜迟

相关文档
最新文档