储氢能源材料的应用

储氢能源材料的应用
储氢能源材料的应用

储氢材料的应用

氢能作为一种新型的能量密度高的绿色能源正引起世界各国的重视。储存技术是氢能利用的关键。未来储氢材料的应用领域十分广阔。在燃料电池、氢气汽车等领域的更引起人们的广泛关注。

1.高性能充电电池一镍氢电池

稀土储氢电池是一种新型的化学电源( N i /MH) ,也被称为镍氢充电电池,它具有比容量高、可快速充电、无记忆效应、无污染、寿命长等显著优点,是充电电池( 又称二次电池) 家族中引人注目的新秀。 1 9 8 3年出现的Ni /MH二次电池,这是一种以氧化镍( 或多孔金属镍) 为正极,以L a Ni 5型储氢合金为负极,用KOH作电解液的二次电池。L a N i 5在碱液中作为一种可逆的氢电极,通过电化学反应大量的吸收和解吸氢气,由金属氢化物负极与镍正极构成的二次电池已实现充、放电,反应过程中不发生活性物质的沉淀和溶解,从而也不消耗和产生水。

储氢合金是 2 O世纪6 O年代末发现的一类具有高储氢密度的功能材料,已广泛应用于各行业。由于对高性价比二次能源的需求日益紧迫,开发新一代高性能储氢电极材料已势在必行。碳纳米管( C NT) 是继C6 0之后该系列的又一储氢材料,由于其具有高的表面比、低密度和独特的中空结构,碳纳米管作为储氢载体引起了全球广泛关注。

近年来,我国汽车拥有量的猛涨,汽油消费强劲。2009中国汽车产销超过1350万辆,中国开始成为第一汽车大国。2012年中国的汽车产销量均超过1900万辆,继续保持世界第一。我国2012年末全国民用汽车保有量达到12089万辆,其上涨空间还很大。

2.氢气汽车

汽油的消耗主体是汽车。中国每天大约消耗540万桶石油。其中汽油占26%,中等提炼油(包括柴油,喷气机燃料和煤油)占33%,燃料石油占12%。然而,我国的油气资源储量和产量明显不足。尤其是石油资源,2010年,我国共消耗石油4亿多吨,其中,进口2.1亿吨,对外依存度已超过50%,能源形势非常严峻。与此同时,我国多地区出现雾霾天气,汽车尾气排放被认为是造成这一恶劣

天气的元凶之一。

这些都迫切需要我们改善我们的能源结构,减少对石油的依赖。而氢气以其热值高,燃烧后是水无污染,来源广泛等优点越来越引起人们的注意。因此,人们希望研究出以氢气为燃料的汽车。但是氢能源在汽车上的应用面临一个严重的问题,即贮存问题。由于氢原子是所有原子中原子半径最小的,致使氢原子可能从贮存材质的原子间隙或缺陷逸出,现在一般都用一种钢制的耐高压容器——氢气瓶来贮存氢气。瓶里的氢气即使加到150个大气压,所装氢气的重量也不到气瓶重量的1/100,而且还有爆炸的危险。

显然,这种贮存方法对于在工业上和生活上大量使用氢气是不合适的。现在发现有些金属具有捕捉氢的能力,这类金属叫做贮氢金属。它们在一定的温度和比平衡分解压高的压力下能够大量吸收氢气,一个金属原子可以与两三个乃至更多个氢原子结合,形成金属氢化物。以后,当我们把这种金属氢化物加热时,它又会发生分解而放出氢气。从理论上讲,相当于氢气瓶重量1/3的某些金属,就能“吸收”与氢气瓶贮氢容量相当的氢气,而它的体积却不到氢气瓶体积的1/10。这使氢气汽车的实现成为了可能。

氢气汽车不论在科研领域还是在汽车市场上都是一个新兴的热点。氢气可以从电解水、煤的气化中大量制取,而且不需要对汽车发动机进行大的改装,因此氢能汽车具有广阔的应用前景。推广氢能汽车需要解决三个技术问题:大量制取廉价氢气的方法,传统的电解方法价格昂贵,且耗费其他资源,无法推广;解决氢气的安全储运问题;解决汽车所需的高性能、廉价的氢供给系统。目前随着储氢材料的研究进展,可以为氢能汽车开辟全新的途径。

目前氢气汽车分为两种,氢内燃车(HICEV)是以内燃机燃烧氢气及空气中的氧产生动力,推动的汽车。常见的供给系统有三种,气管定时喷射式、低压缸内喷射式和高压缸内喷射式。而氢燃料电池车(Fuel cell vehicle-FCEV)是使氢或含氢物质及空气中的氧通过燃料电池以产生电力,再以电力推动电动机,由电动机推动车辆。氢燃料电池更高效,减小了氢气损失和热量散失。

氢气燃料汽车的研究不断取得新进展,高速车辆、巴士、潜水艇和火箭已经在不同形式使用氢。2013年3月7日,韩国现代汽车将17辆途胜ix氢燃料电池车装载到货轮上,其中15辆运往丹麦,2辆运向瑞典,这些车辆将于4月正式交

付使用。途胜ix氢燃料电池车搭载现代汽车单独开发的燃料电池系统和储氢系统。一次充电,可行驶594公里。

3.总结

今后,不但汽车中会使用储氢材料,大量使用燃料电池飞机、舰艇、宇宙飞船等运载工具也将使用储氢材料。因为镍镉电池(Ni-Cd)中的镉有毒,使废电池处理复杂,环境受到污染。镍氢电池与镍镉电池相比,具有容量大、安全无毒和使用寿命长等优点。发展用储氢合金制造的镍氢电池(Ni-MH),也是未来储氢材料应用的另一个重要领域。

储氢材料的储氢原理与研究现状

储氢材料的储氢原理与研究现状 氢能,即氢气中所含有的能量。具有环境友好、资源丰富、热值高、燃烧性能好、潜在经济效益高等特点。目前,能源危机和环境危机日益严重。许多国家都在加紧部署、实施氢能战略,如美国对运输机械的“FreedomCAR”计划和针对规模制氢的“FutureGen”计划,日本的“NewSunshine”计划及“We-NET”系统,欧洲的“Framework”计划中关于氢能科技的投人也呈现指数上升趋势。但是,氢能的使用至今未能商业化,主要的制约因素就是存储问题难以解决。因此,氢能的利用和研究成为是当今科学研究的热点之一。而寻找性能优越、安全性高、价格低廉、环保的储氢材料则成为氢能研究的关键。 目前,氢可以以高压气态液态、金属氢化物、有机氢化物和物理化学吸附等形式储存。高压气态液态储氢发展的历史较早,是比较传统而成熟的方法,无需任何材料做载体,只需耐压或绝热的容器就行,但是储氢效率很低,加压到15MPa时质量储氢密度不超过3%。而且存在很大的安全隐患,成本也很高。 金属氢化物储氢开始于1967年,Reilly等报道Mg2Cu能大量储存氢气,接着1970年菲利浦公司报道LaNi5在室温下能可逆吸储与释放氢气,到1984年Willims制出镍氢化物电池,掀起稀土基储氢材料的开发热潮。金属氢化物储氢的原理是氢原子进入金属价键结构形成氢化物。有稀土镧镍、钛铁合金、镁系合金、钒、铌、锆等多元素系合金。具体有NaH-Al-Ti、Li3N-LiNH2、MgB2-LiH、MgH2-Cr2O3及Ni(Cu,Rh)-Cr-FeOx等物质,质量储氢密度为2%-5%。金属氢化物储氢具有高体积储氢密度和高安全性等优点。在较低的压力(1×106Pa)下具有较高的储氢能力,可达到100kg/m3以上。最近,中科院大连化学物理研究所陈萍团队发现Mg(NH2)/2LiH储氢体系可在110℃条件下实现约5%(质量分数)氢的可逆充放。但是,金属氢化物储氢最大的缺点是金属密度很大,导致氢的质量百分含量很低,一般只有2%-5%,而且释放氢时需要吸热,储氢成本偏高。 目前大量的储氢研究是基于物理化学吸附的储氢方法。物理吸附是基于吸附剂的表面力场作用,根源于气体分子和固体表面原子电荷分布的共振波动,维系吸附的作用力是范德华力。吸附储氢的材料有碳质材料、金属有机骨架(MOFs)材料和沸石咪唑酯骨架结构(ZIFs)材料、微孔/介孔沸石分子筛等矿物储氢材料。 碳质储氢材料主要是高比表面积活性炭、石墨纳米纤维(GNF)和碳纳米管(CNT),是最好的吸附剂,它对少数的气体杂质不敏感,且可反复使用。超级活性炭在94K、6MPa下储氢量

纳米储氢电极材料

纳米储氢电极材料主要有碳纳米管、镁镍合金和镁钛合金 Mg2 Ni纳米晶储氢材料 性能:它具有储氢容量高,吸放氢平台好,质量轻,资源丰富等优点,但要能达到实用化的目的就必须解决其在室温下吸放氢动力学性能差,表面容易形成氧化膜等缺点。 目前,在镁基储氢合金的开发研究中,现已有Mg2Ni ,Mg2Cu ,Mg2La系储氢合金,还有 一系列的多元MgNi系储氢合金。 制备方法采用机械合金化方法,即使用高能球磨机进行球磨制备 1. 采用机械合金化方法制备了Mg Ni 合金粉末,其晶 粒度在10nm左右。 2. 在较高的速度下球磨可以使生成Mg Ni 合金的时间提 前,完全合金化的过程缩短,还有利于减轻焊合提高球磨效率。 3. 过程控制剂的加入以及循环变速运转可以缓和焊合 现象的发生。 4. 初步的研究结果表明:Mg Ni 纳米晶粉末在室温下即 可吸氢,贮氢性能较之传统方法制备的材料有显著改善。 传统方法制备的Mg Ni 在温度低于250°C时不产生吸 2 氢现象,在经历一个前期活化过程之后,吸放氢实验在250 8 °C~350°C,氢气压力1.5~2.0MPa下完成。 将机械合金化制备的Mg Ni 纳米晶粉末在金属高压系 2 统进行贮氢性能研究。称取一定量样品放入反应室中,真空加热除气后,冷却到室温,放入一定量的氢气(氢气纯度大于99 %),观察粉末在室温下的吸氢情况。 储氢碳纳米管 碳纳米管CNTs,Carbon Nanotubes 是一种主要由碳六 边形弯曲处为碳五边形和碳七边形组成的单层或多层 纳米管状材料。管的内径在几个纳米到几十个纳米之间, 长度可达微米量级。仅有一层石墨片层结构的单层管被 称为单壁碳纳米管SWNTs, Single - Walled carbon nan tubes ,有多层石墨片alled carbon nan tubes 。单壁碳纳米管 是碳纳米管的一层结构的多层管被称为多壁碳纳米 管MWNTs,Multi - W种极限状态,管径较小,直径一般为1~ 6nm,最小的直径大约为014nm,其结构中的缺陷不易存 在,具有较高的均匀性和一致性。多壁碳纳米管的直径一 般为几纳米到几十纳米,长度为几十纳米到微米,层数从 2~50不等,层间距约为0134nm。 (文献参考:Mg_2Ni纳米晶储氢材料的机械合金化制备工艺研究) 物理吸附

储氢的各种材料

一、前言 随着社会的发展,环境保护问题已经越来越为人们所重视。酸雨、温室效应、城市热岛效应等等 或初露倪端,或已对人类造成巨大的危害,这些环保问题的产生在很大程度上与人类大量使用化石能 源有关。同时,由于能源消耗量的迅猛增加,化石能源将不能满足经济高速发展的需求,需要开发新 的能源。在我国开发清洁的新能源体系更具有重要意义。 氢可以地球上近于无限的水为原料来制备,其燃烧产物也是水,具有零污染的优点,有望在石油中国论文联盟https://www.360docs.net/doc/e317015530.html, 时代末期成为一种主要的二次能源。氢能技术的发展,已在航天技术中得到了成功的应用。 氢是一种危险,易燃易爆的气体,在使用中必须保证安全,因此,一种安全、高能量密度(包括体积能量密度和重量能量密度)、低成本、使用寿命长的氢储、输技术的应用需求已越来越迫切。 二、目前主要的储氢方式 近年来研究较多的储氢方式有:(1)金属氢化物储氢;(2)液化储氢;(3)吸附储氢;(4)压缩储氢。 2.1金属氢化物储氢 氢和氢化金属之间可以进行可逆反应,当外界有热量加给氢化物时,它就分解为氢化金属并释放 出氢气。用来储氢的金属大多是由多种元素构成的合金,目前世界上研究成功的合金大致分为:(1)稀土镧镍,每公斤镧镍合金可储氢153L;(2)铁钛合金,储氢量大,价格低月在常温常压下释放氢;(3)镁系合金,是吸氢量最大的元素,但需要在287℃条件下才能释放氢,而且吸收氢十分缓慢;(4)钒、铌、铅等多元素系,这些金属本身是稀贵金属,因此只适用于某 些特殊场合。 与其它储氢方式相比,金属氢化物储氢具有压力平稳,充氢简单、方便、安全等优点,单位体积贮氢的密度,是相同温度、压力条件下气态氢的1000倍。该储氢方式存在的问题为在大规模应用中如 何提高储氢材料的储氢量和降低材料成本,节约贵重金属。国际能源机构确定的未来新型储素材料的标准为储氢量应大于5Wt%,并且能在温和条件下吸放氢。根据这一标准,目前的储氢合金大多尚不能满足这一性能要求。 2.2液化储氢 将氢气冷却到-253℃时氢气即可液化。液氢储存方式的质量能量密度最大,是一种轻巧紧凑的方式。但氢气液化成本高,能量损失大(氢液化所需能量为液化氢燃烧产热额的30%),且存在蒸发损 失。液氢贮存工艺首先用于宇航中,但需要极好的绝热装置来隔热,才能防止液态氢不会沸腾汽化, 导致液体贮存箱非常庞大。 2.3吸附储氢 C.CarPetis和W.Peschka是首先提出在低温条件下氢气能够在活性炭中吸附储存的两位学者。他们提出可以考虑将低温吸附刘运用到大型氢气储存中,并研究得到了在温度为-195℃和-208℃,压力为0-4.15MPa时,氢在多种活性炭上的吸附等温线:压力为4.2MPa 时,氢气在活性炭上的吸附容量分别可以达到 6.8wt%和 8.2wt%在果等温膨胀到0.2MPa,则吸附容量为4.2wt%和5.2wt%。 在一个最近的研究中,Hynek在27℃和-83℃条件下测试了一系列吸附剂,如活性炭、碳黑、碳气凝胶 以及碳分子筛等。测试结果为:在0-20MPa压力范围内,随着压力的增大,吸附剂的储氢量只有少 量的增加。 目前吸附储氢材料研究的热点是碳纳米材料。由于碳纳米材料中独特的晶格排列结构,其储氢数量大大的高过了传统的吸附储氢材料。碳纳米管产生一些带有斜口形状的层板,层

纳米储氢材料原理及示意图

Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts Ki-Joon Jeon 1?,Hoi Ri Moon 2??,Anne M.Ruminski 2,Bin Jiang 3,Christian Kisielowski 4,Rizia Bardhan 2and Jeffrey J.Urban 2* Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142MJ kg ?1;ref.1),great variety of potential sources (for example water,biomass,organic matter),light weight,and low environmental impact (water is the sole combustion product).However,there remains a challenge to produce a material capable of simultaneously op-timizing two con?icting criteria—absorbing hydrogen strongly enough to form a stable thermodynamic state,but weakly enough to release it on-demand with a small temperature rise.Many materials under development,including metal–organic frameworks 2,nanoporous polymers 3,and other carbon-based materials 4,physisorb only a small amount of hydrogen (typ-ically 1–2wt%)at room temperature.Metal hydrides were traditionally thought to be unsuitable materials because of their high bond formation enthalpies (for example MgH 2has a H f ~75kJ mol ?1),thus requiring unacceptably high release temperatures 5resulting in low energy ef?ciency.However,recent theoretical calculations 6,7and metal-catalysed thin-?lm studies 8have shown that microstructuring of these materials can enhance the kinetics by decreasing diffusion path lengths for hydrogen and decreasing the required thickness of the poorly permeable hydride layer that forms during absorption.Here,we report the synthesis of an air-stable composite ma-terial that consists of metallic Mg nanocrystals (NCs)in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen (up to 6wt%of Mg,4wt%for the composite)and rapid kinetics (loading in <30min at 200?C).Moreover,nanostructuring of the Mg provides rapid storage kinetics without using expensive heavy-metal catalysts. There have been various efforts to synthesize nanosized magnesium,such as ball-milling 9,sonoelectrochemistry 10,gas-phase condensation 11and infiltration of nanoporous carbon with molten magnesium 12.However,these approaches remain limited by inhomogeneous size distributions and high reactivity toward oxygen.Our synthesis for air-stable alkaline earth metal NC/polymer composites consists of a one-pot reduction reaction of an organometallic Mg 2+precursor in the presence of a soluble organic polymer chosen for its hydrogen gas selectivity (Fig.1).The Mg NCs/PMMA nanocomposites were synthesized at room 1Environmental Energy T echnologies Division,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA,2The Molecular Foundry,Material Science Division,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA,3FEI Company,NE Dawson Creek Dr.,Hillsboro,Oregon,97124,USA,4National Center for Electron Microscopy and Helios SERC,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA.?These authors contributed equally to this work.?Present address:Interdisciplinary School of Green Energy,Ulsan National Institute of Science and T echnology (UNIST),Ulsan 689-798,Korea.*e-mail:jjurban@https://www.360docs.net/doc/e317015530.html,. Mg 2+ + Li Lithium naphthalide Bis(cyclopentadienyl)- magnesium Mg/PMMA nanocomposites b a H 2 Mg nanoparticle Organic polymer with selective gas permeability PMMA THF H 2 H 2O O 2 Formation of MgH 2 Figure 1|Mg NCs in a gas-barrier polymer matrix.a ,Schematic of hydrogen storage composite material:high-capacity Mg NCs are encapsulated by a selectively gas-permeable polymer.b ,Synthetic approach to formation of Mg NCs/PMMA nanocomposites. temperature from a homogeneous tetrahydrofuran (THF)solution containing the following dissolved components:the organometallic precursor bis(cyclopentadienyl)magnesium (Cp 2Mg),the reduc-ing agent lithium naphthalide,and the gas-selective polymer poly(methyl methacrylate)(PMMA).Mg nanocrystals are then nucleated and grown in this solution by means of a burst-nucleation and growth mechanism 13in which lithium naphthalide reduces the organometallic precursor in the presence of a capping ligand (the soluble PMMA (M w =120,000)acts as a capping ligand for the Mg nanocrystals)14.Transmission electron microscopy (TEM)analysis of our reaction mixture before addition of reductant,immediately thereafter,and at later stages of the growth (Supplementary Fig.S1)further support this model.

金属储氢材料研究进展_范士锋

Chemical Propellants & Polymeric Materials 2010年第8卷第2期 · 15 · 金属储氢材料研究进展 范士锋 (海军驻西安地区军事代表局,陕西西安 710065) 摘 要:综述了金属储氢原理、目前国内外金属储氢材料的研究现状及应用研究进展,对镁系、稀土系、Laves相系、钛系及金属配位氢化物等几个系列金属储氢材料当前的研究热点和存在问题进行了详细介绍,并对未来金属储氢材料在民品和军工方面的应用研究方向和发展趋势进行了展望。 关键词:金属储氢材料;研究进展;发展趋势 中图分类号: TG139.7 文献标识码: A 文章编号: 1672-2191(2010)02-0015-05 收稿日期:2009-09-09 作者简介:范士锋(1978-),男,工程师,从事战略导弹总体与固体火箭发动机研究。电子信箱:jizhenli@126.com 作为燃料,氢具有最高的质量热值(其热值1.25×106kJ/kg,为汽油的3倍、焦炭的4.5倍), 是理想的高能清洁燃料之一[1-2]。目前,尽管高压(低于17MPa)气态储氢、低温(低于20K)液态储氢等技术手段使得氢在一些常规燃料和航天推进等领域得以应用,但高压气态氢体积热值小以及低温液态氢液化过程耗能高、使用条件苛刻等问题严重限制了氢作为火炸药能量供给组分的应用。利用吸氢材料与氢气反应生成固溶体和氢化物的固体储氢方式,能有效克服上述储存方式的不足,而且储氢体积密度大、安全度高、使用和运输便利。因此,今后储氢研究的重点将是新型高性能储氢材料的研发,目前研究较为广泛的主要是金属储氢材料[3]。 储氢材料按氢的结合方式可分为化学键合储氢(如储氢合金、配位氢化物、氨基化合物、有机液体碳氢化合物等)和物理吸附储氢(碳纳米管、多孔碳基材料、金属有机框架材料、纳米储氢材料、多孔聚合物等)。从上述储氢材料的性能(燃烧热、材料密度、储氢密度、反应活性)等衡量标准分析,高热值的金属储氢材料(包括金属氢化物或合金储氢材料)是火炸药燃料组分的发展重点。 文中主要针对当前金属储氢材料的研究热点和存在问题,对相关金属储氢材料的国内外研究进展进行较为详细的综述,以期为此类高性能材料在火炸药中的应用提供研究思路。 1 金属储氢原理及储氢研究现状 传统的氢气存储方式中,气态储氢方式简单 方便,是目前储存压力低于17MPa的常用方法,但存在着体积密度小、运输和使用过程中易燃易爆等缺点;液态储氢方法的体积密度(70kg/m3)较高,但氢气的液化需要冷却到20K的超低温下才能实现,此过程需消耗的能量约占所储存氢能的25% ̄45%,且液态氢使用条件苛刻,对储罐绝热性能要求高,目前只限于航天领域。金属储氢材料是目前研究较为广泛、成熟的新型高性能大规模储氢材料之一,其储氢密度高、安全性好、适于大规模氢气储运,最重要的特性是能够可逆地吸、放大量氢气。氢一旦与储氢合金接触,即在其表面分解为H原子,H原子扩散进入合金内部直至与合金发生反应而生成金属氢化物,氢即以原子态储存在金属结晶点内(四面体与八面体间隙位置)。在一定温度和氢压强条件下,上述吸、放氢反应式如下式所示: 其中,吸氢过程放热,放氢过程吸热,上述吸、放氢反应过程热力学和动力学与温度、氢压力密切相关,特别是放氢压力与反应温度呈指数变化关系[4]。 储氢材料性能的衡量标准主要用以下2个产量表示:体积储氢密度和质量储氢密度。其中,体积储氢密度为系统单位体积内储存氢气的质量(kg/m3),质量储氢密度为系统储存氢气的质量与系统质量的比值(质量分数)。考虑储氢材料在火炸药中的应用,系统燃烧热(与储存介质的热值和储氢质量分数的大小密切相关)、系统密度(与储存介质的密度和结构相关)和反应活性( 与氧化

储氢材料的分类及镍氢电池的机理

储氢材料分类 狭义上讲,储氢材料[8]是一种能与氢反应生成金属氢化物的物质;但是它与一般金属氢化物有明显的差异。即储氢材料必须具备高度的反应可逆性(可反复进行吸储氢和释放氢的可逆反应),而且,此可逆循环的次数(循环寿命)必须足够多,循环次数超过5000次。实际上,它必须是能够在适当的温度、压力下大量可逆的吸收和释放氢的材料。 对于理想的金属储氢材料应具备以下条件:1.在不太高的温度下,储氢量大,释放氢量也大;2.氢化物的生成热一般在-46 ~ -29 kJ/mol H2之间;3.原料来源广,价格便宜,容易制备;4.经多次吸、放氢,其性能不会衰减;5.有较平坦和较宽的平衡压力平台区,即大部分氢均可在一持续压力范围内放出;6.易活化,反应动力学性能好。 就目前发表的资料看,储氢材料尚无明确的、公认的分类方法,本文把它分为以下4类: (1) 金属(或合金)储氢材料 氢几乎可以同周期表中的各种元素反应,生成各种氢化物或氢化合物。但并不是所有金属氢化物都能做储氢材料,只有那些能在温和条件下大量可逆的吸收和释放氢的金属或合金氢化物才能做储氢材料用。例如:目前以开发的具有实用价值的金属型氢化物有稀土系AB5型;锆、钛系Laves相AB2型;钛系AB型;镁系A2B型;以及钒系固溶体型等几种。金属与氢反应的实验模型如图1-1所示。 图1-1 合金储氢材料与H2反应示意图 Fig.1-1 The reaction chart of metal with H2 (2) 非金属储氢材料 从目前的研究的情况分析,能够可逆的吸放氢的非金属材料[9,10]仅限于碳系

材料、玻璃微球等非金属材料,是最近几年刚发展起来的新型储氢材料。例如碳纳米管、石墨纳米纤维、高比表面积的活性炭、玻璃微球等。这类储氢材料均属于物理吸附模型,是一种很有前途的新一代储氢材料。 (3) 有机液体储氢材料 某些有机液体[11,12],在合适的催化剂作用下,在较低压力和相对高的温度下,可做氢载体,达到贮存和输送氢的目的。其储氢功能是借助储氢载体(如苯和甲苯等)与H 2的可逆反应来实现的。 (4) 其他储氢材料 除了上述3类储氢材料外,还有一些无机化合物和铁磁性材料可用作储氢,如KHNO 3或NaHCO 3作为储氢剂[13]。磁性材料在磁场作用下可大量储氢,储氢量比钛铁材料大6~7倍。 镍氢电池(Ni/MH)的基本原理 利用贮氢合金的电化学吸放氢特性研制成功的金属氢化物-镍(Ni/MH)二次电池是近年来发展比较迅速的一种高能绿色二次电池,它以贮氢电极合金充当活性物质的氢化物电极作为负极,以氢氧化镍电极作为正极。Ni/MH 电池具有能量密度高、功率密度高、可快速充放电、循环寿命长以及无记忆效应、无污染、可免维护、使用完全等特点。Ni/MH 电池的比能量是镍镉电池的 1.5~2倍,电流充放电时,无记忆效应、低温特性好、综合性能优于Ni/Cd 电池,而且Cd 有毒,废电池处理复杂。在能源紧张,环境污染严重的今天,Ni/MH 电池显示出广阔的应用前景。Ni/MH 电池目前主要应用在小型移动通讯设备、笔记本电脑、便携式摄像机、数码相机及电动自行车等领域。 Ni/MH 电池以Ni(OH)2/NiOOH 电极为正极,以贮氢合金电极为负极,以6 M 的KOH 溶液为电解液。其电化学式可表示为: (-)M/MH|KOH(6 M)|Ni(OH)2/NiOOH(+) 研究表明,在Ni/MH 电池的充放电过程中,正、负极发生的反应分别为: 正极:-22Ni(OH)OH NiOOH+H O+e + 负极:-2M+H O+e MH OH x x x x +

碳质储氢材料的研究进展

碳质储氢材料的研究进展 摘要 碳质材料由于具备质量轻、吸氢量大等优良特性,近年来引起了学者们的广泛关注。综述了碳质储氢材料的研究进展,介绍了碳质材料的储氢机理,并就近年来研究的热点探讨了影响碳质材料储氢的各种因素。最后,对碳质储氢材料的发展前景进行了展望。 关键词:碳质材料储氢储氢材料进展 Abstract Carbonaceous materials have been arousing increased research attention recently ,due to numerousadvantages such as low density and high storage capacity .Research advances of carbonaceous materials for hydrogenstorage are reviewed ,and hydrogen storage mechanism of carbonaceous materials is introduced .Moreover,based onrecent research highlights ,influence factors on hydrogen storage capacity of carbonaceous materials are discusseck E ventually future development of the carbon materials for hydrogen storage is prospected Key wolds :Carbonaceous materials ,Hydrogen Storage , Hydrogen Storage Materials , Progress 、八、, 前言 能源和资源是人类赖以生存和发展的源泉。随着社会经济的发展,全球能源供应的日趋紧缺,环境污染的日益加剧,已有的能源和资源正在以越来越快的速度消耗。面对化石燃料能源枯竭的严重挑战,近年来世界各国纷纷把科技力量和资金转向新能源的开发。氢能作为一种可储可输的洁净的可再生能源,从长远上看,它的发展可能对能源结构产生重大改变。洁净无污染的氢能利用技术正在以惊人的速度发展,己引起工业界的热切关注。 氢的规模制备是氢能应用的基础,氢的规模储运是氢能应用的关键,氢燃料电池汽车是氢能应用的主要途径和最佳表现形式,三方面只有有机结合才能使氢能迅速走向实用化。但是,由于氢在常温常压下为气态,密度很小,仅为空气的1/14,故氢的储存就成了氢能系统的关键技术。

稀土_镁_镍系储氢电极材料的研究进展

稀土-镁-镍系储氢电极材料的研究进展 Ξ 闫慧忠,孔繁清,韩 莉,熊 玮,孙晓华 (包头稀土研究院,内蒙古 包头 014010) 摘 要:介绍了国内外对各种多元及多相稀土-镁-镍系储氢电极材料的研究进展,主要包括材料的组成、制备方法、组织结构以及吸放氢动力学行为和电化学性能方面的研究。 关键词:稀土-镁-镍系;贮氢合金;复合贮氢材料;储氢电极材料 中图分类号:O 614133;T G 139+17 文献标识码:A 文章编号:100420277(2005)0120060207 贮氢合金是20世纪60年代末发现的一类具有高储氢密度的功能材料,从组成上大致可分为四类:稀土系如L aN i 5;镁系如M g 2N i 、M gN i 、L a 2M g 17;钛系如T i N i 、T iFe ;锆系如ZrN i 2。L aN i 5型贮氢合金已实现了产业化,主要用于制作M H N i 电池的负极材料,其理论容量为370mA ?h ?g -1,实际开发的最大容量为320mA ? h ?g -1。由于容量限制,M H N i 电池的应用范围及市场竞争力受到挑战。镁及某些镁基贮氢合金如M g 2N i 、M gN i 、L a 2M g 17等, 由于其储氢量大、重量轻、资源丰富、价格便宜,在开发新型高容量储氢电极材料的过程中引起了广泛的关注,成为该领域的研究热点[1],纯镁及几种镁基贮氢合金与L aN i 5的理论电化学容量如图1所示。 图1 几种贮氢合金理论电化学容量的比较 F ig 11 Co m par ison of idea l electroche m istry capac ities of hydrogen storage a lloys 镁基贮氢合金作为电极材料应用时存在的主要问题是动力学性能较差以及充放电循环中容量衰减快。通过添加改性元素(多元合金体系)、改进制备工艺、表面处理、热处理、机械球磨改性等措施,可在一定程度上解决这些问题。此外,大量的研究表明,通过适当的制备工艺与动力学性能良好的贮氢合金如L aN i 5复合,可明显改善镁基储氢材料的动力学性能,由此获得一类新型稀土-镁-镍系高容量复合储氢电极材料。 1 稀土-镁-镍系多元合金体系 111 三元体系 对三元系合金L a 2M gN i 9,L a 5M g 2N i 23,L a 3M gN i 14储氢特性的研究结果表明,L a 5M g 2N i 23合金负极的放电容量高达410mA ?h ?g -1,比AB 5型合金大113倍。这些三元系合金主要是由超点阵结构中叠层的AB 5和AB 2结构亚单位构成[2]。 速凝M g 2N i 2R E (R E =Y 或富Ce ,富L a 的混合稀土金属M m )合金淬火后呈非晶态或纳米晶 非晶态,即平均尺寸3nm 的纳米晶置于大量非晶相中,M g 76N i 19Y 5和M g 78N i 18Y 4合金与M g 75N i 20M m 5比较,M m 比Y 对储氢容量产生更有利的影响,这些合金的结晶化经过亚稳态的面心立方M g 6N i 相转变成纳米晶材料[3]。T anaka 等[4]测定了速凝法制备的非晶态和纳米晶结构的晶态M g 2N i 2R E (R E = 第26卷第1期2005年2月 稀 土Ch inese R are Earth s V o l .26,N o.1 Feb ruary 2005 Ξ收稿日期:2004204208 基金项目:国家自然科学基金资助项目(20363001);内蒙古自然科学基金资助项目(200308020215) 作者简介:闫慧忠(19622),男,内蒙古乌拉特前旗人,在读博士,高级工程师,研究方向为储氢材料的制备和研究。

储氢材料的发展现状、应用与制备综述

储氢材料的发展现状、应用与制备 摘要:能源危机和开发新能源一直是人类发展进程中相互依赖和相互促进的两个重要因素。为了保护环境,开发新能源,可以利用太阳能、地热、风能及海水等。其中,氢能是人类未来的理想能源,它是一种高能量密度、清洁的能源,是最有吸引力的能源形式之一,具有热值高、资源丰富、干净、无毒、无污染等特性。而氢的贮存和运输一直是个技术难题,由于制造液氢的设备费用很高,液化时又要消耗大量的能量,氢气和空气混合还会有爆炸的危险,因此能否利用氢气作为能源的关键是能否解决氢气的贮存和运输技术。本文简要讲述了储氢材料的发展现状、主要应用与制备技术。 关键词:储氢材料、性质、应用、发展、制备 1引言 当前,人类面临着能源危机,作为主要能源的石油、煤炭和天然气由于长期的过量开采已濒临枯竭。为了开发新能源,人们利用太阳能、地热、风能及海水的温差等,试图将它们转化为二次能源。氢由于其优异的特性受到高度重视,首先氢由储量丰富的水做原料,资源不受限制;第二氢燃烧的生成物是水,环境污染极少,不破坏自然循环;第三,氢由于很高的能量密度;此外,氢可以储存、输送,用途十分广泛。本文主要简述了储氢材料的基本性质、发展现状以及制备工艺。 2储氢材料的基本性质 储氢材料是一种能在晶体的空隙中大量贮存氢原子的合金材料,具有可逆吸放氢的性质。大多数金属合金(M)在一定的温度和压力条件下,与氢生成金属 →MHx+ΔH(生成热)。 氢化物(MHx):M+XH 2 2.1储氢材料应具备的基本条件 作为储存能量的材料,储氢材料应具备以下条件: (1)易活化,氢的吸储量大; (2)用于储氢时,氢化物的生成热小;用于蓄热时生成热要尽量大; (3)在室温附近时,氢化物的离解压为203-304kPa,具有稳定的合适的平衡分解压; (4)氢的吸储或释放速度快,氢吸收和分解过程中的平衡压(滞后)小; 、水分等的耐中毒能力强; (5)对不纯物如氧、氮、CO、CO 2 (6)当氢反复吸储和释放时,微粉化少,性能不会劣化; (7)金属氢化物的有效热导率大,储氢材料价廉; (8)吸收和释放氢的速度快,氢扩散速度大,可逆性好。 2.2影响储氢材料吸储能力的因素

纳米储氢材料的研究进展

纳米储氢材料的研究进展* 刘战伟? (桂林电子科技大学信息材料科学与工程系,广西 桂林 541004) 摘 要:储氢材料的纳米化为新型储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料 的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 关键词:纳米;储氢材料;储氢性能 中图分类号:TB383 文献标识码:A文章编号:1003-7551(2009)01-0033-04 1 引言 当今世界,随着传统能源石油、煤炭日渐枯竭,且石油、煤炭燃烧产物二氧化碳和二氧化硫又分别产生温室效应和酸雨危害,使人类面临能源、资源和环境危机的严峻挑战,寻找新的能源已成为人们的普遍共识。氢作为一种洁净能源,已受到人们的充分重视[1]。近年来,在镍氢二次燃料电池等氢能的应用方面不断取得进展。20世纪60年代末,研究者发现Mg2Ni、LaNi5、FeTi等金属间化合物具有可逆储放氢气的特性,并且储氢密度大,可与液氢和固氢效果相比拟[2,3]。此后随着对于金属氢化物作为能量储存以及能量转换材料进一步深入地研究,到目前为止,已开发的贮氢合金主要有AB、AB5、AB2、A2B和镁基五大类型[4],储氢合金主要由可与氢形成稳定氢化物的放热型金属A(La、Ti、Zr、Mg、V等)和难与氢形成氢化物但具有氢催化活性的金属B(Ni、Fe、Co、Mn等)按一定比例组成。传统的AB、AB2和A2B型储氢合金储氢量不超过2wt%,这对储氢合金的某些应用领域(如燃料电池)是远远不够的。国际能源协会(IEA)要求储氢量至少为5wt%,并且放氢温度低于423K,循环寿命超过1000次。而传统镁基储氢量高,但有放氢温度高和吸放氢动力学慢的缺点。如何获得容量大,充放氢速度快,放氢温度低的新型储氢材料,成为储氢材料与储氢技术研究和开发中至关重要的内容和亟待解决的问题。 纳米材料是指一类粒度在1~100nm之间的超细材料,是介于单个原子、分子与宏观物体之间的原子集合体,是一种典型的介观体系。由于纳米材料的比表面能高,存在大量的表面缺陷,高度的不饱和悬键,较高的化学反应活性以及自身的小尺寸效应、表面效应、量子尺寸效应等,从而使其具有常规尺寸材料所不具备光学、磁、电、热等特性,成为继互联网和基因研究之后科学领域的又一研究热点,引发了世界各国科学工作者在相关理论研究及应用开发的广泛兴趣。纳米尺度的贮氢合金呈现出许多新的热力学和动力学特征,其活化性能明显提高[5,6],具有更高的氢扩散系统[7,8],并具有优良的吸放氢动力学性能[7,9,10]。储氢材料的纳米化为新兴的储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 2 纳米储氢材料储氢性能提高机理 一般认为,储氢合金纳米化提高储氢特性主要表现在以下几个方面原因:(1)量子尺寸效应和宏观量子隧道效应:对于纳米尺寸的金属颗粒,连续的能带分裂为分立的能级,并且能级间的平均间距增大,使得氢原子容易获得解离所需的能量,表现为贮氢合金活化能降低和活化温度降低;(2)纳米材料的表面效应:纳米颗粒具有巨大的比表面积,电子的输送将受到微粒表面的散射,颗粒之间的界面形成电子散射的高势垒,界面电荷的积累产生界面极化,而元素的电负性差越大,合金的生成焓越负,合金氢化物越稳定,金属氢化物能够大量生成。单位体积吸纳的氢的质量明显大于宏观颗粒。(3)比表面积和催化特性:纳米贮氢合金比表面积大,表面能高,氢原子有效吸附面积显著增多,氢扩散阻力下降,而且氢解反应在合金纳米晶的催化作用下反应速率增加,纳米晶具有高比例的表面活性原子, 有利于反应物在其表面吸附,有效降低了电极表面氢原子的吸附活化能,因而具有高的电催化性能。另外,由于纳米晶粒相当细小,导致晶界和晶格缺陷增加,而晶 * 基金项目:广西研究生教育创新计划资助项目(2008105950805M438) ? 通讯作者:liuzhanwei@https://www.360docs.net/doc/e317015530.html, 收稿日期:2009-01-13 33

纳米储氢材料

纳米储氢材料的研究应用现状及发展前景 摘要:储氢材料的纳米化为新型储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 关键词:纳米储氢材料,研究现状,发展前景 1 绪论 当今世界,随着传统能源石油、煤炭日渐枯竭,且石油、煤炭燃烧产物二氧化碳和二氧化硫又分别产生温室效应和酸雨危害,使人类面临能源、资源和环境危机的严峻挑战,寻找新的能源已成为人们的普遍共识。氢作为一种洁净能源,已受到人们的充分重视。近年来,在镍氢二次燃料电池等氢能的应用方面不断取得进展。20世纪60年代末,研究者发现Mg2Ni、LaNi5、FeTi等金属间化合物具有可逆储放氢气的特性,并且储氢密度大,可与液氢和固氢效果相比拟[2,3]。此后随着对于金属氢化物作为能量储存以及能量转换材料进一步深入地研究,到目前为止,已开发的贮氢合金主要有AB、AB5、AB2、A2B和镁基五大类型,储氢合金主要由可与氢形成稳定氢化物的放热型金属A(La、Ti、Zr、Mg、V等)和难与氢形成氢化物但具有氢催化活性的金属B(Ni、Fe、Co、Mn等)按一定比例组成。传统的AB、AB2和A2B型储氢合金储氢量不超过2wt%,这对储氢合金的某些应用领域(如燃料电池)是远远不够的。国际能源协会(IEA)要求储氢量至少5wt%,并且放氢温度低于423K,循环寿命超过1000次。而传统镁基储氢量高,但有放氢温度高和吸放氢动力学慢的缺点。如何获得容量大,充放氢速度快,放氢温度低的新型储氢材料,成为储氢材料与储氢技术研究和开发中至关重要的内容和亟待解决的问题。

稀土储氢合金及其应用的发展状况

稀土储氢合金及其应用的发展状况 稀土与过度元素的合金是一种在较低温度下也可吸放氢气,通常将这种合金称为储氢合金。在已开发的一系列储氢材料中,稀土系储氢材料性能最佳,应用也最为广泛。其应用领域已扩大到能源、化工、电子、宇航、军事及民用各个方面。 1969年荷兰菲利浦公司发现典型的稀土储氢合金LaNi5,从而引发了人们对稀土系储氢材料的研究热潮。从上世纪九十年代开始在镍氢二次电池中得到大量应用。石油和煤炭是人类两大主要能源燃料,但由于它们储量有限,使用过程中产生环境污染等问题,因此解决能源短缺和环境污染成为当今研究的重点之一。氢是一种完全无污染的理想能源材料,具有单位质量热量高于汽油两倍以上的高能量密度,可从水中提取。氢能源开发应用的关键在于能否经济地生产和高密度安全制取和贮运氢。稀土储氢合金可以常温低压高密度贮存氢,是一种理想的储氢介质,在未来的氢能时代具有很大的应用潜力。 一、稀土储氢合金在镍氢二次电池中的应用 1. Ni-MH电池的现状与发展方向 镍氢电池于1988年进入实用化阶段,1990年在日本开始规模生产,此后产量成倍增加。2000年日本镍氢电池产量达到7亿只左右,中国的产量不足1亿只。近年由于在手机、笔记本电脑和数码相机等领域受到锂离子电池强有力的竞争和中国同行的崛起,日本镍氢电池产量下降到5亿只左右,中国企业的产量也上升到5亿只左右,90%以上的镍氢电池产自中国和日本。 镍氢电池为了应对锂离子电池的挤压,近年来致力于体积比能量的提高,功率特性和高低温性能的改善。提高材料性能和增加电池内填充密度,镍氢电池体积能量密度从1990年的180W h/L增长到400Wh/L以上,AA电池的容量从1000mAh提升到2300mAh,三洋公司报道已开发出容量达2500mAh的AA型镍氢电池。镍氢电池的能量比的提高使其在通讯和便携家电等领域内仍具有一定的竞争力。 近年来,人们对城市空气质量及地球石油资源危机等问题日趋重视,保护环境,节约能源的呼声日益高涨,促使人们高度重视电动车及其相关技术的发展,美国、法国、中国的上海市等均相继通过立法限制燃油车,大力发展电动车。受国情影响,欧美等发达国家如美国、德国、法国、日本等国家开发的电动车以电动汽车为主,发展中国家尤其是中国内地以及中国的台湾、香港地区,近期的电动车市场主要为电动摩托车和电动自行车。据统计,国内已有200家公司、企业着手小型电动车的开发、生产和应用。十五“863”计划将电动汽车列为重大专项,组织由各大汽车制造集团牵头研发团体致力于电动汽车的开发,其中混合动力汽车要在十五期间实现产业化。 根据美国USABC和日本公司对各种电动车用电池的性能以及发展潜力比较论证,综合考虑电池的可靠性、安全性、电池材料的资源与环境问题以及电池性能的发展趋势,确定镍氢电池是近期和中期电动车用首选动力电池。目前,美国Ovonic公司已与通用公司、日本松下已与丰田公司合作计划实现电动车用Ni-MH 动力电池的产业化。在“863”计划的牵

相关文档
最新文档