面积法在几何中的应用

面积法在几何中的应用
面积法在几何中的应用

面积法在初中几何问题中的相关应用面积法是捷达几何问题的常见方法,它一般是利用等级变换把几何问题中的线段关系或量与量之间关系转化成面积关系来解决的一种方法。它可以把问题简单化,使学生在学习时易理解、易掌握,对开发学生智力,提高学生学习兴趣具有一定的积极意义。下面列举出一些初中几何中的相关问题进行说明面积法的应用。

例1. 如图所示,在直角三角形ABC中,∠C=90度,两直角边AC=6,BC=8,在三角形内有一点P,它到各边的距离相等,问这个距离是多少?

分析:要想直接计算,需找出表示这个相等距离的线段,由角平分线的性质可知,点P应是三角形ABC各角平分线的交点,再由面积关系列方程求解。

设P点到三边的距离为X,连接PA、PB、PC 。在直角三角形

A

ABC中,AC=6,BC=8。 E

∴AB=AC+BC=6+8=36+64=100 D D OOO

∴AB=10 C F B

∵∫?ABC=∫?PAB+∫?PAC+∫?PBC

∴ 1/2×6×8=1/2×10·X=1/2×8·X

即48 = 10X + 6 X + 8X 解之得X=2

例2.如图,在矩形ABCD中,AB=3,AD=4.P是AD上的一动点,PE⊥

AC于点E,PF⊥BD于点E,求PE+PF的值。

分析:分别求出PE、PF比较困难,若从面积考虑,连结

OP,分别把PE、PF看成?AOP和?DOP的高,再过点A作

AG⊥BD于点G.利用∫?AOB=∫?AOD=∫?AOP+∫?DOP

这层关系便可得AG=PE+PF,再利用BD·AG=AB·AD计

算出AD的长,这样解答就非常简便。

通过以上两个例子不难发现,用面积法解题是以面积公式为基

础,以|“等低等高的三角形面积相等”和“等底(或高)的两个三角

形的面积之比等于对应高(或底)之比”等相关定理为依据建立关系

式求解,所以,利用面积法解答几何题,往往需要借助相等线段或成

比例线段。

例3。在?ABC中,AM是中线,点M到BA、CA两边的距离分别

是3和4。求AB:AC的值 A B

分析:由AM是中线可知,∫?AMB=∫?AMC, E M 根据这个等量关系,很容易得到AB:AC的值。

C 解:∵AM是?ABC的中线

∴∫?ABM=∫?ACM

∴1/2AB ·DM=1/2AC ·EM

即AB ·DM=AC ·EM

又∵DM=3,EM=4

∴AB:AC=3:4

例4。如图,四边形ABCD 是菱形,对角线AC=8㎝,DB=6㎝,DH ⊥A

B 于点H 。

求DH 的长。 A C

H B

分析:由已知的对角线AC 、DB 的长可得菱形ABCD 的面积,而菱

形是特殊的平行四边形,平行四边形的面积公式对菱形同样适用。

因此可得1/2AC ·BD=AB ·DH.利用勾股定理求出AB 后,便可求出DH 。

解:在菱形ABCD 中,对角线AC=8㎝,DB=6㎝.

∴∫菱形ABCD=1/2AC ·BD=1/2×8×6=24㎝

在菱形ABCD 中,AC ⊥BD,OA=1/2AC=4㎝,OB=1/2BD=3㎝

∴AB=4+3=5

∴5DH=24

即DH=

524㎝.

初二数学面积法几何专题

初二数学---面积法解题 【本讲教育信息】 【讲解内容】——怎样证明面积问题以及用面积法解几何问题 【教学目标】 1. 使学生灵活掌握证明几何图形中的面积的方法。 2. 培养学生分析问题、解决问题的能力。 【重点、难点】: 重点:证明面积问题的理论依据和方法技巧。 难点:灵活运用所学知识证明面积问题。 【教学过程】 (一)证明面积问题常用的理论依据 1. 三角形的中线把三角形分成两个面积相等的部分。 2. 同底同高或等底等高的两个三角形面积相等。 3. 平行四边形的对角线把其分成两个面积相等的部分。 4. 同底(等底)的两个三角形面积的比等于高的比。 同高(或等高)的两个三角形面积的比等于底的比。 5. 三角形的面积等于等底等高的平行四边形的面积的一半。 8. 有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。 (二)证明面积问题常用的证题思路和方法 1. 分解法:通常把一个复杂的图形,分解成几个三角形。 2. 作平行线法:通过平行线找出同高(或等高)的三角形。 3. 利用有关性质法:比如利用中点、中位线等的性质。 4. 还可以利用面积解决其它问题。 【典型例题】 (一)怎样证明面积问题 1. 分解法 例1. 从△ABC的各顶点作三条平行线AD、BE、CF,各与对边或延长线交于D、E、F,求证:△DEF的面积=2△ABC的面积。 分析:从图形上观察,△DEF可分为三部分,其中①是△ADE,它与△ADB同底等

③三是△AEF,只要再证出它与△ABC的面积相等即可 由S△CFE=S△CFB 故可得出S△AEF=S△ABC 证明:∵AD//BE//CF ∴△ADB和△ADE同底等高 ∴S△ADB=S△ADE 同理可证:S△ADC=S△ADF ∴S△ABC=S△ADE+S△ADF 又∵S△CEF=S△CBF ∴S△ABC=S△AEF ∴S△AEF+S△ADE+S△ADF=2S△ABC ∴S△DEF=2S△ABC 2. 作平行线法 例2. 已知:在梯形ABCD中,DC//AB,M为腰BC上的中点 分析:由M为腰BC的中点可想到过M作底的平行线MN,则MN为其中位线,再利用平行线间的距离相等,设梯形的高为h 证明:过M作MN//AB ∵M为腰BC的中点 ∴MN是梯形的中位线 设梯形的高为h (二)用面积法解几何问题 有些几何问题,往往可以用面积法来解决,用面积法解几何问题常用到下列性质:性质1:等底等高的三角形面积相等 性质2:同底等高的三角形面积相等 性质3:三角形面积等于与它同底等高的平行四边形面积的一半 性质4:等高的两个三角形的面积比等于底之比

最新几何图形计算公式汇总

小学数学图形计算公式 (C :周长 S :面积 a :边长、长 、底、上底、棱长 b: 宽 、下底 h: 高 d :直径 r :半径 V:体积 ) 1、长方形周长=(长+宽)×2 C=2(a+b) 长方形面积=长×宽 S=ab 2、正方形周长=边长×4 C = 4a 正方形面积=边长×边长 S = a×a = a 2 3、平行四边形面积=底×高 s=ah 4、三角形面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 h = 2s ÷a 三角形底=面积 ×2÷高 5、梯形面积=(上底+下底)×高÷2 s=(a+b)× h÷2 6、圆的周长=直径×圆周率=2×圆周率×半径 C=лd=2лr d=C π r=C 2π 圆的面积=半径×半径×圆周率 S = πr 2 环形的面积=外圆的面积-内圆的面积 S 环=π(R 2-r 2) 7、长方体的棱长总和 = 长×4 + 宽×4 + 高×4 =(长 + 宽 + 高)×4 长方体表面积=(长×宽+长×高+宽×高)×2 S = 2( ab + ah + bh ) 长方体体积=长×宽×高 = 底面积×高 V=abh = sh 8、正方体的棱长总和=棱长×12 正方体表面积=棱长×棱长×6 S 表 = a×a×6 = 6a 2 正方体体积=棱长×棱长×棱长=底面积×高 V = a×a×a = a 3 = sh 9、圆柱的侧面积=底面周长×高 s 侧=ch=πdh=2πrh 圆柱表面积=侧面积+底面积×2 s 表=s 侧+s 底×2 圆柱体积=底面积×高 V 柱 = sh =πr 2h 10、圆锥体体积=底面积×高×13 V 锥 = 13 sh = 1 3 πr 2h 小学数学图形计算公式 (C :周长 S :面积 a :边长、长 、底、上底、棱长 b: 宽 、下底 h: 高 d :直径 r :半径 V:体积 ) 1、长方形周长=(长+宽)×2 C=2(a+b) 长方形面积=长×宽 S=ab 2、正方形周长=边长×4 C = 4a 正方形面积=边长×边长 S = a×a = a 2 3、平行四边形面积=底×高 s=ah 4、三角形面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 h = 2s ÷a 三角形底=面积 ×2÷高 5、梯形面积=(上底+下底)×高÷2 s=(a+b)× h÷2 6、圆的周长=直径×圆周率=2×圆周率×半径 C=лd=2лr d=C π r=C 2π 圆的面积=半径×半径×圆周率 S = πr 2 环形的面积=外圆的面积-内圆的面积 S 环=π(R 2-r 2) 7、长方体的棱长总和 = 长×4 + 宽×4 + 高×4 =(长 + 宽 + 高)×4 长方体表面积=(长×宽+长×高+宽×高)×2 S = 2( ab + ah + bh ) 长方体体积=长×宽×高 = 底面积×高 V=abh = sh 8、正方体的棱长总和=棱长×12 正方体表面积=棱长×棱长×6 S 表 = a×a×6 = 6a 2 正方体体积=棱长×棱长×棱长=底面积×高 V = a×a×a = a 3 = sh 9、圆柱的侧面积=底面周长×高 s 侧=ch=πdh=2πrh 圆柱表面积=侧面积+底面积×2 s 表=s 侧+s 底×2 圆柱体积=底面积×高 V 柱 = sh =πr 2h 10、圆锥体体积=底面积×高×13 V 锥 = 13 sh = 1 3 πr 2h 中小学教师信息技术考试理论试题 一选择题(40分,每一题1分) 1.下面选项是对信息的实质的理解和说明,其中错误的选项是________. A. 信息就是计算机的处理对象 B. 信息就是关于事物运动的状态和规律的知识 C. 信息就是信息,既不是物质,也不是能量 D. 信息就是人类同外部世界进行交换的内容的名称 2. 信息技术在教学中常用作获取学习资源的工具,人们常说,"因特网是知识的海洋".

解析法证明平面几何经典问题--举例

五、用解析法证明平面几何问题----极度精彩!充分展现数学之美感!何妨一试? 例1、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引两条直线分别交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二) (例1图) (例2图) 例2、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、 BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 【部分题目解答】 例1、(难度相当于高考压轴题) ; ,、点的方程为:直线的方程为:设直线方程为:轴建立坐标系,设圆的为为原点,轴,为如图,以)(),(,AD ,,)-(2211222y x C y x B nx y mx y AB r a y x Y AO A x MN ===+ 、;则,、,C B )()(4433y x E y x D , 1 - ;12-2-)1,{)-(22 2212212222222+=+=+=++=+=m r a x x m am x x r a amx x m y r a y x mx y 由韦达定理知:得:(消去,1- ;1222 243243+=+=+n r a x x n an x x 同理得: ),-(---23 23 22x x x x y y y y CD = 方程为:直线 ,--Q 3 23 223Q y y y x y x x = 点横坐标:由此得 , --P 1 41441P y y y x y x x = 点横坐标:同理得 ,------1 41441323223P Q y y y x y x y y y x y x x x AQ AP ===;即证:,只需证明:故,要证明 N B

五年级奥数平面几何图形的面积计算.

第17讲平面图形的计算(一) 例1.图中的甲和乙都是正方形,求阴影部分的面积。(单位:厘米) 例2.计算右图的面积。(单位:厘米) 例3.如图,已知四条线段的长分别是:AB=2厘米,CE=6厘米,CD=5厘米,AF=4厘米,并且有两个直角。求四边形ABCD的面积。 例4.右图是两面三刀个相同的直角三角形叠在一起,求阴影部分的面积。(单位:分 米) 例5.下页左图是一块长方形草地,长方形的长是16,宽是10,中间有两条道路,一条是长方形,一条是平行四边形,那么,有草部分(阴影部分)的面积有多大?(单位:米)

练习与思考 1.求图中阴影部分的面积。 2.求图中阴影部分的面积。 3.下左图的长方形中,三角形ADE与四边形DEBF和三角形CDF的面积分别相等,求三角形DEF的面积。 4.四中平等四边形ABCD的边BC长10厘米,直角三角形BCE的直角边EC长8厘米,已知阴影部分的面积比三角形EFG的面积大10平方厘米,求CF的长。 5.图中三角形的高为4,面积为16;长方形的宽为6,长方形的面积是三角形面积的多少倍?

6.如图,长方形的长是8,宽是6,A和B是宽的中点,求长方形内阴影部分的面积。 7.如图,BC长为5,求画斜线的两个三角形的面积之和。 8.上右图是两个一样的直角三角形重叠在一起,按照图上标出的数,计算阴影部分的面积。 9.右图是一块长方形草地,长方形长为16,宽为12,中间有一条宽为2的道路,求草地(阴影部分)的面积。

简便计算作业(12月23日): 1.996+19.97+199.8 2.89?4.68+4.68?6.11+4.68 75?4.7+15.9?25 平均数问题作业(12月23日): 1.已知九个数的平均数是7 2.去掉一个数之后,余下的数的平均数是78。去掉的数是多少? 2.甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。三个小组各植树多少棵? 3.五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了。经重新计算,全班的平均成绩是91.7分,五一班有多少名同学? 4.把五个数从小到大排列,其平均数是38。前三个数的平均数是27,后三

解析法在几何中的应用 -

解析法在几何中的应用 姓名:周瑞勇 学号:201001071465 专业:物理学 指导教师:何巍巍

解析法在几何的应用 周瑞勇 大庆师范学院物理与电气信息工程学院 摘要:通过分析几何问题中的各要素之间的关系,用最简练的语言或形式化的符号来表达他们的关系,得出解决问题所需的表达式,然后设计程序求解问题的方法称为解析法。 关键词:几何问题,表达关系,表达式,求解问题 一前言 几何学的历史深远悠久,欧几里得总结前人的成果,所著的《几何原本》。一直是几何学的坚固基石,至今我国中学教学的几何课本仍未脱离他的衣钵。长期的教学实践证明,采用欧式体系学习几何是培养学生逻辑思维能力的行之有效的方法。 但是,事物都有两重性。实践同样证明,过多强调它的作为也是不适当的。初等几何的构思之难,使人们为此不知耗费了多少精力,往往为寻求一条神奇、奥秘的辅助线而冥思苦索。开辟新的途径,已是势在必行。近些年来,用解析法、向量法、复数法、三角法证明几何问题,受到越来越多的数学工作者的重视。 由于平面几何的内容,只研究直线和园的问题,所以我们完全可以用解析法来研究几何问题。解析法不仅具有几何的直观性,而且也还有证明方法的一般性。综合几何叙述较简,但构思困难,而解析法思路清晰,过程简捷,可以作为证明几何问题中一种辅助方法,两者课去唱补短,想得益彰。 二解析法概述 几何数学主要是从几何图形这个侧面去研究客观事物的,其基本元素是点,代数学则主要是从数量关系这个侧面来研究客观事物,其基本元素是数。笛卡尔综合了前人的成果,创立了坐标概念,把代数学和几何学结合起来,于是产生了以研究点的位置和一对有序实数的关系、方程和曲线以及有研究连续运动而产生

第二章 迭代法的一般原理

第二章 迭代法的一般原理 非线性方程组无论从理论上还是计算方法上,都比线性方程组复杂得多。一般的非线性方程组很难求出解析解,往往只能求出其数值解,且往往只能借助于迭代法。本章我们将讨论迭代法的一般原理、迭代法的一般构造及迭代收敛速度的衡量标准。 2-1 迭代法与不动点定理 设n n R R D →?:f ,考虑方程 ()0=x f (2-1) 若存在D *∈x ,使()0=*x f ,则称*x 为方程(2-1) 的解。 用迭代法求解(2-1) ,先将(2-1)化为等价的方程 ()x g x = (2-2) 这里映象n n R R D →?:g 。 方程(2-2)的解*x (即()**x g x =)称为映象g 的不动点。因此用迭代法解方程(2-1),就是求(2-2)中映象g 的不动点。这样以及g 是否存在不动点自然就是我们关心的问题。 定理2-1 若n n R R D →?:g 为有界闭集D D ?0上的严格非膨胀映象,()00D D ?g ,则g 在0D 内有唯一不动点。 证 唯一性 设g 在0D 内至少有两个不动点1x ,2x ,则 ()() 2121x x x g x g x x 21-≤-=-α 因1<α,所以由上式推得21x x =。唯一性得证。 记()()x g x x -=?,由g 及泛数的连续性可知1:R R D n →??连续。因0D 为有界闭集,故?在0D 上有最小值。设0D *∈x 为最小点,即

()()x g x x -=∈min 0 D x *? 则*x 为g 的不动点。因为若不然,则有()**x g x ≠,再由g 严格非膨胀,可得 ()()()()()***x g g x g x g -=?()()***x x g x ?=-< 这与*x 为?的最小点相矛盾,故*x 为g 的不动点。 注 定理中0D 的有界闭性、g 的压缩性和g 映0D 入自身,此3个条件缺一不可。例如,()x x x g 1+=在[)+∞=,D 10上严格非膨胀,但它在0D 中却没有不动点。 下面我们介绍在应用上非常广泛的不动点定理。 定理2-2 (Brouwer 不动点定理) 设n n R R D →?:g 在有解闭凸集D D ?0上连续,且()00D D G ?,则g 在0D 至少有一个不动点。 本定理在一维情形下叙述为:[]b a f ,: []b a ,→则f 在[]b a ,中至少有一个不动点。几何解释见图2-1。 x b a 图2-1 一维Brouwer 定理

面积法在平面几何问题求解中的巧妙应用

平面几何问题的证明——面积法(教案) 教学目的:掌握面积法在平面几何解题中的巧妙应用 教学重点:1、三角形、凸四边形面积公式的推导 2、面积法在平面几何解题中的巧妙应用 教学内容: 2002年,张景中院士推出《新概念几何》,其中对三角学作了全新的处理,他把边长为 1、夹角为α的菱形的面积定义为αsin ,由此研究正弦的性质,到处理余弦,用面积的方法证明大量的平面几何问题,把三角学和几何学打成一片,别具一格,极有新意。 张院士指出:抓住面积,不但能把平面几何课程变得更容易学,而且使几何问题求解变得更有趣味。 在求解平面几何问题的时候,根据有关几何量与涉及的有关图形面积之间的内在联系,用面积或面积比表示有关的几何量或其比,从而把要论证的几何量之间的关系转化为有关面积之间的关系,并通过图形面积的等积变换对所论问题来进行求解的方法,这就是面积法。 一、为运用面积法解题,我们需要一些面积公式: 1、设ABC ?中,角C B A ,,所对的边依次为c b a ,,,又a h 为a 边上的高,R 为其外接圆半径,r 为其内切圆半径,)(21c b a p ++= ,则 (1)a ABC ah S 21=?; (2)A bc S ABC sin 21?=?; (3)R abc S ABC 4=?; (4)A C B a S ABC sin 2sin sin 2?=?; (5)rp S ABC =?; (6)))()((c p b p a p p S ABC ---= ?。(海伦公式) 2、在凸四边形ABCD 中,边长分别为d c b a ,,,,两对角线长为,,f e 两对角线夹角θ,且)(2 1d c b a l +++= ,则: (1)θsin 21?=ef S ABCD (2) 2222222)(441d b c a f e S ABCD --+-= (3)))()()((d l c l b l a l S ABCD ----= (当D C B A ,,,四点共圆时) (4)?2cos ))()()((?-----=abcd d l c l b l a l S ABCD ,2D B +=?或2C A +=? 引理1:圆内接四边形ABCD 的四边是,,,,d DA c CD b BC a AB ====则四边形ABCD 的面积 ]1[ ))()()((d p c p b p a p S ABCD ----=,)(21d c b a p +++= 。

简单几何图形的面积计算

第二讲 简单几何图形的面积计算 一.常用的基本公式: 1.正方形的边长为a ,则正方形的面积是S =a 2; 2.长方形的长与宽分别是a 、b ,则长方形的面积是S =a ×b 。 3.平行四边形的底边长为a ,高为h ,则面积是S =a ×h 。 4.三角形的三条边长分别为a 、b 、c ,在它们上的高分别是h a 、h b 、h c , 则三角形的面积S =a ×h a ÷2= b ×h b ÷2= c ×h c ÷2。 5.梯形的上底为a ,下底为b ,高为h ,则梯形的面积是(a +b )×h ÷2。 6.圆的半径为r ,则圆的面积是S =π×r 2。其中π=3.14159265…。 二.几种常用的求面积的方法: 1.直接利用公式计算; 2.列出方程求图形的面积; 3.添加辅助线计算图形面积; 4.利用割补的办法变化图形,计算图形的面积。 5.用相等面积变换计算图形的面积。(同底等高问题,等底等高问题) 三.例题讲解: 例1.如图,一块长方形耕地,它由四个小长方形拼合而成,其中三个长方形的面积分别是15、18、30公顷,则图中阴影部分的面积是 公顷。 解:由题意知,a ×c =15,b ×c =18,b ×d =30, 所以a ×d =(a ×c )×(b ×d )÷(b ×c )=15×30÷18=25(公顷)。 例2.如图所示,三角形ABC 是直角三角形,ACD 是以A 圆心,AC 为半径的扇形,图中阴影部分的面积是 。(π取3.14) 6cm 6cm D C B A 解:阴影部分的面积是三角形面积减去扇形的面积, 三角形ABC 的面积=6×6÷2=18,扇形的面积是圆的面积的八分之一, 所以扇形面积是π×6×6÷8=4.5×π=14.13, 所以阴影部分的面积是18–14.13=3.87(平方厘米)。

专题28 求几何图形面积及面积法解题的问题(解析版)

专题28 求几何图形面积及面积法解题的问题 一、几何图形面积公式 1.三角形的面积:设三角形底边长为a ,底边对应的高为h ,则面积S=ah/2 2.平行四边形的面积:设平行四边形的底边长为a ,高为h ,则面积S=ah 3.矩形的面积:设矩形的长为a ,宽为b ,则面积S=ab 4.正方形的面积:设正方形边长为a ,对角线长为b ,则面积S=22 2 b a = 5.菱形的面积:设菱形的底边长为a ,高为h ,则面积S=ah 若菱形的两条对角线长分别为m 、n ,则面积S=mn/2 也就是说菱形的面积等于两条对角线乘积的一半。 6.梯形的面积:设梯形的上底长为a,下底长为b ,高为h ,则面积S=(a+b )h/2 7.圆的面积:设圆的半径为r,则面积S=πr 2 8.扇形面积计算公式 9.圆柱侧面积和表面积公式 (1)圆柱的侧面积公式S 侧=2π rh 2360r n s π?=lr s 2 1=或

(2)圆柱的表面积公式:S 表=2S 底+S 侧=2πr 2 +2πrh 10.圆锥侧面积公式 从右图中可以看出,圆锥的母线L 即为扇形的半径,而圆锥底面的周长是扇形的弧长2πr ,这样,圆锥侧面积计算公式:S 圆锥侧=S 扇形=πrL 注意:有时中考题还经常考查圆的周长、扇形的弧长的公式的应用。 (1)圆的周长计算公式为:C=2πr (2)扇形弧长的计算公式为: (3)其他几何图形周长容易计算,不直接给出。 二、用面积法解题的理论知识 1.面积方法:运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。 2.面积法解题的特点:把已知量和未知量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。 三、面积方法问题主要涉及以下两部分内容 1.证明面积相等的理论依据 (1)三角形的中线把三角形分成两个面积相等的部分。 (2)同底同高或等底等高的两个三角形面积相等。 180 2360r n r n l ππ=?=

中考专题复习怎样证明面积问题以及用面积法解几何问题

中考专题复习——怎样证明面积问题以及用面积法解几何 问题 (一)证明面积问题常用的理论依据 1. 三角形的中线把三角形分成两个面积相等的部分。 2. 同底同高或等底等高的两个三角形面积相等。 3. 平行四边形的对角线把其分成两个面积相等的部分。 4. 同底(等底)的两个三角形面积的比等于高的比。 同高(或等高)的两个三角形面积的比等于底的比。 5. 三角形的面积等于等底等高的平行四边形的面积的一半。 8. 有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。 (二)证明面积问题常用的证题思路和方法 1. 分解法:通常把一个复杂的图形,分解成几个三角形。 2. 作平行线法:通过平行线找出同高(或等高)的三角形。 3. 利用有关性质法:比如利用中点、中位线等的性质。 4. 还可以利用面积解决其它问题。 【典型例题】 (一)怎样证明面积问题 1. 分解法 例1. 从△ABC的各顶点作三条平行线AD、BE、CF,各与对边或延长线交于D、E、F,求证:△DEF的面积=2△ABC的面积。 分析:从图形上观察,△DEF可分为三部分,其中①是△ADE,它与△ADB同底等 ③三是△AEF,只要再证出它与△ABC的面积相等即可 由S△CFE=S△CFB 故可得出S△AEF=S△ABC 证明:∵AD//BE//CF ∴△ADB和△ADE同底等高 ∴S△ADB=S△ADE

同理可证:S△ADC=S△ADF ∴S△ABC=S△ADE+S△ADF 又∵S△CEF=S△CBF ∴S△ABC=S△AEF ∴S△AEF+S△ADE+S△ADF=2S△ABC ∴S△DEF=2S△ABC 2. 作平行线法 例2. 已知:在梯形ABCD中,DC//AB,M为腰BC上的中点 分析:由M为腰BC的中点可想到过M作底的平行线MN,则MN为其中位线,再利用平行线间的距离相等,设梯形的高为h 证明:过M作MN//AB ∵M为腰BC的中点 ∴MN是梯形的中位线 设梯形的高为h (二)用面积法解几何问题 有些几何问题,往往可以用面积法来解决,用面积法解几何问题常用到下列性质:性质1:等底等高的三角形面积相等 性质2:同底等高的三角形面积相等 性质3:三角形面积等于与它同底等高的平行四边形面积的一半 性质4:等高的两个三角形的面积比等于底之比 性质5:等底的两个三角形的面积比等于高之比 1. 证线段之积相等 例3. 设AD、BE和CF是△ABC的三条高,求证:AD·BC=BE·AC=CF·AB

小学几何图形面积计算综合

几何图形 一.视图和对称图形 1.如图,将图沿线折成一个立方体,它共顶点的三个面上的数字之积最大是________。(15年高新) 2.如图,一个几何体上半部分为正四棱锥,下半部分为正方体,且一个面涂有颜色,下列图形中,是该几何体的表面展开图的是()。(14年工大) 3. 一个正方形积木(如图),每两个相对的面数字之和是9,请在这个正方形积木的展开图上填入适当的数字。(11年高新) 4.下面( )号图是正方体的展开图。(16年交大) 5.有一个用正方体木块搭成的立体图形,从前面看和从左面看分别是如下图形, 则要摆成这样的立体图形,至少要用( )个正方体木块。(13年交大) A.7块 B.无法确定 C.5块 D.6块 6. 在下面形状的硬纸片中,把它按照虚线折叠,能折成一个正方体的是( ) 。(16年交大) 7. 如果用口表示一个立方体,用表示两个立方体叠加,用■表示三个立方体

叠加,那么右图是由7个立方体叠加的几何体,从上面观察可画出的平面图形是( )。(15年工大) 8. 下列图形中为正方体的平面展开图的是( )。 9. 从各个不同的方向观察如图所示的实物几何体,不可能看到的视图是( ) 。(16年工大) 10.一个几何体是由一些大小相同的小正方块摆成的,其俯视图(从上面看)与主视图(从前面看)如图所示,则组成这个几何图形的小正方块最多有( )。 A.7个 B.6个 C.5个 D.4个 11.国庆期间举行“我们是中国人,我们爱自己的祖国”活动,小明自己刻一枚如图所示的印章,下面四个图案中用这枚印章印制的是()。(16年交大) 12.如图,把一次性纸杯沿着它侧面的粘贴缝剪开,则它的侧面展开图可能是下面的( ) 。(16年工大)

平面几何证明题的一般思路及方法简述

平面几何证明题的一般思路及方法简述 【摘要】惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。本文试对平面几何证明题中常用的几种解题思路及方法进行分析。 【关键词】平面几何证明题思路方法 平面几何难学,是很多初中生在学习中的共识,这里面包含了很多主观和客观因素,而学习不得法,没有适当的解题思路则是其中的一个重要原因。波利亚曾说过,“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒。为了辨别哪一条思路正确,哪一个方向可接近它,就要试探各种方向和思路。”由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。常见的证题思路有直接式思路和间接式思路。 一、直接式思路 证题时,首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。由于思维方式的逆顺,在证题时运用的方法主要有“分析法”和“综合法”。 1.分析法。分析法是从命题的结论入手,先承认它是正确的,执果索因,寻求结论正确的条件,这样一步一步逆而推之,直到与题设会合,于是就得出了由题设通往结论的思维过程。在由结论向已知条件的寻求追溯过程中,则由于题设条件的不同,或已知条件之间关系的隐含程度不同等,寻求追溯的形式会有一定差异,因而常把分析法分为以下四种类型。 (1)选择型分析法。选择型分析法解题,首先要从题目要求解的结论A出发,逐步把问题转化为分析要得出结论A需要哪些充分条件。假设有条件B,就有结论A,那么B就成为选择找到的使A成立的充分条件,然后再分析在什么条件下能选择得到B……最终追溯到命题中的某一题设条件。 (2)可逆型分析法。如果再从结论向已知条件追溯的过程中,每一步都是推求的充分必要条件,那么这种分析法又叫可逆型分析法,因而,可逆型分析法是选择型分析法的特殊情形。用可逆型分析法证明的命题用选择型分析法一定能证明,反之用选择型分析法证明的命题,用可逆型分析不一定能证明。 (3)构造型分析法。如果在从结论向已知条件追溯的过程中,在寻找新的充分条件的转化“三岔口”处,需采取相应的构造型措施:如构造一些条件,作某些辅助图等,进行探讨、推导,才能追溯到原命题的已知条件的分析法叫做构造型分析法。 (4)设想型分析法。在向已知条件追溯的过程中,借助于有根据的设想、假定,形成“言之成理”的新构思,再进行“持之有据”的验证,逐步地找出正确途径的分析法称为设想型分析法。 2.综合法。综合法则是由命题的题设条件入手,由因导果,通过一系列的正确推理,逐步靠近目标,最终获得结论。再从已知条件着手,根据已知的定义、公式、定理,逐步推导出结论。在这一过程中,由于思考角度不同,立足点不同,综合法常分为四种类型: (1)分析型综合法。我们把分析法解题的叙述倒过来,稍加整理而得到的解法称为分析型综合法。 (2)奠基型综合法。当由已知条件着手较难,或没有熟悉的模式可供归纳推导,就可转而寻找简单的模式,然后再将一般情形化归到这个简单的模式中来,这样的综合法称为奠基型综合法。 (3)媒介型综合法。当问题给出的已知条件较少,且看不出与所求结论的直接联系时,或条

六年级下册数学思维训练——比例法解几何图形题讲解学习

六年级下册数学思维训练——比例法解几 何图形题

六年级下册数学思维训练——比例法解几何图形题 例1在△ABC中,B D︰DC=2︰3,阴影部分的面积是27平方厘米。求△ABC的面积。 例2在△ABC 中,AD垂直于BC,CE垂直于AB,AD=8厘米,CE=7厘米,AB+BC=21厘米,△ABC的面积是多少平方厘米? 基本练习 1、如图,ABCD是一个梯形,E是AD的中点,线段CE把梯形分成甲、乙两部分,它们的面积之比是10︰7.求上底AB与下底CD的长度之比。 2、如图,平行四边形ABCD的周长为75厘米,以BC为底时,高是14厘米;以CD为底时,高是16厘米。问平行四边形ABCD的面积是多少?

巩固练习 1、如图,一个长方形被分成8个小长方形,其中五个小长方形的面积如图所示,那么其中最大的长方形面积是多少? 2、如图,梯形ABCD与△DEC的面积比为6:7,BE和EC的长度分别是多少?(单位:厘米) 拓展提高 1、如图,BF:AB=1:6,AE:AC=1;5,CD:CB=1:4,若△ABC的面积为120平方厘米,求△DEF的面积。

2、梯形ABCD 的面积为20,点E 在BC 上,△ADE 的面积是△ABE 的面积的2倍,BE 的长度为2,EC 的长度为5。问:△DEC 的面积是多少? 竞赛训练 1、例题:如图所示,甲圆和乙圆的面积之和是丙圆的53 ,甲圆内阴影部分面积占甲圆的31 ,乙圆内阴影部分面积占乙圆面积的2 1 ,丙圆内阴影部分面积占丙圆面积的4 1 ,那么甲。乙两圆面积之比是多少? 2、如图所示,长方形AEGH 与正方形BFGH 的面积比为3︰2,则正方形ABCD 的面积是正方形BFGH 的面积的多少倍?(结果写成小数) 3、如图所示,已知直角三角形ABC 中,BDEF 是一个正方形,AD 长4厘米,FC

(完整word)初二几何面积法

专题复习一、面积法 何谓面积法 在求解平面几何问题的时候,根据有关几何量与涉及的有关图形面积之间的内在联系,用面积或面积之间的关系表示有关线段间的关系,从而把要论证的线段之间的关系转化为面积的关系,并通过图形面积的等积变换对所论问题来进行求解的方法,称之为面积法。 (一)证明面积问题常用的理论依据 用面积法解几何问题常用到下列性质: 1、全等三角形的面积相等; 2、三角形的中线把三角形分成面积相等的两部分; 3、同底同高或等底等高的两个三角形面积相等。 4、同底(等底)的两个三角形面积的比等于高的比。 同高(或等高)的两个三角形面积的比等于底的比。 一、证线段相等 1、已知:△ABC 中,∠A 为锐角,AB=AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,求证:BD=CE E D C B A 2、已知:等腰△ABC 中,AB=AC ,D 为底边BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F. 求证:DE=DF. 3、(1)已知: △ABC 中,AB=AC ,P 为底边BC 上一点,PD ⊥AB 于D ,PE ⊥AC 于E ,BF ⊥AC 于F ,求证:PD+PE=BF. P (2)若P 为 △ABC 的底边BC 的延长线上一点,其他条件不变,请画出图形,并猜想(1)中的结论仍然成立吗?若成立,请说明理由;若不成立,请写出正确的结论,并证明。 F E C B A

A 4、(1)已知等边△ABC内有一点P,PD⊥AB,PE⊥BC,PF⊥CA,垂足分别为D、E、F,又AH 为△ABC的高,求证:PD+PE+PF=AH. P H F E D C B A (2)若P是等边△ABC外部一点,其他条件不变,(1)中的结论仍然成立吗?若成立,请说明理由;若不成立,请写出正确的结论,并说明理由。 A B C D E F H P 二、证角相等 5、点C是线段AB上一点,分别以AC、BC为边在AB同侧作等边△ACD和等边△BCE,连接BD、AE交于O点,再连接OC,求证:∠AOC=∠BOC. 1、Rt△ABC中,∠BAC=90°,AB=3,M为边BC上一点,连接AM,若将△ABM沿直线AM翻折

六年级平面图形的面积计算总复习题

小学六年级数学总复习(十) 班级_______姓名__________ 得分__________ 复习内容:①平面图形的周长计算②平面图形的面积计算 一、填空 1. ()就是这个图形的周长,计算周长用()单位。 (),叫做它们的面积,计算面积用()单位。 2.填表: ①图形名称长宽周长面积 2.4米0.5米 长方形 1.8分米10分米 15厘米300平方厘米 边长4.5厘米 正方形18分米 ②图形名称底(厘米)高(厘米)面积(平方厘米) 8.5 4 平行四边形7.6 30.2 三角形 2.7 1.4 7 21 上底24 梯形下底32 224 ③图形名称半径直径周长面积 3厘米 圆 1分米 12.56米 3. 一个平行四边形的面积是18平方分米,与它等底等高的三角形面积是()平方厘米 4. 一张长10分米,宽6分米的长方形纸片,最多能剪()个直径为2分米的圆片。 5. 用3个边长是10厘米的正方形拼成一个长方形,长方形的面积是(),周长是 ()。 6. 圆的半径扩大5倍,它的直径扩大()倍,周长扩大()倍,面积扩大()倍。 7. 一个半圆直径是4厘米,它的周长是()厘米,面积是()平方厘米。 8. 一张正方形纸上下对折,再左右对折,得到的图形是()形,它的面积是原正方形的

() (),它的周长是原正方形的() ()。 9. 在右图1中,∠1 = 30°,∠2 =()。 10. 在右图2中,正方形的面积是9平方分米, 这个圆的周长是()厘米,面积是 ()平方厘米。 1. 右图中长方形面积()平行四边形面积。 A、大于 B、小于 C、等于 D、不能确定 2. 用一条长16厘米的铁丝围成一个长方形,如果长和宽都是质数,它的面积是()平 方厘米。 A、6 B、10 C、15 D、21 3. 右图由六个边长为1厘米的正方形组成的 长方形,阴影部分的面积是()。 A、6平方厘米 B、3平方厘米 C、1.5平方厘米 D、1平方厘米 4. 在一个正方形中画一个最大的圆,它们的周长比较:()。 A、一样长 B、圆的周长长 C、正方形的周长长 D、无法确定 A 5. 如右图所示,AD = 1/2DC,AE = BE,那么 三角形ABC的面积是三角形ADE面积的 D ()倍。 E A、6 B、5 C、4 D、3 B C 三、先测量计算下面图形周长和面积所需要的数据(精确到0.1厘米),再分别 计算出它们的周长和面积。

第56讲 解析法证几何题教学内容

第56讲解析法证 几何题

第56讲解析法证 几何题 解析法是利用代数方法解决几何问题的一种常用方法.其一般的顺序是:建立坐标系,设出各点坐标及各线的方程,然后根据求解或求证要求进行代数推算.它的优点是具有一般性与程序性,几何所有的平面几何问题都可以用解析法获解,但对于有些题目演算太繁. 此外,如果建立坐标系或设点坐标时处理不当,也可能增加计算量.建系设点坐标的一般原则是使各点坐标出现尽量多的0,但也不可死搬教条,对于一些“地位平等”的点、线,建系设点坐标时,要保持其原有的“对称性”. A类例题 收集于网络,如有侵权请联系管理员删除

斜边AB及直角边BC为边向三角形两 侧作正方形ABDE、CBFG. 求证:DC⊥FA. 分析只要证k CD·k AF=-1,故只要求点D的坐标. 证明以C为原点,CB为x轴正方向建立直角坐标 系.设A(0,a),B(b,0),D(x,y). 则直线AB的方程为ax+by-ab=0. 故直线BD的方程为bx-ay-(b·b-a·0)=0, 即bx-ay-b2=0. ED方程设为ax+by+C=0. 由AB、ED距离等于|AB|,得 |C+ab| =a2+b2, a2+b2 解得C=±(a2+b2)-ab. 如图,应舍去负号. 收集于网络,如有侵权请联系管理员删除

所以直线ED方程为ax+by+a2+b2-ab=0. 解得x=b-a,y=-b.(只要作DH⊥x轴,由△DBH≌△BAC就可得到这个结果). 即D(b-a,-b). 因为k AF=b-a b,k CD= -b b-a,而k AF·k CD=-1.所以 DC⊥FA. 例2.自ΔABC的顶点A引BC的垂线,垂足为D,在AD上任取一点H,直线BH交AC于E,CH交AB于F.试证:AD平分ED与DF所成的角. 证明建立直角坐标系,设A(0,a),B(b,0),C(c,0),H(0,h),于是 BH:x b+ y h=1 AC:x c+ y a=1 x

最新张景中——面积法开辟平面几何新天地

张景中——面积法开辟平面几何新天地

张景中——面积法开辟平面几何新天地 提起张景中,景仰之情不禁油然而生,心底涌出一堆的形容词和感叹句。诸如百折不回燃烧生命、身居逆境不改其志、目光如炬睿智如芒、思维如风顶尖成就、平凡之中凸显伟大、横扫千军势如破竹、与时俱进思维超前、破除迷信引领革命,等等等等,都不足以概括张景中院士对中国教育数学的贡献,即使在整个中国科学界,诞生这样的科学巨人,也是50年来仅见。 张景中的伟大,不在于在高等数学的多少个领域内做出了贡献,恰恰在所有人都认为不可能有突破性进展的初等数学领域,其中最稳定、最古老、最不可能创新的欧式几何王国内,取得了划时代的进展,颠覆性的进展。从17世纪以来的300多年,世界范围内的大科学家,他们在科学理论上的所有发现,几乎没有普通中学生能够读懂的东西。在初等数学领域,代数是一潭百年死水,平面几何更是一潭千年死水,没有活水也没有新鲜氧气注入。 是张景中,也仅仅是张景中,只在三年的初中几何教学中,就发现了问题并开始思考教材的改革。在平面几何2000多年的古老仓库中,捡起了从不被人重视的“面积方法”这件武器,将顽铁锻造成神器,像当年的孙悟空一样,从地下到天上,从18层地狱到33天兜率宫,将2300年不变的并被公认为完美杰作的欧几里德几何体系从公理体系到定理体系,从思想方法到解题思路搅了个天翻地覆,将欧几里德几何体系彻底改造了一番,创造了一个面目一新的张氏几何,名曰新概念几何。上至各路神仙、下至黎民百姓,看得目瞪口呆,看得如醉如痴。 张景中的这项科学发现,比起60年来国内任何一个科学家的发现影响面都要大得多,因为他的受众是8700万中学生!他影响的是整个中国的下一代。 张景中的脚步没有停歇,他的眼光自然而然地投向了机器证明几何定理这个百年难题。从莱布尼兹发明数值计算机械化以来,随着计算机科学的发展,机器证明几何定理也有了一定进展。中国老一辈数学家吴文俊将平面几何坐标化,创立了吴方法——代数消元法,

求几何图形的面积法

求几何图形的面积法 (1)直接用三角形,特殊四边形,圆,扇形的面积公式来求。 (2)间接割补法,把不规则图形面积通过割补、运动、变形转化为规则易求图形面积的和或差。 (3)特殊求法,即利用相似图形的面积比等于相似比的平方,等底(等高)的三角形面积比等于高(底)比的性质来解。 其次有些乘法公式、勾股定理、三角形的一边平行四边形的比例式等性质,也可用面积法来推导。 面积法是什么? 运用面积关系解决平面几何体的方法,称为面积法。 它是几何中常用的一种方法。特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系会变成数量之间的关系。这个时候,问题就化繁为简了,只需要计算,有事甚至可以不添置补助线就迎刃而解了! 此外,用面积法还可以用来求线段长,证明线段相等(不等),角相等,比例式或等积式,求线段比等。虽然这些几乎都可以用其他方法来解决,但是面积法无疑是一种更直接、简易、有效的方法。 面积法的常用理论口诀

1.三角形的中线把三角形分成两个面积相等的部分。 2.同底同高或等底等高的两个三角形面积相等。 3.平行四边形的对角线把其分成两个面积相等的部分。 4.同底(等底)的两个三角形面积的比等于高的比。 同高(或等高)的两个三角形面积的比等于底的比。 5.三角形的面积等于等底等高的平行四边形的面积的一半。 6.三角形的中位线截三角形所得的三角形的面积等于原三角形面积的1/4 7.三角形三边中点的连线所成的三角形的面积等于原三角形面积的1/4 8.有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。面积法的常用解题思路 1.分解法:通常把一个复杂的图形,分解成几个三角形。 2.作平行线法:通过平行线找出同高(或等高)的三角形。 3.利用有关性质法:比如利用中点、中位线等的性质。 4.还可以利用面积解决其它问题

用面积法求解几何问题

人教版 初中 解决几何问题有很多方法,在这些方法中很容易被大家忽略的是面积法. 面积法既能解决题目中直接涉及面积的问题,也可解决一些题目中不涉及面积的问题. 在平时的学习、解题过程中,如果有意识的使用面积法.,可以使有些几何图形性质的证明、几何问题的解决等起到事半功倍的作用. 对有些几何题,如果单纯用图形的几何性质、全等三角形或相似三角形等知识来解答,会使计算或证明过程很复杂,而用面积法却可以轻松得到解决.下面举例说明. 例1 如图1,E 、F 分别为□ABCD 的边CD 、AD 上的点,且AE=CF ,设AE 、CF 交于P ,求证:BP 平分∠APC . 证明 连BE 、BF , ∵AE=CF , ∴ 三角形ABE 的面积等于三角形FBC 的面积 即ABE FBC S S ??= ∴ 点B 到AE 、FC 的距离相等. 即点B 到∠APC 的两边P A 、PC 的距离相等, ∴ BP 平分∠APC . 例2 如图2,已知:△ABC 中,AD 是∠BAC 的平分线. 求证:AB BD AC CD =. 分析 由于AD 是∠A 的平分线,且在△ABD 与△ADC 中,BD 、DC 边上的高相等,因此可利用三角形面积公式来证明. 证明 设△ABC 中BC 边上的高为h ,则 12 ABD S BD h ?=?, 12 ACD S CD h ?=?. 又 过D 分别作DE ⊥AB 于E ,DF ⊥AC 于F ,则 12 ABD S AB DE ?=?, 12 ACD S AC DF ?=?. 于是 11221122 ABD ADC BD h AB DE S S CD h AC DF ????==??. ∵ ∠1=∠2, ∴ DE =DF . 故 AB BD AC CD =. .1. 例3 如图3,P 为△ABC 内任意一点,连AP 、BP 、CP 并分别延长交对边 于D 、E 、F ,求证:1PD PE PF AD BE CF ++=. 分析 本题应用了线段的比转化为面积的比来解决.

相关文档
最新文档