同步电机的变频调速系统

同步电机的变频调速系统
同步电机的变频调速系统

本科生毕业论文(设计)

中文题目同步电机的变频调速系统

摘要

采用电力电子装置实现电压-宾律协调控制,改变了同步电动机历来只能恒速运

行而不能调速的面貌,使它和异步电机一样成为了可调速电机家族中的一员[1] 。起动费时、重载时震荡或失步等问题已经不再是同步电机广泛应用的障碍,同步电动机调速系统的应用正在飞速发展着。本文首先概括同步电机变压变频调速的特点及其基本类型,然后介绍了几种应用较广的系统,阐明了同步电机的多变量数学模型,最后讨论了自控变频同步电动机调速系统。

关键词:同步电机变频调速特点基本类型

目录

第一章同步电动机变压变频调速的特点及其基本类型 (1)

1.1 概述 (1)

1.2 同步调速系统的特点 (2)

第二章他控变频同步电动机调速系统 (3)

2.1转速开环恒压频比控制的同步电动机群调速系统 (3)

2.2由交-直-交电流型负载换流变压变频器供电的同步电动机调速系统 (4)

2.3由交-交变压变频器供电的大型低速同步电动机调速系统 (5)

2.4按气隙磁场定向的同步电动机矢量控制系统 (6)

第三章自控变频同步电动机调速系统 (9)

3.1梯形波永磁同步电动机(无刷直流电动机)的自控变频调速系统 (10)

3.2正弦波永磁同步电动机的自控变频调速系统 (12)

结语 (13)

参考文献 (14)

致谢 (14)

第一章同步电动机变压变频调速的特点及其基本类型

历史上最早出现的是直流电动机19世纪末,出现了交流电和交流电动机为了改善功率因数,同步电动机应运而生。同步电动机也是一种交流电机。既可以做发电机用,也可做电动机用,过去一般用于功率较大,转速不要求调节的生产机械,例如大型水泵,空压机等[2] 。

最初的同步电动机只用于拖动恒速负载或用于改善功率因数的场合。在恒定频率下运行的大型同步电动机又存在着容易发生失步和振荡的危险,以及起动困难等问题。因此,在没有变频电源的情况下,很难对同步电动机的转速进行控制。

1.1概述

同步电动机历来是以转速与电源频率保持严格同步著称的。只要电源频率保持恒定,同步电动机的转速就绝对不变。

采用电力电子装置实现电压-频率协调控制,改变了同步电动机历来只能恒速运行不能调速的面貌。起动费事、重载时振荡或失步等问题也已不再是同步电动机广泛应用的障碍。

同步电机的特点与问题:优点:

(1)转速与电压频率严格同步;(2)功率因数高到1.0,甚至超前。

存在的问题:

(1)起动困难;(2)重载时有振荡,甚至存在失步危险。

问题的根源:供电电源频率固定不变

解决办法:

采用电压-频率协调控制,例如:对于起动问题而言,可以通过变频电源频率的平滑调节,使电机转速逐渐上升,实现软起动。对于振荡和失步问题而言,可采用频率闭环控制,同步转速可以跟着频率改变,于是就不会振荡和失步了。

同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。 同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用

[3] 。

同步电机的突出优点:控制励磁来调节它的功率因数,可以使功率因数高到1.0,甚至超前。

同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。

1.2同步调速系统的特点

(1)交流电机旋转磁场的同步转速ω1与定子电源频率 f 1 有确定的关系

(1-1)

异步电动机的稳态转速总是低于同步转速的,二者之差叫做转差 ωs ;同步电动机的稳态转速等于同步转速,转差 ωs = 0。

(2)异步电动机的磁场仅靠定子供电产生,而同步电动机除定子磁动势外,转子侧还有独立的直流励磁,或者用永久磁钢励磁。

(3) 同步电动机和异步电动机的定子都有同样的交流绕组,一般都是三相的,而转子绕组则不同,同步电动机转子除直流励磁绕组(或永久磁钢)外,还可能有自身短路的阻尼绕组。

(4)异步电动机的气隙是均匀的,而同步电动机则有隐极与凸极之分,隐极式电机气隙均匀,凸极式则不均匀,两轴的电感系数不等,造成数学模型上的复杂性。但凸极效应能产生平均转矩,单靠凸极效应运行的同步电动机称作磁阻式同步电动机。

(5)异步电动机由于励磁的需要,必须从电源吸取滞后的无功电流,空载时功率因数很低。同步电动机则可通过调节转子的直流励磁电流,改变输入功率因数,p 1

12n f πω=

可以滞后,也可以超前。当cos = 1.0 时,电枢铜损最小,还可以节约变压变频装置的容量。

(6)由于同步电动机转子有独立励磁,在极低的电源频率下也能运行,因此,在同样条件下,同步电动机的调速范围比异步电动机更宽。

(7)异步电动机要靠加大转差才能提高转矩,而同步电机只须加大功角就能增大转矩,同步电动机比异步电动机对转矩扰动具有更强的承受能力,能作出更快的动态响应。

第二章他控变频同步电动机调速系统

与异步电动机变压变频调速一样,用独立的变压变频装置给同步电动机供电的系统称作他控变频调速系统。

2.1转速开环恒压频比控制的同步电动机群调速系统

转速开环恒压频比控制的同步电动机群调速系统,是一种最简单的他控变频调速系统,多用于化纺工业小容量多电动机拖动系统中。

这种系统采用多台永磁或磁阻同步电动机并联接在公共的变频器上,由统一的频率给定信号同时调节各台电动机的转速[4] 。

多台永磁或磁阻同步电动机并联接在公共的电压源型PWM变压变频器上,由统一的频率给定信号 f * 同时调节各台电动机的转速。PWM变压变频器中,带定子压降补偿的恒压频比控制保证了同步电动机气隙磁通恒定,缓慢地调节频率给定f * 可以逐渐地同时改变各台电机的转速。

转速开环恒压频比控制的同步电动机群调速系统如图2-1所示。

图2-1多台同步电动机的恒压频比控制调速系统

该调速系统优点是:结构简单,控制方便,只需一台变频器供电,成本低廉。缺点是:由于采用开环调速方式,转子振荡和失步问题并未解决,因此各台同步电动机的负载不能太大。

2.2由交-直-交电流型负载换流变压变频器供电的同步电动机调速系统

大型同步电动机转子上一般都具有励磁绕组,通过滑环由直流励磁电源供电,或者由交流励磁发电机经过随转子一起旋转的整流器供电。

对于经常在高速运行的机械设备,定子常用交-直-交电流型变压变频器供电,其电机侧变换器(即逆变器)比给异步电动机供电时更简单,可以省去强迫换流电路,而利用同步电动机定子中的感应电动势实现换相[5] 。这样的逆变器称作负载换流逆变器(Load-commutated Inverter,简称LCI)。

如图2-2,图中系统控制器的程序包括转速调节、转差控制、负载换流控制和励磁电流控制,FBS是测速反馈环节。由于变压变频装置是电流型的,还单独

画出了电流控制器(包括电流调节和电源侧变换器的触发控制)。

图2-2由交-直-交电流型负载换流变压变频器供电的同步电动机调速系统LCI同步调速系统在起动和低速时存在换流问题,低速时同步电动机感应电动势不够大,不足以保证可靠换流;当电机静止时,感应电动势为零,根本就无法换流。

这时,须采用“直流侧电流断续”的特殊方法,使中间直流环节电抗器的旁路晶闸管导通,让电抗器放电,同时切断直流电流,允许逆变器换相,换相后再关断旁路晶闸管,使电流恢复正常。

用这种换流方式可使电动机转速升到额定值的3%~5%,然后再切换到负载电动势换流。

2.3由交-交变压变频器供电的大型低速同步电动机调速系统

另一类大型同步电动机变压变频调速系统用于低速的电力拖动,例如无齿轮

传动的可逆轧机、矿井提升机、水泥转窑等。

该系统由交-交变压变频器(又称周波变换器)供电,其输出频率为20~25Hz (当电网频率为50Hz时),对于一台20极的同步电动机,同步转速为120~150r/min,直接用来拖动轧钢机等设备是很合适的,可以省去庞大的齿轮传动装置[6] 。

这类调速系统的基本结构画在图2-3中,可以实现4象限运行。控制器按需要可以是常规的,也可以采用矢量控制。

图2-3由交-交变压变频器供电的大型低速同步电动机调速系统

2.4按气隙磁场定向的同步电动机矢量控制系统

为了获得高动态性能,同步电动机变压变频调速系统也可以采用矢量控制,其基本原理和异步电动机矢量控制相似,也是通过坐标变换,把同步电动机等效成直流电动机,再模仿直流电动机的控制方法进行控制。但由于同步电动机的转子结构与异步电动机不同,其矢量坐标变换也有自己的特色。

同步电机的主要特点是:定子有三相交流绕组,转子为直流励磁或永磁。为了突出主要问题,先忽略次要因素,作如下假设:

(1)假设是隐极电机,或者说,忽略凸极的磁阻变化;

(2)忽略阻尼绕组的效应;

(3)忽略磁化曲线的饱和非线性因素;

(4)暂先忽略定子电阻和漏抗的影响。

其他假设条件和研究异步电动机数学模型时相同。这样,二级同步电动机的物理模型便如图2-4所示。

图2-4二极同步电动机的物理模型

图中,定子三相绕组轴线A、B、C 是静止的,三相电压u A、u B、u C和三相电流i A、i B、i C都是平衡的,转子以同步转速ω1旋转,转子上的励磁绕组在励磁电压U f供电下流过励磁电流I f。沿励磁磁极的轴线为 d 轴,与 d 轴正交的是q 轴,d-q 坐标在空间也以同步转速ω1 旋转,d 轴与 A 轴之间的夹角θ为变量。

在同步电动机中,除转子直流励磁外,定子磁动势还产生电枢反应,直流励磁与电枢反应合成起来产生气隙磁通,合成磁通在定子中感应的电动势与外加电压基本平衡[7]。

同步电动机磁动势与磁通的空间矢量图示于图2-5。

ω

图2-5同步电动机磁动势与磁通的空间矢量图将F s除以相应的匝数即为定子三相电流合成空间矢量i s,可将它沿M、T 轴分解为励磁分量i sm和转矩分量i st。同样,F f与相当的励磁电流矢量I f也可分解成i fm和i ft。

由图2-5得出下列关系式:

在图2-6中画出了定子一相绕组的电压、电流与磁链的时间相量图。

气隙合成磁通ΦR是空间矢量,ΦR对该相绕组的磁链ψRs则是时间相量,ψRs在绕组中感应的电动势E s领先于ψRs90°。按照假设条件,忽略定子电

阻和漏抗,则 E s 与相电压 U s 近似相等,于是

图2-6电压、电流和磁链的时间相量图

在图2-6中,i s 是该相电流相量,它落后于 U s 的相角 ? 就是同步电动机的功率因数角。根据电机学原理,ΦR 与 F s 空间矢量的空间角差 θs 也就是磁链ψRs 与电流 i s 在时间上的相角差,因此 ? = 90°- θs ,而且 i sm 和 i st 也是 i s 相量在时间相量图上的分量。

由此可知:定子电流的励磁分量 i sm 可以从定子电流 i s 和调速系统期望的功率因数值求出。最简单的情况是希望 cos ? = 1,也就是说,希望 i sm = 0。这样,由期望功率因数确定的 i sm 可作为矢量控制系统的一个给定值。

第三章 自控变频同步电动机调速系统

3-1自控变频同步电动机调速系统结构原理图

Rs

1s s 44.4Ψf E U =

系统结构原理图如图3-1

该系统的结构特点又如下几点:

(1)在电动机轴端装有一台转子位置检测器BQ(见图8-7),由它发出的信号控制变压变频装置的逆变器U I 换流,从而改变同步电动机的供电频率,保证转子转速与供电频率同步。调速时则由外部信号或脉宽调制(PWM)控制UI 的输入直流电压。

(2)从电动机本身看,它是一台同步电动机,但是如果把它和逆变器UI、转子位置检测器BQ 合起来看,就象是一台直流电动机。直流电动机电枢里面的电流本来就是交变的,只是经过换向器和电刷才在外部电路表现为直流,这时,换向器相当于机械式的逆变器,电刷相当于磁极位置检测器。这里,则采用电力电子逆变器和转子位置检测器替代机械式换向器和电刷。

自控变频同步电动机在其开发与发展的过程中,曾采用多种名称,有的至今仍习惯性地使用着,它们是:无换向器电动机;三相永磁同步电动机(输入正弦波电流时);无刷直流电动机(采用方波电流时)。

永磁电动机控制系统有以下几个优点:

由于采用了永磁材料磁极,特别是采用了稀土金属永磁,因此容量相同时电机的体积小、重量轻;转子没有铜损和铁损,又没有滑环和电刷的摩擦损耗,运行效率高;转动惯量小,允许脉冲转矩大,可获得较高的加速度,动态性能好;结构紧凑,运行可靠[8] 。

3.1梯形波永磁同步电动机(无刷直流电动机)的自控变频调速系统

无刷直流电动机实质上是一种特定类型的同步电动机,调速时只在表面上控制了输入电压,实际上也自动地控制了频率,仍属于同步电动机的变压变频调速。

永磁无刷直流电动机的转子磁极采用瓦形磁钢,经专门的磁路设计,可获得梯形波的气隙磁场,定子采用集中整距绕组,因而感应的电动势也是梯形波的。

由逆变器提供与电动势严格同相的方波电流,同一相(例如A相)的

电动势e A和电流波i A 形图如图3-1所示。

图3-1 梯形波永磁同步电动机的电动势与电流波形图由于各相电流都是方波,逆变器的电压只须按直流PWM的方法进行控制,比各种交流PWM控制都要简单得多,这是设计梯形波永磁同步电动机的初衷。

然而由于绕组电感的作用,换相时电流波形不可能突跳,其波形实际上只能是近似梯形的,因而通过气隙传送到转子的电磁功率也是梯形波[9] 。

如图3-2所示,实际的转矩波形每隔60°都出现一个缺口,而用PWM 调压调速又使平顶部分出现纹波,这样的转矩脉动使梯形波永磁同步电动机的调速性能低于正弦波的永磁同步电动机。

图3-2梯形波永磁同步电动机的转矩脉动

3.2正弦波永磁同步电动机的自控变频调速系统

正弦波永磁同步电动机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证定子绕组中的感应电动势具有正弦波形,外施的定子电压和电流也应为正弦波,一般靠交流PWM变压变频器提供。

正弦波永磁同步电动机一般没有阻尼绕组,转子磁通由永久磁钢决定,是恒定不变的,可采用转子磁链定向控制,即将两相旋转坐标系的d轴定在转子磁链ψr 方向上,无须再采用任何计算磁链的模型。

图3-3按转子磁链定向并使i d= 0 的PMSM自控变频调速系统按转子磁链定向并使i d= 0 的正弦波永磁同步电动机自控变频调速系统和直流电动机调速系统一样,转速调节器ASR的输出是正比于电磁转矩的定子电流给定值。由按转子磁链定向的正弦波永磁同步电动机矢量图可知:

θ角是旋转的d轴与静止的A轴之间的夹角,由转子位置检测器测出,经过查表法读取相应的正弦函数值后,与i s* 信号相乘,即得三相电流给定信号

利德华福高压变频器

利德华福高压变频器 Document number:PBGCG-0857-BTDO-0089-PTT1998

利德华福高压变频器 应用范围 近年来,我国年工业生产总值不断提高,但是能耗比却居高不下,高能耗比已成为制约我国经济发展的瓶颈,为此国家投入大量资金支持节能降耗项目,其中高压变频调速技术已越来越广泛的应用在各行各业,它不仅可以改善工艺,延长设备使用寿命,提高工作效率等,最重要的是它可以“节能降耗”,这一点已被广大用户所认可,且深受关注。 从1998年开始,利德华福人通过一年开发,一年开局试验,一年市场考验,其研发制作的HARSVERT-A系列高压变频调速系统,完全具有自主知识产权,适合国内电网特性,符合国内用户使用习惯。该系列高压变频调速系统自2000年投入国内市场后,在市政供水、电力、冶金、石油、石化、水泥、煤炭等行业陆续投入运行。由于安装便捷、操作简单、运行稳定、安全可靠、维护方便,并在节能、节电、省人、省力、自动控制、远程监控等方面效果显着,以及优异的产品性价比和周到的服务,受到用户的广泛欢迎。 火力发电:引风机、送风机、吸尘风机、压缩机、排污泵、锅炉给水泵等 冶金:引风机、除尘风机、通风机、泥浆泵、除垢泵等 石油、化工:主管道泵、注水泵、循环水泵、锅炉给水泵、电潜泵、卤水泵、引风机、除垢泵等 市政供水:水泵等 污水处理:污水泵、净化泵、清水泵等

水泥制造:窑炉引风机、压力送风机、冷却器吸尘风机、生料碾磨机、窑炉供气风机、冷却器排风机、 分选器风机、主吸尘风机等 造纸:打浆机等 制药:清洗泵等 采矿行业:矿井的排水泵和排风扇、介质泵等 其他:风洞试验等 系统原理 HARSVERT-A系列高压变频调速系统采用单元串联多电平技术,属高-高电压源型变频器,直接3、6、10KV输入,直接3、6、10KV高压输出。变频器主要由移相变压器、功率模块和控制器组成。 系统结构 功率模块结构 功率模块为基本的交-直-交单相逆变电 路,整流侧为二极管三相全桥,通过对IGBT 逆变桥进行正弦PWM控制,可得到单相交流 [功率单元电路结构] 输出。 每个功率模块结构及电气性能上完全一 致,可以互换。(备件种类单一) 输入侧结构 输入侧由移相变压器给每个功率模块供电,移相变压器的副边绕组分为三组,根据电压等级和模块串联级数,一般由24、30、42、48脉冲系列等构成多

基于PLC的交流电机变频调速系统

目录 1 绪论 (1) 1.1课题的背景 (1) 1.1.1 电机的起源和发展............................. 错误!未定义书签。 1.1.2 变频调速技术的发展和应用..................... 错误!未定义书签。 1.2本文设计的主要内容............................... 错误!未定义书签。 2 变频调速系统的方案确定 (4) 2.1变频调速系统 (4) 2.1.1 三相交流异步电动机的结构和工作原理 (4) 2.1.2 变频调速原理 (4) 2.1.3 变频调速的基本控制方式 (5) 2.2系统的控制要求 (6) 2.3方案的确定 (6) 2.3.1 电动机的选择 (6) 2.3.2 开环控制的选择 (7) 2.3.3 变频器的选择 (7) 4 变频调速系统的硬件设计 (8) 4.1S7-200PLC (8) 4.2M ICRO M ASTER420变频器 (8) 4.3外部电路设计 (9) 4.3.1 变频开环调速 (9) 4.3.2 数字量方式多段速控制 (11) 4.3.3 PLC、触摸屏及变频器通信控制 (12) 5 变频调速系统的软件设计 (14) 5.1编程软件的介绍 (14)

5.2变频调速系统程序设计 (15) 6 触摸屏的设计 (23) 6.1触摸屏的介绍 (23) 6.2MT500系列触摸屏 (25) 6.3触摸屏的设计过程 (26) 6.3.1 计算机和触摸屏的通信 (26) 6.3.2 窗口界面的设计 (27) 6.3.3 触摸屏工程的下载 (31) 7 PLC系统的抗干扰设计 (33) 7.1 变频器的干扰源 (33) 7.2干扰信号的传播方式 (33) 7.3 主要抗干扰措施 (34) 7.3.1 电源抗干扰措施 (34) 7.3.2 硬件滤波及软件抗干扰措施 (34) 7.3.3 接地抗干扰措施 (34) 结论 (36) 致谢 ................................................ 错误!未定义书签。参考文献 .. (37)

罗宾康高压变频器介绍

我主要写的是应用场合及功能介绍 罗宾康高压变频器介绍 一、产品介绍 1、罗宾康系列变频调速系统特点 1.1高效率、无污染、高功率因数 第宾康系列高压变频调速系统采用的是功率单元串联的高-高方案,采用了多绕组高压 移相变压器,二次侧绕组中流过的电流,在变压器一次侧叠加时,形成非常逼近正弦波的电流波形。经 过实际测试,50Hz运行时,网侧电流谐波<2 %,电机侧输岀电压谐波 <1.5 % (即使在40Hz时,仍然<2 % ),成套装置的效率>97 %,功率因数>0.96。完全满足了 IEEE519 —1992对电压、电流谐波含量的要求; *通过采用自主开发的专用PWM空制方法,比同类的其它方法可进一步降低输岀电压 谐波1?2% 。1.2先进的故障单元旁路运行(专业核心技术) *为了提高系统的可靠性,整个变频调速系统中考虑了一定的输出电压裕量,并在各功率单元中增加了旁路电路。当某个功率单元岀现故障时,可以自动监测故障并启动旁路电路,使得该单元不再投入运行,同时程序会自动进行运算,调整算法,使得输出的三个线电压仍然完全对称,电机的运行不受任何影响; *以6kV高压变频调速系统为例,每相有6个单元时,预置好参数,当某一相中有2 个功率单元岀现故障时,故障单元将自动旁路,系统仍然可以满负荷运行;即使某一相中所有6个单元 故障,全部被旁路,系统输岀容量仍可高达额定容量的57.7 %。这种控 制方法处于国际先进,国内领先水平,将大大提高系统的可靠性。 .3高性能的控制技术 *罗宾康系列高压变频调速系统率先实现了简易矢量控制技术,可以实现恒转矩快速动态响应,并且具有加、减速自适应功能,即可根据运行工控参数的实际情况,自动调整加、减速时间,在不超过最大允许电流的情况下,快速达到设定频率或转速。同时,系统可以自动识别电机转速,用户可以不考虑电机目前的运行状态,电机不需要停止运行时,可直接实现电机的启动、加速、减速或停止操作; *罗宾康系列高压变频调速系统还可以实现反馈能量自动限制功能。 1.4高可靠性 *控制电源可实现外部220V供电和高压电源辅助供电双路电源自动切换,同时配置了UPS即使两路电 源都岀现故障时,控制系统仍然可以工作足够长的时间,控制整个系统安全停机,发岀报警,并记录故障时的所有状态参数; *高压主电路与低压控制电路采用光纤传输,安全隔离,使得系统抗干扰能力强; ?当单元故障数目超过设定值,系统可自动切换到工频运行(自动旁路柜); ?移相变压器有完善的温度监控功能;

交流异步电动机变频调速系统设计样本

中南大学 《工程训练》 ——设计报告 设计题目:异步电机变频调速 指引教师:黎群辉 设计人:冯露 学号: 专业班级:自动化0906班 设计日期:9月

交流异步电动机变频调速系统设计 摘要 近年来,交流电机变频调速及其有关技术研究己成为当代电气传动领域一种重要课题,并且随着新电力电子器件和微解决器推出以及交流电机控制理论发展,交流变频调速技术还将会获得巨大进步。 本文对变频调速理论,逆变技术,SPWM产生原理进行了研究,在此基本上设计了一种新型数字化三相SPWM变频调速系统,以8051控制专用集成芯片 SA4828为控制核心,采用IGBT作为主功率器件,同步采用EXB840构成IGBT驱动电路,整流电路采用二极管,可使功率因数接近1,并且只用一级可控功率环节,电路构造比较简朴。 V控制,同步,软件程序使得参数输入和变频器运营方式变本文在控制上采用恒 f 化极为以便,新型集成元件采用也使得它开发周期短。 此外,本文对SA4828三相SPWM波发生器使用和编程进行了详细简介,完毕了整个系统控制某些软硬件设计。 V控制,SA4828波形发生器 核心字:变频调速,正弦脉宽调制, f

目录 摘要................................................ 错误!未定义书签。 1.1 研究目与意义 (1) 1.2本次设计方案简介 (2) 1.2.1 变频器主电路方案选定 (2) 1.2.2 系统原理框图及各某些简介 (3) 1.2.3 选用电动机原始参数 (4) 2交流异步电动机变频调速原理及办法 (5) 2.1 异步电机变频调速原理 (5) 2.2 变频调速控制方式及选定 (6) V比恒定控制 (6) 2.2.1 f 2.2.2 其他控制方式................................ 错误!未定义书签。3变频器主电路设计. (13) 3.1 主电路工作原理 (13) 3.2 主电路各某些设计 (13) 3.3. 采用EXB840IGBT驱动电路 (15) 4控制回路设计 (16) 4.1 驱动电路设计 (16) 4.2 保护电路......................................... 错误!未定义书签。 4.2.1 过、欠压保护电路设计........................ 错误!未定义书签。 4.2.2 过流保护设计................................ 错误!未定义书签。 4.3 控制系统实现 (19) 5变频器软件设计....................................... 错误!未定义书签。 5.1 流程图 (22)

(交流电机变频调速系统设计)

机电传动与控制课程综合训练三 一、综合训练项目任务书 综合训练项目:交流电机变频调速系统 目的和要求:加强对交流变频调速系统及变频器的理解;应用交流变频调速系统及变频器解决交流电机变频调速问题。提高分析和解决实际工程问题的能力。促成“富于探索精神,具有较强的自学能力、开拓创新意识和敏锐的观察事物以及分析处理事物的能力”的目标实现。 成果形式:交流电机变频调速系统设计说明书。 相关参数:参看《机电传动控制》(第五版),冯清秀等编著,华中科技大学出版社,P291~316。 一、综合训练项目设计内容 1.变频调速系统 1.1 三相交流异步电动机的结构和工作原理 三相交流异步电动机是把电能转换成机械能的设备。一般电动机主要由两部分组成:固定部分称为定子,旋转部分称为转子。三相交流异步电动机的工作原理是建立在电磁感应定律、全电流定律、电路定律和电磁力定律等基础上的。当磁极沿顺时针方向旋转,磁极的磁力线切割转子导条,导条中就感应出电动势。电动势的方向由右手定则来确定。因为运动是相对的,假如磁极不动,转子导条沿逆时针方向旋转,则导条中同样也能感应出电动势来。在电动势的作用下,闭合的导条中就产生电流。该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力,电磁力的方向可用左手定则确定。由电磁力进而产生电磁转矩,转子就转动起来。 1.2 变频调速原理 变频器可以分为四个部分,如图1.1所示。 通用变频器由主电路和控制回路组成。给异步电动机提供调压调频电源的电力变换部分,称为主电路。主电路包括整流器、中间直流环节(又称平波回路)、逆变器。

图1.1 变频器简化结构图 ⑴整流器。它的作用是把工频电源变换成直流电源。 ⑵平波回路(中间直流环节)。由于逆变器的负载为异步电动机,属于感性负载。无论电动机处于电动状态还是发电状态,起始功率因数总不会等于1。因此,在中间直流环节和电动机之间总会有无功功率的交换,这种无功能量要靠中间直流环节的储能元件—电容器或电感器来缓冲,所以中间直流环节实际上是中间储能环节。 ⑶逆变器。与整流器的作用相反,逆变器是将直流功率变换为所要求频率的交流功率。逆变器的结构形式是利用6个半导体开关器件组成的三相桥式逆变器电路。通过有规律的控制逆变器中主开关的导通和断开,可以得到任意频率的三相交流输出波形。 ⑷控制回路。控制回路常由运算电路,检测电路,控制信号的输入、输出电路,驱动电路和制动电路等构成。其主要任务是完成对逆变器的开关控制,对整流器的电压控制,以及完成各种保护功能。控制方式有模拟控制或数字控制。 2.系统的控制模型 本系统的结构如图1.2所示。

同步电机的变频调速系统

摘要:采用电力电子装置实现电压-宾律协调控制,改变了同步电动机历来只能恒速运行而不能调速的面貌,使它和异步电机一样成为了可调速电机家族中的一员。起动费时、重载时震荡或失步等问题已经不再是同步电机广泛应用的障碍,同步电动机调速系统的应用正在飞速发展着。本文首先概括同步电机变压变频调速的特点及其基本类型,然后介绍了几种应用较广的系统,阐明了同步电机的多变量数学模型,最后讨论了自控变频同步电动机调速系统。 关键词:同步电机,变频调速,

目录 1 同步电动机变压变频调速的特点及其基本类型 (3) 1.1概述 (3) 1.2同步调速系统的特点 (4) 2 他控变频同步电动机调速系统 (5) 2.1转速开环恒压频比控制的同步电动机群调速系统 (5) 2.2由交-直-交电流型负载换流变压变频器供电的同步电动机调速系统 (6) 2.3由交-交变压变频器供电的大型低速同步电动机调速系统 (7) 2.4按气隙磁场定向的同步电动机矢量控制系统 (8) 3 自控变频同步电动机调速系统 (11) 3.1梯形波永磁同步电动机(无刷直流电动机)的自控变频调速系统 (12) 3.2正弦波永磁同步电动机的自控变频调速系统 (14) 参考文献 (15)

1 同步电动机变压变频调速的特点及其基本类型 历史上最早出现的是直流电动机19世纪末,出现了交流电和交流电动机为了改善功率因数,同步电动机应运而生。同步电动机也是一种交流电机。既可以做发电机用,也可做电动机用,过去一般用于功率较大,转速不要求调节的生产机械,例如大型水泵,空压机等。 最初的同步电动机只用于拖动恒速负载或用于改善功率因数的场合。在恒定频率下运行的大型同步电动机又存在着容易发生失步和振荡的危险,以及起动困难等问题。因此,在没有变频电源的情况下,很难对同步电动机的转速进行控制。 1.1概述 同步电动机历来是以转速与电源频率保持严格同步著称的。只要电源频率保持恒定,同步电动机的转速就绝对不变。 采用电力电子装置实现电压-频率协调控制,改变了同步电动机历来只能恒速运行不能调速的面貌。起动费事、重载时振荡或失步等问题也已不再是同步电动机广泛应用的障碍。 同步电机的特点与问题:优点: (1)转速与电压频率严格同步;(2)功率因数高到1.0,甚至超前。 存在的问题: (1)起动困难;(2)重载时有振荡,甚至存在失步危险。 问题的根源:供电电源频率固定不变 解决办法: 采用电压-频率协调控制,例如:对于起动问题而言,可以通过变频电源频率的平滑调节,使电机转速逐渐上升,实现软起动。对于振荡和失步问题而言,

风机水泵高压变频调速系统技改项目合同协议书范本模板

需方(以下简称甲方):________________________ 供方(以下简称乙方):________________________ 甲乙双方就________________有限公司________________风机用高压变频器使用一事与甲方对该工程项目签订相关技术协议,并遵循深圳市安邦信电子有限公司企业产品标准和相关国家标准,协议内容如下: 一、工程内容 1、电机设备性能

3 过流、过压、欠压、过载、缺相、电机过载、主器件保护等保护功能。 4 供货范围 二、AMB-HVI高压变频器主器件的选用及来源

三、工程项目的技术要求 3.1控制方式: 远程/就地控制方式: 当控制柜操作板上的“远程/就地”转换开关位置置远程或就地位置时,即在变频主控柜界面或通过客户的DCS信号(要求4-20mA模拟信号)控制电动机的转速。 3.2高压变频器显示的要求: 高压变频器本机具有输入电压、输入电流、输出电流,输出频率、频率设定值(现场/DCS)以及保护名称显示,输出频率(4~20mA)接口等,同时界面具有运行、停止、故障指示、故障复位等功能。 3.3高压变频器的环境要求: 3.3.1、没有腐蚀性气体和粉尘,没有直射阳光。 3.3.2、温度-10℃-35℃。 3.3.3、湿度:20-90%RH不结露。 3.3.4、海拔1000米以下。 3.3.5、每套高压变频器的所有柜体紧密顺序排列在一起,不可分割放置。 3.3.6、高压变频器房间需密封,房间门和窗进风口处必须装有阻挡粉尘进入的滤尘网。 3.3.7、高压变频器房间侧墙体上部需有散热出风口。

3.3.8、高压变频器房间内必须安装适配降温用的空调。 3.3.9、高压变频器柜体下电缆沟干净、干燥,并有防腐、防水、防鼠等防护措施。 3.4高压变频器的其它要求: 高压变频器的防护等级IP20 高压变频器的谐波含量:输入≤4%,输出:≤3% 商务合同生效后且设计完成后,甲乙双方应就设计方案进行讨论与确认,供方提供设计资料一份,中途若有其它要求,本着应从大局出发,进行合理调整。 3.5高压变频器的安装位置 根据甲方实际情况和实地测量,确定安装地点 3.6主回路结构示意图 本协议的________台高压变频器均采用一拖一方式运行,选用________KV安邦信高压变频器,同时配备工频旁路系统。 (原客户水电阻系统备用,以备在必要的情况下,电机能在工频下运行) 注:电机采用变频调速后原有的水电阻需要切换不用。如果电机需要工频启动必须采用水电阻。对于________KW/________KV设备,QF为上级用户高压柜开关。其中QS1,QS2,QS3为隔离柜的手动隔离开关;KM1,KM2,KM3为工频旁路柜的高压真空接触器,QS2,QS3或KM2,KM3之间机械或电气互锁。 说明: 对于需要水电阻启动(笼型)的高压风机由原来的单一工频电源供电改造为工频、变频双电源供电,两者可以随时进行手动切换。 A)鼠笼型高压电机改造如下: 图一:标准型变频器(手动切换型) 图二:特殊型变频器(电气切换型) 标准型高压变频器配置为三个高压隔离开关,均为手动操作方式控制,如图一所示。QS1,QS2控制变频运行;QS3控制工频运行,QS2,QS3机械互锁。 特殊型高压变频器配置为二个高压隔离开关和三个高压真空接触器,为电气操作方式控制,可实现本地或远程DCS控制,如图二所示。QS1,QS2,KM1,KM2控制变频运行;KM3控制工频运行,

高压变频器在同步电动机上的应用知识

高压变频器在同步电动机上的应用知识 内容来源于 https://www.360docs.net/doc/e411855964.html,/%C5%C9%BF%CB%D6%B1%C1%F7%B5%F7%CB%D9%C6%F7/blog/i tem/1e9a82156c0e724df919b84c.html 1.引言 大功率低速负载,如磨机、往复式压缩机等,使用多极同步电动机可以提高系统功率因数,更可以省去变速机构,如齿轮变速箱,降低系统故障率,简化系统维护。 同步电机物理过程复杂、控制难度高,高压同步电机调速系统必须安装速度/位置传感器,增加了故障率,系统可靠性较低。 单元串联多电平型变频器具有成本低,网侧功率因数高,网侧电流谐波小,输出电压波形正弦、基本无畸变,可靠性高等特点,高压大容量异步电机变频调速领域取了非常广泛应用。将单元串联多电平型变频器应用于同步电动机将有效提高同步电机变频调速系统可靠性,降低同步电机变频改造成本,提高节能改造带来效益,同时也为单元串联多电平型变频器打开一个广阔新市场。利德华福技术人员大量理论分析、计算机仿真和物理系统实验,解决了同步电机起动整步等关键问题,已于2006年4月底成功将单元串联多电平型高压变频器应用于巨化股份公司合成氨厂1000k W/6k V同步电动机上。以下将简要介绍实际应用中主要技术问题。 2.同步电动机工频起动投励过程 更好说明同步电机运行特点,先对同步电机工频起动投励过程进行简要介绍。 电网电压直接驱动同步电机工频运行时,同步电动机起动投励是一个比较复杂过程。当同步电机电枢绕组高压合闸时,高压断路器辅助触点告知同步电机励磁装置准备投励。此时,励磁装置自动同步电机励磁绕组上接入一个灭磁电阻,止励磁绕组上感应出高压,同时起动时提供一部分起动转矩。同步电机电枢绕组上电后,起动绕组和连有灭磁电阻励磁绕组共同作用下,电机开始加速。当速度到达95%同步转速时,励磁装置励磁绕组上感应电压选择合适时机投入励磁,电机被牵入同步速运行。同步电机凸极效应较强、起动负载较低,则励磁装置找到合适投励时机之前,同步电机已经进入同步运行状态。这种情况下,励磁装置将延时投励准则进行投励,即高压合闸后15秒强行投励。 3.变频器驱动同步电动机时起动整步过程 用变频器驱动同步电机运行时,使用与上述方式不同起动方式:带励起动。 变频器向同步电机定子输出电压之前,即启动前,先由励磁装置向同步电机励磁绕组通以一定励磁电流,然后变频器再向同步电机电枢绕组输出适当电压,起动电机。 同步电机与普通异步电机运行上主要区别是同步电机运行时,电枢电压矢量与转子磁极位置之间夹角必须某一范围之内,否则将导致系统失步。电机起动之初,这二者夹角是任意,必须适当整步过程将这一夹角控制到一定范围之内,然后电机进入稳定同步运行状态。,起动整步问题是变频器驱动同步电动机运行关键问题。 变频器驱动同步电动机起动整步过程主要分为以下几个步骤: 第一步,励磁装置投励。励磁系统向同步电机励磁绕组通以一定励磁电流,

永磁同步电动机PWM变频调速系统的建模与仿真

永磁同步电动机PW M变频调速系统 的建模与仿真 夏玲(黄石建筑设计研究院第4所,湖北黄石435001) 摘 要:介绍了PW M控制技术的特点,并在MAT LAB环境下,构造永磁同步电动机PW M控制的仿真模型。通过对永磁同步电动机的动态过程进行仿真,分析永磁同步电动机采用PW M控制技术的瞬态运行特征以及瞬态过程中各电磁量的变化规律。同时,也验证了仿真模型的正确性。 关键词:永磁同步电动机;仿真;PW M Modeling and Simulating of PWM Frequency I nverter System for I nterior Permanent Magnet Synchronous Motor XI A Ling(Huangshi Institute of Architectural Design&Research,Huangshi Huibei,435001,China) Abstract:T his paper introduces the characteristics of PW M control technology,and it found the simulating m od2 el for interior permanent magnet synchron ous m otor PW M control in M A T LA B environment.Via the simulation of dynamic process for interior permanent magnet synchronous m otor,it analyzes the instan2 taneous characteristics and change law of PW M control technology for interior permanent magnet syn2 chron ous m otor.And the validity of the simulation m odel is tested and verified via the simulations. K ey w ords:interior permanent magnet synchronous m otor;simulation;PW M 1 前言 永磁同步电动机转子使用永磁材料励磁,使电动机的体积和重量大大减小,电机结构简单、维护方便、运行可靠、损耗较小,效率和功率因数都比较高。然而,永磁同步电机存在启动困难、失步等缺点,变频调速技术的应用能很好地解决这些问题。同步电机控制系统常见有如下几种: (1)无换向器电机控制系统 采用交-直-交电流型逆变器给普通同步电机供电,整流及逆变部分均由晶闸管构成,利用同步电机电流可以超前电压的特点,使逆变器的晶闸管工作在自然换相状态。同时检测转子磁极的位置,用以选通逆变器的晶闸管,使电机工作在自同步状态,故又称自控式同步电机控制系统。其特点是直接采用普通同步电机和普通晶闸管构成的系统,容量可以做得很大,电机转速也可做得很高,如法国地中海高速列车即采用此方案,技术比较成熟。其缺点是由于电流采用方波供电,而电机绕组为正弦分布,低速时转矩脉动较大。 (2)交—交变频供电同步电机控制系统 逆变器采用交—交循环变流电路,由普通晶闸管组成,提供三相正弦电流给普通同步电机。采用矢量控制后可对励磁电流进行瞬态补偿,因此系统动态性能优良,已广泛应用在轧机主传动控制系统中。其特点是容量可以很大,但调速范围有一定限制,只能从同步速往下调。 (3)正弦波永磁同步电机控制系统 电机转子采用永磁材料,定子绕组仍为正弦分布绕组。如通以三相正弦交流电,可获得较理想的旋转磁场,并产生平稳的电磁转矩。采用矢量控制技术使d轴电流分量为零,用q轴电流直接控制转矩,系统控制性能可以达到很高水平。缺点是需要使用昂贵的绝对位置编码器,采用普通增量式码盘实现上述要求虽有一些限制,但采取一定措施后仍是可能的。目前研究的重点放在如何消除齿谐波及PW M控制等造成的转矩脉动。 (4)方波永磁同步电机控制系统 又称为无刷 74 2004年第4期 电机电器技术 计算机与自动控制

最新高压变频器技术协议

__________有限公司 _____风机、___水泵 变频调速系统技改项目 技术协议 需方:__________有限公司 供方:深圳市安邦信电子有限公司时间:二00__年___月___日

技术协议 需方(以下简称甲方):_______ __ _有限公司 供方(以下简称乙方):深圳市安邦信电子有限公司 甲乙双方就________有限公司_______风机用高压变频器使用一事与甲方对该工程项目签订相关技术协议,并遵循深圳市安邦信电子有限公司企业产品标准和相关国家标准,协议内容如下: 一、工程内容 1、电机设备性能 2高压变频器技术性能

3高压变频器具有的保护功能 过流过压欠压过载缺相电机过载主器件保护等保护功能。 4 供货范围 二、AMB-HVI高压变频器主器件的选用及来源 三:工程项目的技术要求 3.1控制方式: 远程/就地控制方式: 当控制柜操作板上的“远程/就地”转换开关位置置远程或就地位置时,即在变频主控柜界面或通过客户的DCS信号(要求4-20mA模拟信号)控制电动机的转速。 3.2高压变频器显示的要求: 高压变频器本机具有输入电压、输入电流、输出电流,输出频率、频率设定值(现场/DCS)以及保护名称显示,输出频率(4~20mA)接口等,同时界面具有运行、停止、故障指示、故障复位等功能。 3.3高压变频器的环境要求: 3.3.1、没有腐蚀性气体和粉尘,没有直射阳光。 3.3.2、温度-10℃-35℃。

3.3.3、湿度:20-90%RH不结露。 3.3.4、海拔1000米以下。 3.3.5、每套高压变频器的所有柜体紧密顺序排列在一起,不可分割放置。 3.3.6、高压变频器房间需密封,房间门和窗进风口处必须装有阻挡粉尘进入的滤尘网。 3.3.7、高压变频器房间侧墙体上部需有散热出风口。 3.3.8、高压变频器房间内必须安装适配降温用的空调。 3.3.9、高压变频器柜体下电缆沟干净、干燥,并有防腐、防水、防鼠等防护措施。 3.4高压变频器的其它要求: 高压变频器的防护等级IP20 高压变频器的谐波含量:输入≤4%,输出:≤3% 商务合同生效后且设计完成后,甲乙双方应就设计方案进行讨论与确认,供方提供设计资料一份,中途若有其它要求,本着应从大局出发,进行合理调整。 3.5高压变频器的安装位置 根据甲方实际情况和实地测量,确定安装地点 3.6主回路结构示意图 本协议的____台高压变频器均采用一拖一方式运行,选用____KV安邦信高压变频器,同时配备工频旁路系统。 (原客户水电阻系统备用,以备在必要的情况下,电机能在工频下运行) 注:电机采用变频调速后原有的水电阻需要切换不用。如果电机需要工频启动必须采用水电阻。 对于____KW/___KV设备,QF为上级用户高压柜开关。其中QS1,QS2,QS3为隔离柜的手动隔离开关;KM1,KM2,KM3为工频旁路柜的高压真空接触器,QS2,QS3或KM2,KM3之间机械或电气互锁。 说明: 对于需要水电阻启动(笼型)的高压风机由原来的单一工频电源供电改造为工频、变频双电源供电,两者可以随时进行手动切换 A)鼠笼型高压电机改造如下:

系列智能高压变频调速系统用户手册

Zinvert 系列智能高压变频调速系统 用户手册 广州智光电机有限公司 GUANGZHOU ZHIGUANG POWER ELECTRONICS Co.,Ltd. 2004年7月 目录 前言 (3) 第1章安全须知 (4) 1.1 标志约定 (4) 1.2安全规则 (4) 第2章简介 (7) 2.1产品特点 (7) 2.2应用领域 (8) 2.3功能简介 (8) 第3章技术参数与规格型号 (10) 3.1系统型号说明 (10) 3.2组件与配置 (10) 3.3选型与外形尺寸 (11) 3.4产品通用技术参数 (12) 第4章系统组成结构与工作原理 (14) 4.1 系统组成与原理 (14) 4.2控制系统 (15) 第5章操作 (17) 5.1运行前准备工作 (17) 5.2启动 (17) 5.3改变频率给定值 (17) 5.4减速停机 (18) 5.5断电 (18) 5.6自由停机 (18) 5.7运行状态监视 (18)

5.8变频调速系统运行到旁路运行的转换(如果选配旁路柜) (19) 5.9旁路运行转换到变频调速系统运行(如果选配旁路柜) (19) 5.10 变频调速系统检修 (19) 第6章人机接口和参数设置 (21) 6.1 显示与键盘介绍 (21) 6.2基本界面显示和操作 (22) 6.3液晶显示和面板按键具体操作方法 (24) 6.4控制器功能参数列表 (38) 第7章变频调速系统接口 (42) 7.1变频调速系统基本接口 (42) 7.2控制器基本I/O信号接口表 (42) 第8章安装说明 (48) 8.1安装的安全注意事项 (48) 8.2地基、空间和周围环境的要求 (48) 8.3高压部分安装 (48) 8.4设备接地 (49) 8.5 辅助电源及电缆 (49) 8.6控制信号用电缆 (50) 8.7 电缆布线 (50) 8.8机械安装 (50) 8.9电气安装 (51) 第9章调试 (54) 9.1调试常规预备工作 (54) 9.2调试人员配合 (54) 9.3验收 (54) 第10章维护 (55) 10.1 安全须知 (55) 10.2维护的标准程序 (55) 10.3维护计划 (56) 10.4维护项目 (57) 10.5维护日志 (58) 第11章故障的检测与排除 (59) 11.1故障分类 (59) 11.2故障指示 (59) 11.3故障记录 (59) 11.4 故障检测的标准程序 (59) 11.5报警和故障信息及其可能原因、处理解决措施60

交流异步电动机变频调速系统

摘要 现在流行的异步电动机的调速方法可分为两种:变频调速和变压调速,其中异步电动机的变频调速应用较多,它的调速方法可分为两种:变频变压调速和矢量控制法,前者的控制方法相对简单,有二十多年的发展经验。因此应用的比较多,目前市场上出售的变频器多数都是采用这种控制方法。本设计采用恒压变频调速并在MTALAB运行环境下进行仿真设计并运行仿真模型得出结论。 关键词:交流调速系统, 异步电动机, PWM技术MATLAB.....

目录 摘要................................ 错误!未定义书签。第一章前言.......................... 错误!未定义书签。 1.1 设计的目的和意义................. 错误!未定义书签。 1.2变频器调速运行的节能原理......... 错误!未定义书签。第二章交流异步电动机............... 错误!未定义书签。 2.1交流异步电动机变频调速基本原理 ... 错误!未定义书签。 2.2变频变压(VVVF)调速时电动机的机械特性 (6) 2.3变压变频运行时机械特性分折 (7) 第三章变频技术简介和控制方法 (11) 3.1 变频调速技术简介 (11) 3.2变频器工作原理及分类 (12) 3.3 交流调速的基本控制方法 (18) 3.4脉冲宽度调制(PWM)技术 (21) 第四章异步电动机变频调速系统设计的仿真和实现 (24) 4.1 MATLAB的编程环境 (24) 4.2仿真结果 (29) 结论 (30) 致谢.............................. 错误!未定义书签。参考文献............................ 错误!未定义书签。

三相永磁同步电动机变频调速系统设计

三相永磁同步电动机变频调速系统设计

————————————————————————————————作者:————————————————————————————————日期:

运动控制系统 课程设计 题目:三相永磁同步电动机变频调速系统设计专业班级:自动化 姓名: 学号: 指导教师: 评阅意见: 指导老师签名:

本论文在研究永磁同步电动机运行原理的基础上详细讨论了其变频调速的理论并且设计了一套基于DSP的永磁同步电动机磁场定向矢量控制系统。永磁同步电动机相对感应电动机来说具有体积小、效率高以及功率密度大等优点,因此自从上个世纪80年代,随着永磁材料性能价格比的不断提高,以及电力电子器件的进一步发展,永磁同步电动机的研究也进入了一个新的阶段。由于永磁同步电动机自身具有比感应电动机更为优越的性能,而且其dq变换算法相对简单、电机转子磁极的位置易于检测,因此交流调速的矢量控制理论在永磁同步电动机的控制领域也得到了同样的重视,有关永磁同步电动机矢量控制研究的成果陆续发表。本文就是应用电压矢量控制SVPWM实现对永磁同步电机的转矩控制,使其拥有直流电机的性能。 关键词:永磁同步电机矢量控制dq变换DSP

1 绪论 (1) 1.1 研究背景与意义 (1) 1.2 研究现状及应用前景 (1) 2 永磁同步电机的矢量控制方法 (3) 3 硬件电路设计 (4) 3.1 电流检测电路 (4) 3.2 转速检测和转子磁极位置检测电路 (5) 3.3 PWM发生电路 (6) 3.4 IPM智能功率模块驱动电路 (7) 3.5 系统保护电路 (8) 3.6 人机接口电路 (9) 4 软件设计 (9) 设计心得 (12) 参考文献 (13)

电动汽车用永磁同步电机控制系统设计

硕士学位论文 二0一五 年 六 月 作者姓名 指导教师 学科专业 控制工程

摘要 本文在开始先介绍了研究电动汽车的背景及其意义,并介绍了电动汽车在国内外的发展现状,然后从电动汽车的燃油经济性,驱动性,安全性及舒适度,三个方面分析了电动汽车比其他燃料汽车存在的优越性。电动机是电动汽车的核心部件,本文中从其驱动方式把电动机分为四大类,直流有刷电动机,永磁同步电动机,永磁无刷直流电动机和开关磁阻电动机。本章从工作原理与性能方面分析了,这四种电动机各存在的优点和不足。从中得出永磁同步电动机是电动汽车比较理想的选择。本文刚开始介绍了永磁同步电动机PMSM的三种不同的控制方式,恒压频比控制,矢量控制,直接转矩控制,并从三者之间比较得出,PMSM采用直接转矩控制DTC的方式有着比其他两者更好的稳定性。 随后从永磁同步电动机PMSM的结构及其特点,分析了其优越性,并建立数学模型,根据空间矢量坐标关系推导出PMSM的在各坐标系下DTC的原理。本章分析了定子磁链与电磁转矩的估算和滞环控制,通过其原理研究了开关表控制的方式,并对PMSM的直接转矩控制DTC的Matlab/Simulink仿真,最终得出了DTC 较其它控制方式的稳定性。 其次分析了永磁同步电机PMSM的直接转矩控制DTC存在的诸多缺点,并提出基于SVM技术的SVPWM的控制方式,即空间矢量调制DTC控制策略,通过Matlab/Simulink仿真,得出SVPWM比PMSM DTC有着更好的稳定性。 TI公司推出的TMS320F2812 DSP芯片的控制系统设计,从硬件电路的设计和软件的设计,两个方面研究了该芯片。DSP硬件方面包含了智能模块的自保护特性,并设计了检测电路,保护电路,驱动电路和CAN通信等模块,软件系统方面分析了,其初始化流程图,接收流程图等。 关键词:永磁同步电机;直接转矩控制;DSP;SVPWM

第六章 交流异步电动机变压变频调速系统精讲

第六章 交流异步电动机变压变频调速系统 本章主要问题: 1. 在变频调速中变频时为什么要保持压频比恒定? 2. 交-直-交电压源型变频器调压、调频的有哪几种电路结构,并说明各种电压结构的优缺点。 3. SPWM 控制的思想是什么? 4. 什么是1800导通型变频器?什么是1200导通型变频器? 5. 电压、频率协调控制有几种控制方式,各有哪些特点? 6. 在转速开环恒压频比控制系统中,绝对值单元GAB 的作用?函数发生器GFC 的作用?如 何控制转速正反转。 7. 总结恒11 ωU 、恒1ωg E 、恒1ωr E 三种控制方式的特点。 ———————————————————————————————————————— §6-1 交流调速的基本类型 要求:掌握交流调速哪几种基本类型有以及各种调速方法的特点。 目的:能根据不同应用场合选择出相应的调速方式。 重点、难点:变频调速时基频以下和基频以上调速的特点 主要内容(交流调速的基本类型、变频调速的基本要求) 思考: 1. 交流异步电动机调速的方式有哪几种?并写出各方式的优缺点? 2. 在变频调速中变频时为什么要保持压频比恒定? 教学设计:交流调速的基本类型采用多媒体课件讲授,用大量的实例,说明几种类型的应用场合。 复习感应电动机转速表达式: )1(60)1(1 0s n f s n n p -= -= 异步电动机调速方法:?? ?? ??? ?????? ? ??型变频调速:绕线式、笼:绕线式串级调速(转差电压)电磁转差离合器调转子电阻:绕线式、调压(定子电压)变转差率调速变极调速:笼型异步机异步电动机 §6-2 变频调速的构成及基本要求 目的、教学要求:掌握变频调速时基频以下和基频以上调速的特点 重点、难点:变频调速时基频以下和基频以上调速的特点 主要内容(变频调速的基本要求)

同步电机变频调速

同步电机变频调速 历史上最早出现的是直流电动机19世纪末,出现了交流电和交流电动机为了改善功率因数,同步电动机应运而生。同步电动机也是一种交流电机。既可以做发电机用,也可做电动机用,过去一般用于功率较大,转速不要求调节的生产机械,例如大型水泵,空压机等。 最初的同步电动机只用于拖动恒速负载或用于改善功率因数的场合。在恒定频率下运行的大型同步电动机又存在着容易发生失步和振荡的危险,以及起动困难等问题。 因此,在没有变频电源的情况下,很难对同步电动机的转速进行控制。 同步电动机历来是以转速与电源频率保持严格同步著称的。只要电源频率保持恒定,同步电动机的转速就绝对不变。 采用电力电子装置实现电压-频率协调控制,改变了同步电动机历来只能恒速运行不能调速的面貌。起动费事、重载时振荡或失步等问题也已不再是同步电动机广泛应用的障碍。 同步电机的特点与问题: 优点: (1)转速与电压频率严格同步; (2)功率因数高到1.0,甚至超前。 存在的问题: (1)起动困难; (2)重载时有振荡,甚至存在失步危险。 问题的根源: 供电电源频率固定不变 解决办法: 采用电压-频率协调控制 例如: 对于起动问题: 通过变频电源频率的平滑调节,使电机转速逐渐上升,实现软起动。 对于振荡和失步问题: 可采用频率闭环控制,同步转速可以跟着频率改变,于是就不会振荡和失步了。 同步电机和其它类型的旋转电机一样,由固定的定子和可旋转的转子两大部分组成。 下图给出了最常用的同步发电机的结构模型,其定子铁心的内圆均匀分布着定子槽,槽

内嵌放着按一定规律排列的三相对称交流绕组。这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁心和电枢绕组。 图中用AX 、BY 、CZ 三个 在空间错开120电角度分布的线 圈代表三相对称交流绕组。 同步电机的运行方式: 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。 同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。 同步电机的突出优点:控制励磁来调节它的功率因数,可以使功率因数高到1.0,甚至超前。 同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 同步调速系统的特点: (1)交流电机旋转磁场的同步转速ω1与定子电源频率 f 1 有确定的关系 同步电动机的稳态转速等于同步转速,转差 ωs = 0。 (2)异步电动机的磁场仅靠定子供电产生,而同步电动机除定子磁动势外,转子侧还有独立的直流励磁,或者用永久磁钢励磁。 目前采用的直流励磁方式分为两大类:一类是用直流发电机作为励磁电源的直流励磁机励磁系统;另一类是用硅整流装置将交流转化成直流后供给励磁的整流器励磁系统。 (3)同步电动机的气隙有隐极与凸极之分。凸极式转子上有明显凸出的成对磁极和励磁线圈。如对水轮发电机来说,由于水轮机的转速较低,要发出工频电能,发电机的极数就比较多,做成凸极式结构工艺上较为简单。另外,中小型同步电机多半也做成凸极式。 隐极式同步电机转子上没有凸出的磁极,气隙均匀。凸极式则不均匀,两轴的电感系 1 1p 2f n πω=

大型风机的高压变频调速系统的选型及其应用 (1)

* 引言工业企业中拥有众多拖动风机、泵类负载地大型高压电动机,其中大部分都运行在通过风门或阀门调节流量地节流状态,造成大量能源浪费,存在巨大节能空间;对该类高压电机进行调速改造,不仅可大幅降低电能消耗,而且可提高设备自动化水平,改善设备运行状态,节约设备维修费,并可改善工艺控制效果,是一条节能降耗地重要技术途径.本项目技术改造为高压变频调速技术在贵州某年产万吨大型氧化铝厂熟料窑、排烟风机上地应用.、排烟风机为高压异步电动机拖动,启动方式为直接启动,恒速运转,生产中根据工艺需求通过调节风门开度调节风机地送风量,以便将炉窑内地燃烧状况控制在最佳水平.长期以来,不论炉窑内处于何种燃烧状况,产生地烟尘大小等风机均全速运行.采用入口挡板风门开度调节,效率低、功率大、造成大量地电能浪费.通过采用高压变频调速技术取代传统地风门挡板风量调节技术,在保证设备正常运行地情况下降低了风机地用电量,节约了生产成本.进行变频改造以后,将进口挡板地开度开到最大,风量地调节根据生产需求通过调节电机地转速来实现,使风机处于最佳节能运行状态,从而达到了节电地目地.变频改造后还为风机、电机以及各种管道附属设备提供多项保护措施,从而延长设备使用寿命.项目技术改造背景近年来,随着电力电子器件、控制理论和计算机技术地迅速发展,高压变频技术逐渐成熟,同时变频器地价格不断下降,可靠性不断增强,大幅拓宽了工艺控制对变频调速地要求.最近十年外省发达地区高压大容量变频器已经在冶金、电力、石化等行业得到广泛应用,节能效果非常显著.但在我省应用很少,因此采用高压变频装置对大型用电设备进行改造成为我省企业节能降耗,提高设备自动化程度和竞争力地重要技术措施之一.为此,年该公司北京总部将“高压变频调速技术在氧化铝工业上地应用”项目确定为重大科技成果产业化和推广应用项目,在各省分公司进行产业化试验,贵州所属氧化铝厂、年共新装或技改了台(套)高压交流变频调速装置,为节能降耗做出了贡献,也为我省企业针对高电压、大容量风机、泵类地节能改造积累经验,起到一定示范作用. 熟料窑风机高压变频调速系统地选型设计排烟风机运行技术数据排烟风机运行技术数据如表所示.对高压变频调速设备地主要技术参数和设计性能要求根据烧成窑(熟料窑)现场情况及设备运行经验对高压变频调速系统主要技术参数和设计性能要求如下:主要技术参数(如表)性能要求()变频装置应设以下保护:过电压、过电流、欠电压、缺相、短路、超频、失速、变频器过载、电机过载、半导体器件地过热、瞬时停电等基本保护功能,必要时能联跳输入侧开关.()变频装置控制系统应可靠,重要元器件应冗余配置.变频器应满足本体面板控制、现场控制和主控室计算机()自动控制三地控制功能及转换.且变频器本体柜操作盘应能进行相关地各种控制操作和参数设置,显示面板具有电流、电压、频率、功率、功率因数、开、停、故障显示及故障记忆等基本功能显示.()提供地变频器支撑软件宜为汉化地最新地正版软件.变频装置应带故障自诊断功能,能对发生地故障类型及位置提供中文指示,能在就地显示并远方报警.()变频装置应能接受现有或其它控制系统地指令,并反馈变频器地主要状态信号和故障报警信号,至少包含以下开关量和模拟量信号:开关量输入:起动、停止、手动自动转换信号.开关量输出:高压准备就绪、变频器运行、故障、停止信号.模拟量输入:频率调节(转速给定);~标准信号.模拟量输出:输出频率、输出电流;~标准信号.()变频装置地可根据用户地要求进行参数化,对开关量输入回路在硬件上采取光电隔离措施,在软件上采取消除接点抖动措施,并作好接地、屏蔽等抗干扰措施.对开关量输出控制应具有光电隔离输出,并能直接启动任何中间继电器;模拟量信号增加信号隔离器隔离.()变频装置应具有与现有控制系统或其它控制系统地通讯接口;能与现有控制系统或其它控制系统共同完成两系统间地通讯连接.()变频装置内部通讯应采用光纤连接,以提高通讯速率和抗干扰能力;变频器柜内强电信号和弱电信号应分开布置,以避免干扰.()变

相关文档
最新文档