运筹 图与网络分析(12)
运筹学胡运权第五版(第6章)ppt课件

.
(3)任何有n个点、n-1条边的连通图是树。
证明(反证法): 假设n个点,n-1条边的连通图中有圈,则在该圈中去掉一
条边得到的子图仍连通,若子图仍有圈,则继续在相应圈中去 掉一条边,…,直到得到无圈的连通图,即为树。但是该树有 n个点,边数少于n-1,矛盾!
其中
i
dij(1)= min { dir(0)+ drj(0)}
dir(0)
r
r
drj(0)
j
即dij(1)为D(0)中第i行和第j行对应元素之和的最小值
v1 v2 v3 v4 v5 v6 v7
V1 0 5 2 7 12 6 ∞
D(1)= V2 5 0 7 2 7 4 10
V3 2 7 0 6 5 4 10
.
最小部分树长Lmin=14
1、最短路问题
*§6.3 最短路问题
从已知的网络图中找出两点之间距离最短(即权和 最小)的路。
2、相关记号
(1)dij表示图中两个相邻点i和j之间的距离(即权)。 易见 dii=0 约定:当i和j不相邻时,dij=∞
(2)Lij表示图中点i和j之间的最短距离(即最小权和)。 易见 Lii=0
V2
7
5 V1
2
2
6
V4
7
2
V3
4
.
3 V7
1 6
V6
* 4、矩阵算法
求任意两点间最短距离的方法
⑴ 构造任意两点间直接到达的最短距离矩阵
记做D(0)= dij(0)
其中dij(0)=dij
v1 v2 v3 v4 v5 v6 v7
V1 0 5 2 ∞ ∞ ∞ ∞
运筹学 第八章 图论 - 全

(a)明显为二部图,(b)也是二部图,但不明显,改画为(c) 时即可看出。
2017/7/13 11
图与网络的基本知识
次,奇点,偶点,孤立点 与某一个点vi相关联的边的数目称为 点vi的次(也叫做度),记作d(vi)。 右图中d(v1)=4,d(v3)=5,d(v5)=1。次 为奇数的点称作奇点,次为偶数的
2017/7/13
18
图与网络的基本知识
有向图 无向图
道路
回路
链
圈
道路(边的方向一致)
2017/7/13 19
图与网络的基本知识
连通图
定义10 一个图中任意两点间至少有一条链相连,则称此图为 连通图。任何一个不连通图总可以分为若干个连通子图,每 一个称为原图的一个分图(连通分支)。
连通图
2017/7/13
边,对余下的图重复这个步骤,直至无圈为止。
2、避圈法:每次增加一条边,且与已有边不构成圈,直至恰 有n-1条边为止。
2017/7/13
24
树
例1、下图是某建筑物的平面图,要求在其内部从每一房间都能走到 别的所有的房间,问至少要在墙上开多少门? 试给出一个开门的方案。
三
七
Байду номын сангаас
三 八 一 四 二 五
七 八 九 六
无向图
2017/7/13
有向图
8
图与网络的基本知识
环, 多重边, 简单图 如果边e的两个端点相重,称该边为 环。如右图中边e1为环。如果两个点 之间边多于一条,称为多重边,如右
v2 e5
多重边
e2
e1 v1
环
e3 v3
e4
图中的e4和e5,对无环、无多重边的
最新第六章-运筹学图与网络优化PPT课件

第1节 图的基本概念
图例:
e1 e3
v1 e2
v2
v1
v3 e2
e1
v2
v4
不连通图
第1节 图的基本概念
三、无向图的基本性质 ✓ 任何无向图中,顶点次数的总和等于边数的
2倍。 ✓ 任何无向图中,次为奇数的顶点必为偶数个。
第1节 图的基本概念
四、有向图的基本概念 ✓ 基础图:去掉有向图中所有弧上的箭头得到
第1节 图的基本概念
图例:
v1
e4
v4
e5
v5
e1
e3
e6
v2
e2
v3
e9
1,v2, v3, v4, v5, v3, v6, v7)?
(v1, v2, v3, v6, v7)?(v1, v2, v3, v4, v1)?
(v4, v1, v2, v3, v5, v7, v6, v3, v4)?
步中,总从未被选取的边中选一条权最小的 边,并使之与已选取的边不构成圈(每一步 中,如果有两条或两条以上最小权的边,则 任选一条)。
第2节 树
例3:某工厂内联结六个车间的道路网如下图所
示。已知每条道路的长,要求沿道路架设联
结六个车间的电话线网,使电话线的总长最
小。
v3
5
6
v1
1
7
v5 4
3 v6
5
二、树的性质
✓ 任何树中必然存在次为1的点。 (1)树中次为1的点称为树叶 (2)树中次大于1的点称为分枝点 ✓ 树的点有n个,则该树的边必有(n-1)条。 ✓ 任何具有n个点、(n-1)条边的连通图必是树。 ✓ 树中任意两点之间有且只有唯一一条链。 ✓ 从一个树中去掉任一条边,则余下的图必是不连通
运筹学名词解释(全)

《运筹学基础》名词解释运筹学:缩写OR,是利用计划方法和有关多学科的要求。
把复杂功能关系。
表示成数学模型,其目的是通过定量分析为决策和揭露新问题提供数量根据。
定性决策:基本上根据决策人员的主观经验或感受到的感觉或只是而制定的决策。
定量决策:借助于某些正规的计量方法而作出的决策。
混合性决策:必须运用定性和定量两种方法才能制定的决策。
预测:是对未来的不确定的事物进行估计或判断。
专家小组法:是在介绍咨询的专家之间组成一个小组,面对面的进行讨论与磋商,最后对需要预测的课题得出比较一致的意见指数平滑预测法:是定量与定性方法相结合的一种预测方法决策:从狭义方面来说,决策可以解释为对一些可供选择的方案作出抉择。
广义的决策过程包括4个程序:明确决策项目的目的,寻求可行的方案,在诸可行方案中进行抉择,对选定的决策方案经过实施后的结果进行总结评价常规性决策:它是例行的,重复性的决策。
做这类决策的个人或组织.又要需要他们决策的问题不是新问题,一般来说已经有管理和经验作参考。
因而进行决策是就比较容易。
特殊性决策:是对特殊的,先例可循的新问题的决策。
做这类决策的个人或组织只有认真履行决策过程的四个阶段,才能作出满意的决策。
计划性决策:有些类似法治系统中的立法工作。
国家或组织的方针政策以及较长期的计划等都可视为计划性较长的对象.最大最大决策标准:可称为乐观主义者的决策标准,采用这种决策标准,决策者比较谨慎小心。
总是从未来的销售情况可能较差的状态考虑.然后在选择最优的可行方案、最小最小遗憾值决策标准:也叫最小最大后悔值决策标准。
它运用计算遗憾值的逻辑原则,求得在不同的销售状态下选用不同的方案所能造成的遗憾值,然后在根据最小最大以后标准进行决策.选取最优方案。
现实主义决策标准:也称折衷主义决策标准。
所谓现实主义或折衷主义,就是说既不是从最乐观的角度。
也不说从最保守的角度来估计未来可能出现才自然状态存货台套:它的英文原名为stockkeepinggunit,在某些企业中可以译成存货储备单元,简称存货单元ABC分析法是按各种存货台套或存货单元的年度需用价值,将它们分成A,B,C三类。
运筹学的主要内容及如何学好运筹学

兰天 sky 收集整理 davidluocq@
第一章 概述
运筹学是一门研究如何有效地组织和管理人机系统的科学。由于它同 管理科学的紧密联系,研究解决实际问题时的系统优化思想,以及从提出 问题、分析建模、求解到方案实施的一整套严密科学方法,使它在培养提 高管理人才的素质上起到重要作用。运筹学已成为经济管理类专业普遍外 设的一门重要专业基础课。随着国内运筹学教学形势的发展,对教学内容 的要求也在不断提高。我们认为,应当根据我国社会主义市场经济的需要, 将运筹学的最新理论相应用成果及时充实到教材守去,并进一步研究如何 满足 21 世纪运筹学教学的要求。
克。现有五种饲料,搭配使用,饲料成分如下表:
例题 2 建模
设抓取饲料 I x1kg;饲料 II x2kg;饲料 III x3kg……
目标函数:最省钱 minZ=2x1+7x2+4x3+9x4+5x5
约束条件:3x2+2x2+x3+6x4+18x5 ≥700
营养要求: x1+0.5x2+0.2x3+2x4+0.5x5 ≥30 0.5x1+x2+0.2x3+2x4+0.8x5 =200
在认真听课的同时,学习或复习时要掌握以下三个重要环节: (1)、认真阅读教材和参考资料,以指定教材为主,同时参考其他有关书 籍。一般每一本运筹学教材都有自己的特点,但是基本原理、概念都是一 致的。注意主从,参考资料会帮助你开阔思路,使学习深入。但是,把时 间过多放在参考资料上,会导致思路分散,不利于学好。 (2)、要在理解了基本概念和理论的基础上研究例题。注意例题是为了帮 助你理解概念、理论的。作业练习的主要作用也是这样,它同时还有让你 自己检查自己学习的作用。因此,做题要有信心,要独立完成,不要怕出 错。因为,整个课程是一个整体,各节内容有内在联系,只要学到一定程 度,知识融会贯通起来,你做题的正 确性自己就有判断。 (3)、要学会做学习小结。每一节或一章学完后,必须学会用精炼的语言 来概括该书所学内容。这样,你才能够从 较高的角度来看问题,更深刻 的理解有关知识和内容,这就称为“把书读薄"。若能够结合自己参考大量 文献后的深入理解,把相关知识从更深入、广泛的角度进行论述,则称之 为"把书读厚"。
运筹学复习

2014-2015复习一、名词解释(5道,15分)1.优化2.线性规划生产和经营管理中经常提出如何合理安排,使人力、物力等各种资源得到充分利用,获得最大的效益,这就是规划问题。
3.可行解:满足约束条件解为可行解。
4.可行域所有可行解的集合为可行域。
5.基:设A为约束条件②的m× n阶系数矩阵(m<n),其秩为m,B是矩阵A中m阶满秩子矩阵(∣ B∣≠0),称B是规划问题的一个基。
6.基本可行解:满足变量非负约束条件的基本解,简称基可行解。
7.影子价格在一对 P 和 D 中,若 P 的某个约束条件的右端项常数bi (第i种资源的拥有量)增加一个单位时,所引起目标函数最优值z* 的改变量称为第 i 种资源的影子价格,其值等于D问题中对偶变量yi*。
8.灵敏度分析:当某一个参数发生变化后,引起最优解如何改变的分析。
可以改变的参数有:bi ——约束右端项的变化,通常称资源的改变;cj ——目标函数系数的变化,通常称市场条件的变化;pj ——约束条件系数的变化,通常称工艺系数的变化;其他的变化有:增加一种新产品、增加一道新的工序等。
9.运输问题10.整数规划要求一部分或全部决策变量取整数值的规划问题称为整数规划。
11.0-1规划决策变量只能取值0或1的整数规划。
12.松弛问题13.目标规划目标规划是在线性规划的基础上,为适应经济管理多目标决策的需要而由线性规划逐步发展起来的一个分支。
14.偏差变量15.链图中某些点和边的交替序列,若其中各边互不相同,且对任意vi,t-1和vit均相邻称为链。
16.路链中所有顶点不相同,这样的链称为路17.最小生成树如果G2是G1的部分图,又是树图,则称G2是G1的部分树(或支撑树)。
树图的各条边称为树枝,一般图G1含有多个部分树,其中树枝总长最小的部分树,称为该图的最小部分树(或最小支撑树)。
18.PERT网络图注重于对各项工作安排的评价和审查。
19.关键路线法各弧权重总和最大的路线,或称主要矛盾路线,它决定网络图上所有作业需要的最短时间。
运筹学
目标规划
( Goal programming )
本章主要内容:
目标规划问题及其数学模型
目标规划问题及其数学模型
Page 28
问题的提出:
目标规划是在线性规划的基础上,为适应经济管理多目 标决策的需要而由线性规划逐步发展起来的一个分支。
由于现代化企业内专业分工越来越细,组织机构日益复 杂,为了统一协调企业各部门围绕一个整体的目标工作,产 生了目标管理这种先进的管理技术。目标规划是实行目标管 理的有效工具,它根据企业制定的经营目标以及这些目标的 轻重缓急次序,考虑现有资源情况,分析如何达到规定目标 或从总体上离规定目标的差距为最小。
含量 食物
甲
乙
成分
A1 A2 A3 原料单价
0.1
0.15
1.7
0.75
1.10 1.30
2
1.5
最低 需要量
1.00 7.50 10.00
线性规划在管理中的应用
解:设Xj 表示Bj 种食物用量
min Z 2 x1 1.5 x2
0.10x1 0.15x2 1.00
1.7 1.1
艇攻击时损失最少; 3. 在各种情况下如何调整反潜深水炸弹的爆炸深
度,才能增加对德国潜艇的杀伤力等。
Page 5
运筹学简述
Page 6
运筹学(Operations Research) 运筹学所研究的问题,可简单地归结为一句话:
“依照给定条件和目标,从众多方案中选择最佳方案” 故有人称之为最优化技术。
x5 x6 30
x1 , x2 , x3 , x4 , x5 , x6 0
此问题最优解:x1=50, x2=20, x3=50, x4=0, x5=20, x6=10,一共需要司机和乘务员150人。
运筹学胡运权第五版(第6章)课件
运筹学胡运权第五版(第6章)
2、图的阶:即图中的点数。 例如 右图为一个五阶图
3、若图中边e= [vi,vj] ,则vi,vj称 为e的端点,
e称为vi,vj的关联边。 若vi与vj是一条边的两个端
点,则称vi与vj相邻; 若边ei与ej有公共的端点,
则称ei与ej相邻。
e8
1、图(graph):由V,E构成的有序二元组,用以表示对 某些现实对象及其联系的抽象,记作 G={V,E}。 其中V称为点集,记做V={v1,v2,···,vn}
E称为边集,记做E={e1,e2,···,em}
点(vertex):表示所研究的对象,用v表示; 边(edge):表示对象之间的联系,用e表示。 网络图(赋权图): 点或边具有实际意义(权数)的图, 记做N。
路:点不能重复的链。
圈:起点和终点重合的链。
回路:起点和终点重合的路。
连通图:任意两点之间至少存在一条链的图。
完全图:任意两点之间都有边相连的简单图。
n阶完全图用Kn表示,边数=
C 2 n(n 1)
n
2
注意:完全图是连通图,但连通图不一定是完全图。
运筹学胡运权第五版(第6章)
v1 e4
v4 e5 v5
依次下去,vn必然与前面的某个点相邻,图中有圈,矛盾!
注意:树去掉悬挂点和悬挂边后余下的子图还是树。
运筹学胡运权第五版(第6章)
(2)n阶树必有n-1条边。
证明(归纳法): 当n=2时,显然;
设n=k-1时结论成立。 当n=k时,树至少有一个悬挂点。
去掉该悬挂点和悬挂边,得到一个k-1阶的树,它有 k-2条边,则原k阶树有k-1条边。
7、已知图G1={V1,E1}, G2={V2,E2}, 若有V1V2,E1E2,则称G1是G2的一个子图; 若V1=V2,E1E2且 E1≠E2 ,则称G1是G2的一个部分图。
网络规划(运筹学)
两个定理
定理7-1: 图G=(V,E)中,所有点的次之和是边数的两倍, 即:
d ( ቤተ መጻሕፍቲ ባይዱ ) 2q
证明:计算各端点的次时,每个边都用了两次,所以次数的 总和必然为边数的两倍。 定理7-2: 任意一图中, 奇点的个数为偶数。
v V1 v V2 v V
v V
d (v) d (v) d (v) 2q
v2 1 v1 3 v3 5 2 3 2 v4 1 v6 3 4 2 v5
在例7-3中,以v4做为出发点,S={v4}, 与v4相连的边有5条,权数最小的为[v4,v6], 将v6加入S中,S={v4,v6}; 与S={v4,v6}相连的边有7条,其中权 数最小的有3条,权数都是2,此时可任选一 条。如将v5加入,得S={v4,v6,v5}; 与S={v4,v6,v5}相连的边有5条,其 中权数最小的有2条,权数都是2,此时可任 选一条。如将v2加入,得S={v4,v6,v5, v2}; 与S={v4,v6,v5,v2}相连的边有4条, 其中权数最小的有1条,权数是1,将v1加入, 得S={v4,v6,v5,v2,v1}; 与S={v4,v6,v5,v2,v1}相连的边有 3条,其中权数最小的有1条,权数是2,将v3 加入,得S={v4,v6,v5,v2,v1,v3}。 此时所有点都加入到S中,可以得到如图7-12 的结果。
3求网络最大流的标号法求网络最大流的标号法福特福特富尔克逊标号法富尔克逊标号法一基本思想一基本思想从某一可行流从某一可行流x如如零流零流出发按一定规则找出出发按一定规则找出一条增广链并按一条增广链并按定理定理33的方法的方法增广链调整法增
第七章
网络规划
第七章
网络规划
运筹学基础(1)
展
英国创刊 ☺ 1952年第一个运筹学学会在美国成立
☺ 1947年丹齐克在研究美国空军资源优化配置 时提出线性规划及其通用解法——单纯形法
战后这些研究成果被应用到生
产、经济领域,其发展可以分
运
为三个阶段:
筹 学
的
① 1945至50年代初期—创建时期
② 50年代初期至50年代末期——成长 时期
产
生
商船护航的规模等等。
战后这些研究成果被应用到生
产、经济领域,其发展可以分
运
为三个阶段:
筹 学
的
① 1945至50年代初期—创建时期
☺ 1948年英国成立“运筹学俱乐部”在煤力、 电力等部门推广应用运筹学
产
☺ 相继一些大学开设运筹学课程
生
1948年美国麻省理工学院
和
1950年英国伯明翰大学
发
☺ 1950年第一本运筹学杂志《运筹学季刊》在
的 定 义
与 特 点
为“运作研究”。
美国运筹学会认为:运筹学所研 究的问题,通常是在要求有限资 源的条件下科学地决定如何最好 地设计和运营人机系统。
中国大百科全书释义:它用数学 方法研究经济、民政和国防等部 门在内外环境的约束条件下合理 分配人力、物力、财力等资源, 使实际系统有效运行的技术科学,
bi ,i 1,2m 为资源系数;
aij ,i 1,2m, j 1,2n 为技术系数,或约束
系数 ;
mn
运筹学基础
第四讲
主讲教师:郑黎黎
学时:48
线 性 数规 学划 模问 型题 及 其
线性规划的标准形式有四个特点 : 目标最大化、约束为等式、右端项 非负、决策变量均非负。 对于各种非标准形式的线性规划问 题,我们总可以通过以下变换,将 其转化为标准形式。