钢铁工业余热回收的主要环节介绍
钢铁企业余热资源的回收与利用

钢铁企业余热资源的回收与利用摘要:本文首先分析了钢铁企业余热回收的现状,接着分析了钢铁企业余热资源的回收与利用的措施,希望能够为相关人员提供有益的参考和借鉴。
关键词:钢铁企业;余热资源;回收;利用;措施引言:当烟气从出口排出时的余热温度在100℃以下,那么将会产生大量的潜热,将这些潜热转换为热量在钢铁行业可以得到有效的应用。
类似的余热利用数不胜数,每年通过余热的利用,钢铁行业可以节约大量的蒸汽等物质,由此可见,余热回收能够有效的节约能源成本,促进钢铁行业的发展,同时也能为我国的节能减排工作做出突出贡献。
1钢铁企业余热回收的现状当前,我国的钢铁企业在进行作业的过程中主要有几种产生余热的形式,分别是高温烟气、冷却介质、炉渣、高温凝结水等。
目前,我国很多钢铁企业在进行钢铁生产的过程中都会通过对于余热的利用来进行低压蒸汽的生产,这种余热回收手段也是最基础、最广泛的余热回收利用手段。
但是,仅仅只有这一种余热利用回收手段仍然显得我国钢铁企业在进行余热回收利用的过程中没有体现其应有的技术水平,余热回收率过低,仅仅有30%左右。
这其中又以高温余热的回收利用率最高,可以达到40%以上,而低温余热的回收利用率却很少,只有1%左右。
但是如果针对世界上其他先进国家进行观察,我们能够发现先进国家的钢铁企业在进行运转的过程中,对于余热的回收利用率往往非常高,普遍在85%以上甚至90%以上。
由此可见,当前我国在钢铁企业余热回收方面仍然处于初级阶段。
2钢铁企业余热资源的回收与利用的措施2.1烧结环冷系统余热回收利用在钢铁生产的烧结工序中,烧结矿在经过环冷机冷却时,会产生大量温度较高的热烟气,如果这部分烟气直接排入大气,不仅会造成较大的能源损失,还会对大气造成严重污染。
烧结工序的能耗仅次于炼钢工序,约占总能耗的9%-15%,所以对烧结环冷机中的余热进行回收利用具有很大的节能空间,并且可产生较大的经济效益。
在烧结机生产线中都会配备相应的环冷机,对于烧结矿经过环冷机时产生的高温烟气可以采用两种余热回收利用措施。
中国钢铁行业余热余压回收利用途径分析1

中国钢铁行业余热余压回收利用途径分析北极星节能环保网 2014/5/30 11:51:22 我要投稿分析如下:焦化工序。
焦化工序现阶段已回收利用的余热余压资源包括焦炭显热、焦炉煤气潜热、烟道气显热和初冷水显热。
焦炭显热主要是采用干熄焦技术回收利用产生蒸汽用于发电,目前干熄焦发电技术在国内钢铁联合企业的应用普及率已很高。
焦炉煤气热值高,是一种优质燃料,目前已得到充分利用,放散率很低,主要利用途径是供各生产用户使用,富余资源用于驱动锅炉发电。
同时,由于焦炉煤气富含氢气和甲烷,提升利用品位,将其作为化工原料生产甲醇、合成氨等化工产品和天然气资源的利用方式近年来得到了更多的关注。
烟道气显热的温度一般是250℃~300℃,目前主要采用余热回收设备回收蒸汽供生产、生活用户或作为煤调湿热源。
焦化初冷水显热温度一般是60℃~70℃,主要采用换热器回收热量用于北方地区冬季采暖。
烧结工序。
烧结工序现阶段已回收利用的余热余压资源包括烧结矿显热和烧结烟气显热。
烧结矿显热的回收主要在环冷机部分,按烟气温度分高、中、低三部分,目前高温段烟气余热回收利用较为充分,主要采用余热锅炉产生蒸汽用于发电或者供生产用户;中、低温烟气余热一般采用直接利用方式,用于预热混料或热风烧结等。
对于烧结烟气显热的回收利用近几年开始起步,在部分企业已有应用,主要集中在烧结大烟道高温区(300℃~400℃)的回收,采用余热锅炉或热管换热器回收产生蒸汽。
球团工序。
球团工序现阶段已回收利用的余热余压资源包括球团矿显热、烟气显热和冷却水显热。
球团矿显热主要通过获取热风回用于生产,作为烘干、预热等热源。
烟气显热温度较低(约120℃),少数企业采用热管换热器回收热量用于职工洗浴等生活用户。
竖炉大水梁冷却水显热通常采用汽化冷却方式替代水冷方式,避免循环冷却水消耗,并回收产生蒸汽。
炼铁工序。
炼铁工序是主要耗能大户,同时也是余热余压资源较为丰富的工序,现阶段已回收利用的余热余压资源包括高炉煤气潜热和余压、热风炉烟气显热和高炉渣显热。
余热回收原理

余热回收原理余热回收原理是指将工业生产等过程中产生的余热进行收集、利用的技术。
在工业生产中,许多系统和设备会产生大量的热能,如果这些热能没有得到充分利用,将会造成能源的浪费和环境的污染。
而余热回收技术的应用可以将这些废热转化为有用的能源,提高能源利用效率,实现资源的循环利用和环境的保护。
余热回收原理的基本步骤可以分为热源选择、余热回收系统设计、余热回收设备安装和运行监测等几个环节。
首先要选择适合的热源,通常情况下,工业生产过程中产生的余热包括燃烧废气、加热冷却流体等。
热源的选择应考虑温度高低、热量大小、稳定性等因素。
然后进行系统设计,包括热量传递计算、余热回收设备的选型等。
余热回收设备的常用形式有热交换器、热泵、蓄热装置等。
接下来是设备的安装,将回收设备与工业生产过程进行连接,以便将废热转化为有用的能源。
最后进行运行监测,通过对回收设备的监测和调节,确保回收效果的稳定和最优化。
余热回收原理的关键是热量传递。
热量传递是指热能从一个物体传递到另一个物体的过程。
在余热回收过程中,热量传递可以通过传导、对流和辐射等多种方式实现。
传导是指热量通过物质的直接接触传递,对流是指通过流动介质(如空气或液体)带走或带来热量,辐射是指通过热辐射的方式传递热量。
在热量传递的过程中,热交换器是应用较为广泛的一种设备。
热交换器是由多个热交换管或板组成,通过管道或盘片将热量从一个介质传递到另一个介质,实现热量的转移。
热交换器的热量传递效率取决于传热面积的大小、传热系数的大小、传热介质的流速等因素。
热交换器的设计应根据具体的余热回收需求进行,包括传热面积的确定、传热面积的布置方式、传热介质的选用等。
另一种常用的余热回收设备是热泵。
热泵是利用压缩膨胀循环原理实现热能的转移。
热泵通过压缩机将低温低压的工作介质吸入,通过压缩提高其温度和压力,然后通过冷凝器将高温高压的工作介质释放出热量,再通过膨胀阀将温度和压力降低,形成低温低压的工作介质,进行循环使用。
工业余热回收、工业余热利用

工业余热回收、余热利用余热概念:所谓工业余热(又称废热)是指工业生产中各种热能装置所排出的气体、液体和固体物质所载有的热量。
余热属于二次能源,是燃料燃烧过程所发出的热量在完成某一工艺过程后所剩余的热量。
这种热量若不加以回收利用,立即排放到大气和江河中,不仅所谓工业余热(又称废热)是指工业生浪费能源,而且还会污染环境。
❖以钢铁工业为例:❖钢铁工业是环境污染、能源消耗大户,烟气除尘、余热回收利用是钢铁工业保护环境、节约能源的对策之一。
电炉在生产过程中产生大量含尘、CO的高温烟气,平均每吨钢产生的烟尘量为18-20kg,随烟气带走的热量约150M .严重浪费能源、污染环境。
随着电炉技术迅速、全面的发展,其烟气余热回收利用及除尘技术也得到了发展。
➢热管是余热回收装置的主要热传导元件,与普通的热交换器有着本质的不同。
热管余热回收装置的换热效率可达98%以上,这是普通热交换器无法比拟的。
➢热管余热回收装置体积小,只是普通热交换器的1/3。
其工作原理如右图所示:左边为烟气通道,右边为清洁空气(水或其它介质)通道,中间有隔板分开互不干扰。
高温烟气由左边通道排放,排放时高温烟气冲刷热管,当烟气温度>30℃时,热管被激活便自动将热量传导至右边,这时热管左边吸热,高温烟气流经热管后温度下降,热量被热管吸收并传导至右边。
常温清洁空气(水或其它介质)在鼓风机作用下,沿右边通道反方向流动冲刷热管,这时热管右边放热,将清洁空气(水或其它介质)加热,空气流经热管后温度升高。
▪1、安全可靠性高常规的换热设备一般都是间壁换热,冷热流体分别在器壁的两侧流过,如管壁或器壁有泄露,则将造成停产损失。
热管余热回收器则是二次间壁换热,即热流要通过热管的蒸发段管壁和冷凝段管壁才能传到泠流体。
▪2、热管余热回收器传热效率高,节能效果显著。
▪3、热管余热回收器具有良好的防腐蚀能力热管管壁的温度可以调节,可以通过适当的热流变换把热管管壁温度调整在低温流体的露点之上,从而可防止露点腐蚀,保证设备的长期运行。
钢厂余热回收

பைடு நூலகம்
两种炉渣中各自的 成分
矿石材料发泡炉渣来回收 炉渣材料
• 加热炉渣,玻璃及矿石的混合物会产生二 氧化碳和水蒸气
• 用矿石材料做发泡剂去发泡固态粉末状炉 渣
扁热管热交换器在钢铁工业余热回 收中的应用
钢厂中不仅在炉渣中存在大量的热量, 在钢坯的冷却过程中大量的热量也被浪费掉 ,因此回收这一部分热量也至关重要,所以 提出了通过扁热管热交换器进行余热回收的 方法
干法制粒
物理方法:机械破碎法 鼓风 法 离心造粒法
干法制粒
的气化反应
化学方法:烷烃重组反应 煤
机械破碎法
机械破碎法
机械破碎法
机械破碎法
鼓风法
鼓风法
离心造粒法
离心造粒法
烷烃重组反应
煤的气化反应
结论
离心造粒法具有低能耗设备简单等优点粒 子的尺寸和质量也能被很好的控制,越来越多将 会被应用到工程实践中
热回收
材料回收 • 余热回收
钢厂工业余热回 收
炉渣的余热回收
钢材冷却过程中的
炉渣余热回收
我们不仅需要回收炉渣所承载的热量, 而且为了获得不同用途的炉渣,对炉渣的冷 却条件和冷却过程需要进行控制
传统用水冷却炉渣一方面大量浪费水资 源,炉渣的高温显热这样高能级的热量不能 被利用,水与高温炉渣直接接触发生反应生 成含硫气体对空气造成污染而且必须增加额 外能量干燥冷却后的炉渣,这样才能满足炉 渣的后续利用。
离心造粒法在技术上仍然有以下难点:炉 渣具有较高粘度且导热系数低,为获得玻渣颗粒 ,要求快速冷却,期望从炉渣回收热能的连续性 而炉渣的排出是不连续的
化学方法,如甲烷重整反应过程,有良好 的应用前景,但也有一些缺点,如天然气产品难
钢铁厂炼焦炉上升管余热回收技术发展及应用

钢铁厂炼焦炉上升管余热回收技术发展及应用摘要传统荒煤气冷却工艺造成大量显热流失浪费,同时消耗淡水资源带来环境压力。
在技术人员的多年努力下,上升管余热回收技术及装置已日臻成熟并得到了推广应用,创造了良好的经济和环保效益。
一、钢铁联合企业炼焦工序余热资源长流程钢铁生产工艺,高炉炼铁工序中作为还原剂的主要原料是焦炭。
用于还原铁矿石中的铁元素,生产出的生铁供给后续炼钢车间炼钢。
高炉内的化学方程式为:Fe0+C=Fe+CO。
钢铁联合企业一般自备炼焦炉系统生产焦炭满足生产需求。
焦炭由炼焦煤在炼焦炉碳化室中,隔绝空气高温干馏去除有机质、挥发分生成。
炼焦生产过程中有三种余热资源产生:红焦显热、烟道废气显热、荒煤气显热。
各自在焦炉总体热量消耗中所占比例分别为:37%、17%、36%本文讨论荒煤气显热的回收----上升管余热回收技术:二、炼焦炉上升管余热(荒煤气显热)回收的必要性红焦炭带出的显热及烟道废气显热,通过采用成熟可靠的干熄焦发电装置和烟道余热锅炉已实现有效回收利用。
但荒煤气的显热由于种种因素一直没有好的办法来回收。
传统工艺为便于后工序的煤气净化与处理,普遍的做法是:先在桥管和集气管喷洒循环氨水与荒煤气直接接触,靠循环氨水大量气化,使荒煤气急剧降温至80~85℃;降温后荒煤气在初冷器中再用冷却水间接冷却至常温。
所得到的效果是:荒煤气被冷却,其中所夹带的粉尘被清洗除去,绝大部分焦油蒸汽冷凝、萘凝华(并溶于焦油)而被脱除,为煤气的输送、深度净化和化学产品回收创造了较好的条件。
上述过程对荒煤气的冷却和初步净化而言是高效的,但在热力学上却是不完善的。
第一、该回收的能量未回收。
荒煤气在桥管和集气管内急剧降温─增湿过程是高度不可逆过程,其物理显热损失达90%以上.第二、冷却水耗量大。
荒煤气从650~850℃降温至常温所放出的热量绝大部分是在初冷器中靠冷却水移除的(以两段循环水一段深冷水的横管初冷器为例,冷却水总比用量约43t/km3)。
焦炉上升管余热回收方式
焦炉上升管余热回收方式一、引言焦炉是钢铁生产过程中不可或缺的设备,但同时也是能源消耗最大的设备之一。
在焦炉生产过程中,大量的余热被排放到大气中,造成了能源的浪费和环境的污染。
因此,如何有效地回收焦炉余热,成为了钢铁企业节能减排的重要课题。
二、焦炉余热回收方式1. 烟气余热回收焦炉烟气中含有大量的余热,通过烟气余热回收技术,可以将烟气中的余热回收利用,用于加热水或蒸汽等。
目前,常用的烟气余热回收技术有烟气余热锅炉、烟气余热换热器等。
2. 焦炉上升管余热回收焦炉上升管是焦炉生产过程中的一个重要组成部分,其中也含有大量的余热。
通过焦炉上升管余热回收技术,可以将上升管中的余热回收利用,用于加热水或蒸汽等。
目前,常用的焦炉上升管余热回收技术有水膜式余热回收、蒸汽回收等。
三、水膜式余热回收技术水膜式余热回收技术是一种常用的焦炉上升管余热回收技术。
该技术通过在焦炉上升管内部设置水膜,将上升管中的余热传递给水膜,使水膜中的水被加热,从而实现余热回收利用。
该技术具有回收效率高、操作简单、维护方便等优点。
四、蒸汽回收技术蒸汽回收技术是另一种常用的焦炉上升管余热回收技术。
该技术通过在焦炉上升管内部设置蒸汽发生器,将上升管中的余热传递给蒸汽发生器,使蒸汽发生器中的水被加热,从而实现余热回收利用。
该技术具有回收效率高、能够产生蒸汽等优点。
五、结论焦炉余热回收是钢铁企业节能减排的重要措施之一。
目前,常用的焦炉余热回收技术有烟气余热回收、焦炉上升管余热回收等。
水膜式余热回收技术和蒸汽回收技术是常用的焦炉上升管余热回收技术,具有回收效率高、操作简单、维护方便等优点。
在今后的钢铁生产中,应该进一步加强焦炉余热回收技术的研究和应用,实现能源的节约和环境的保护。
烧结余热回收主要有两部分
烧结余热回收主要有两部分:一是烧结机尾部废气余热,二是热烧结矿在冷却机前段空冷时产生的废气余热。
这两部分废气所含热量约占烧结总能耗的50%,充分利用这部分热量是提高烧结能源利用效率,显著降低烧结工序能耗的途径之一。
目前,国内烧结废气余热回收利用主要有三种方式:一是直接将废烟气经过净化后作为点火炉的助燃空气或用于预热混合料,以降低燃料消耗,这种方式较为简单,但余热利用量有限,一般不超过烟气量的10%;二是将废烟气通过热管装置或余热锅炉产生蒸汽,并入全厂蒸汽管网,替代部分燃煤锅炉;三是将余热锅炉产生蒸汽用于驱动汽轮机组发电。
烧结工序余热回收量是指烧结工序每生产一吨合格烧结矿回收的余热蒸汽量(或发电量)折标准煤量。
粗钢生产企业烧结工序应配备先进的节能设备,最大限度回收产生的余热蒸汽量(或发电量) ,使余热蒸汽量(或发电量) 不小于6kgce/t。
烧结余热回收是提高烧结能源利用效率、降低烧结工序能耗的主要途径之一。
烧结系统的显热回收有两部份:一是烧结矿的显热,二是烧结机尾部烟气的显热。
目前,烧结废热余热回收利用的方式主要有以下三种:1、利用余热锅炉产生蒸汽或提供热水,直接利用;2、用冷却器的排气代替烧结机点火器的助燃空气或用于预热助燃空气;3、将排气直接用于预热烧结机的混合材。
烧结矿显热利用——冷却烧结矿产生的温度较高的烟气可进行余热回收、生产蒸汽,循环利用(如昆钢建设的,利用两台130m2烧结机环冷机余热蒸汽进行发电的5MW 余热发电机组)电系统方面,提高电气设备(皮带输送设备、风机、水泵、其他电动机械)的使用效率——如:减少皮带空转时间、减少风机漏风、保持设备运行负荷最佳、对有条件的动力设备实施变频调速等等高炉炉顶余压发电量是指高炉工序每生产一吨合格生铁、利用炉顶余压所发的电量。
粗钢生产企业高炉工序应配备先进的节能设备,最大限度回收高炉炉顶余压发电,使高炉炉顶余压发电量不小于干式35kW.h/t;湿式30kW.h/t。
中国钢铁行业余热余压回收利用途径分析1
中国钢铁行业余热余压回收利用途径分析北极星节能环保网2014/5/30 11:51:22 我要投稿关键词:余热回收设备烟气余热余热余压北极星节能环保网讯:现阶段,钢铁工业各生产工序已回收余热余压资源情况及利用途径分析如下:焦化工序。
焦化工序现阶段已回收利用的余热余压资源包括焦炭显热、焦炉煤气潜热、烟道气显热和初冷水显热。
焦炭显热主要是采用干熄焦技术回收利用产生蒸汽用于发电,目前干熄焦发电技术在国内钢铁联合企业的应用普及率已很高。
焦炉煤气热值高,是一种优质燃料,目前已得到充分利用,放散率很低,主要利用途径是供各生产用户使用,富余资源用于驱动锅炉发电。
同时,由于焦炉煤气富含氢气和甲烷,提升利用品位,将其作为化工原料生产甲醇、合成氨等化工产品和天然气资源的利用方式近年来得到了更多的关注。
烟道气显热的温度一般是250 C ~300 C,目前主要采用余热回收设备回收蒸汽供生产、生活用户或作为煤调湿热源。
焦化初冷水显热温度一般是60 C ~70 C,主要采用换热器回收热量用于北方地区冬季采暖。
烧结工序。
烧结工序现阶段已回收利用的余热余压资源包括烧结矿显热和烧结烟气显热。
烧结矿显热的回收主要在环冷机部分,按烟气温度分高、中、低三部分,目前高温段烟气余热回收利用较为充分,主要采用余热锅炉产生蒸汽用于发电或者供生产用户;中、低温烟气余热一般采用直接利用方式,用于预热混料或热风烧结等。
对于烧结烟气显热的回收利用近几年开始起步,在部分企业已有应用,主要集中在烧结大烟道高温区(300 C ~400 C )的回收,采用余热锅炉或热管换热器回收产生蒸汽。
球团工序。
球团工序现阶段已回收利用的余热余压资源包括球团矿显热、烟气显热和冷却水显热。
球团矿显热主要通过获取热风回用于生产,作为烘干、预热等热源。
烟气显热温度较低(约120 C ),少数企业采用热管换热器回收热量用于职工洗浴等生活用户。
竖炉大水梁冷却水显热通常采用汽化冷却方式替代水冷方式,避免循环冷却水消耗,并回收产生蒸汽。
余热发电工艺流程、主机设备工作原理简介(简单)
余热发电工艺流程、主机设备工作原理简介余热发电余热发电是一种通过回收生产过程中产生的工业余热,将其转化为电能的环保型能源利用技术。
它能够有效地提高工业生产过程中的能源利用率,减少大量二氧化碳和其他有害气体的排放,对于推动工业节能和环保发展有着重要的作用。
工艺流程余热发电工艺流程主要包括余热回收、余热蒸汽与受热水循环、加热循环、排气、冷凝等环节。
1.余热回收:利用余热回收装置对工业生产过程中的热量进行回收。
通常,余热回收设备采用高效传热器,将低温余热转化为高温余热。
2.余热蒸汽与受热水循环:余热回收后的高温余热通过传热器传导至工作介质,常用的介质为蒸汽和循环水。
3.加热循环:高温介质在加热器中进一步加热,增加介质的温度和压力。
4.排气:未能转化为电能的高温气体排放至大气中。
5.冷凝:过热蒸汽在冷凝器中冷却,将过热蒸汽转化为高压饱和水,该水通过泵在再次流入传热器,开始新一轮回收。
电能输出余热发电产生的电能主要经过调节和控制后输出,可以用于工厂内部用电和向电网输送电力。
主机设备工作原理简介余热发电主机设备包括涡轮发电机、减速器、发电机控制系统等主要设备。
以下是它们的工作原理简介:涡轮发电机涡轮发电机是余热发电设备中的核心设备之一。
它是将高速旋转的轴承通过机械装置转化为电能的装置。
其工作过程如下:1.涡轮叶片接受高压、高速蒸汽的冲击,启动涡轮的旋转。
2.涡轮的旋转通过轴传动减速器。
3.通过减速器就可以将转速降低到发电机的工作转速。
4.通过发电机控制系统控制输出的电压和频率,即可输出电能。
减速器减速器是涡轮发电机降低转速的一个重要设备,其工作原理如下:1.接收涡轮发电机传来的高速轴,降低转速。
2.转速降低之后,将轴的转速与电机控制系统的要求匹配,实现电能高效输出。
发电机控制系统发电机控制系统是整个余热发电设备的监控和控制中心,其工作原理如下:1.接收来自涡轮发电机的反馈信号,对电压和电流进行监控和调节。
2.通过反馈系统调节发电机的输出功率和工作状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢铁工业余热回收的主要环节介绍1、铁前---烧结生产线:在烧结生产过程中,烧制好的成品,温度在500∽800℃,为了便于运输,需将其冷却至常温。
烧制好的成品的显热,在冷却的过程中,热量随热空气(300∽350℃)排放到空气中,由于此热空气的量很大,及具回收价值。
目前钢厂对烧结的余热回收已有普遍的认同,约有50%的生产线得到了应用,新建的生产线基本上都有考虑。
常规的回收是通过热管式换热器,产生0.8MPa过热蒸汽用于本生产线物料加温,多余部分并入厂内管网供其它生产使用。
此项目中,如果蒸汽用不完,可考虑建余热电站。
2、炼铁:在炼铁工艺中需要一股850∽1300℃的热风,其由独立的热风炉提供,而且热风温度越高,炼铁的成本越低(可降低焦比,提高喷煤比)。
利用热风炉自身排放的300∽400℃烟气,可提高热风的温度50∽100℃,及具经济价值。
实现的方法是:利用烟气余热将热风炉燃烧用的空气和煤气在安全范围内尽可能地加温,以提高空气和煤气的物理热,提高其燃烧温度,最后实现提高热风炉风温的目的。
目前钢厂对烧结的余热回收已有普遍的认同,约有50%的生产线得到了应用,新建的生产线基本上都有考虑。
3、焦化工序焦化工艺中得到普遍认可的技术是干熄焦技术,将焦炉的上升管(650℃)的降温获得热能。
4、转炉(炼钢)转炉生产工艺中,用于保护烟道的汽化冷却设备将产生大量的饱和蒸汽,此股蒸汽的特点是:不连续,量比较大。
5、轧钢工序在轧钢工艺中蓄热燃烧技术是一个发展趋势,我们不介入领域。
对于未实现蓄热式燃烧的轧钢炉,对其烟气可以进行余热回收,回收方式和利用热能的方式与炼钢的热风炉一样(进行双预热),只不过效益体现在节约煤气上。
目前这方面的应用也比较普及。
一般此类项目的回收期在9-12个月。
1、铁前---烧结生产线:在烧结生产过程中,烧制好的成品,温度在500∽800℃,为了便于运输,需将其冷却至常温。
烧制好的成品的显热,在冷却的过程中,热量随热空气(300∽350℃)排放到空气中,由于此热空气的量很大,及具回收价值。
目前钢厂对烧结的余热回收已有普遍的认同,约有50%的生产线得到了应用,新建的生产线基本上都有考虑。
常规的回收是通过热管式换热器,产生0.8MPa过热蒸汽用于本生产线物料加温,多余部分并入厂内管网供其它生产使用。
此项目中,如果蒸汽用不完,可考虑建余热电站。
2、炼铁:在炼铁工艺中需要一股850∽1300℃的热风,其由独立的热风炉提供,而且热风温度越高,炼铁的成本越低(可降低焦比,提高喷煤比)。
利用热风炉自身排放的300∽400℃烟气,可提高热风的温度50∽100℃,及具经济价值。
实现的方法是:利用烟气余热将热风炉燃烧用的空气和煤气在安全范围内尽可能地加温,以提高空气和煤气的物理热,提高其燃烧温度,最后实现提高热风炉风温的目的。
目前钢厂对烧结的余热回收已有普遍的认同,约有50%的生产线得到了应用,新建的生产线基本上都有考虑。
3、焦化工序焦化工艺中得到普遍认可的技术是干熄焦技术,将焦炉的上升管(650℃)的降温获得热能。
4、转炉(炼钢)转炉生产工艺中,用于保护烟道的汽化冷却设备将产生大量的饱和蒸汽,此股蒸汽的特点是:不连续,量比较大。
5、轧钢工序在轧钢工艺中蓄热燃烧技术是一个发展趋势,我们不介入领域。
对于未实现蓄热式燃烧的轧钢炉,对其烟气可以进行余热回收,回收方式和利用热能的方式与炼钢的热风炉一样(进行双预热),只不过效益体现在节约煤气上。
目前这方面的应用也比较普及。
一般此类项目的回收期在9-12个月。
高炉冲渣水余热利用钢铁厂在高炉炼铁工艺中,产生的炉渣温度大约为1000℃,此炉渣在冲渣箱内由冲渣泵提供的高速水流急冷冲成水渣并粒化,以供生产水泥之用。
这一过程中能够产生大量温度在80一95℃的低温热水。
研究表明,冲渣水温度越低,其炉渣制成的水泥活性越高。
因此在目前的生产工艺中,冲渣水是在沉淀过滤后引人空冷塔,冷却后再次循环冲渣。
这样使得很大一部分热量在空冷塔中流失,既造成了能源的浪费,又对环境造成了热污染。
中国是世界上的钢铁产量大国,据有关专家分析,随着重工业化时代的到来,中国的钢铁产量将在三、四年内达到顶峰时期,并能够一直持续到2020年。
在这样一个庞大的国家支柱型产业中,每一种小的节能改进都会产生巨大的整体效益。
工质的确定针对该钢铁厂高炉冲渣水温度低,流量大的特点,为了能够高效回收低温余热,本设计采用低沸点的循环工质。
经过反复计算,在对比了当前广泛使用的一些低沸点工质热力性质后,可以采用有机循环工质和氨水混合物。
2 系统工作原理本低温热水发电项目采用的是双循环流程设计。
钢铁厂高炉冲渣水排出时温度大约85-90℃,经过沉淀除杂预处理后进人特殊设计的换热器,在此将热量传递给工质,温度降到50℃左右,再送到高炉供冲渣之用,从而回收了一定量的余热。
工质在换热器内吸收热量后变成80℃的过热蒸气,然后进入气轮机膨胀做功,带动发电机转动,对外输出电能。
做功后的工质变成低压过热蒸气,低压过热蒸气进入冷凝器放出热量,变成低温低压的液体工质,然后由工质泵送到热交换器中吸热,再次变成过热蒸气去推动气轮机做功。
如此连续循环,将热水中的热量源源不断的提取出来,生成高品位的电能。
工作原理及运用:钢铁生产过程中的余热再利用,如:驱动设备、发电等。
低沸点工质动力机即可利用有机工质形成双循环系统,吸收排放的废热水的热能,将有机工质加热成汽液两相,直接进入动力机工作,驱动发电机发电。
作功后的汽液混合物进入冷汽器冷凝后,再经工质泵返回加热器,如此循环作功,将高炉余热、电站锅炉余热、余压利用转变成机械能或电能。
是高效转换企业生产过程中放散掉的低品位能源成电能的动力机。
低沸点工质动力机的主要特征:适应于蒸汽、汽水混合汽、热水、被污染热源的各种介质。
在热源参数大幅度波动工况下,能够高效、安全运行。
全自动无人值守运行操作。
低沸点工质动力机的主要技术参数:水蒸汽介质进口参数:0.3~2.5Mpa,130~300°C动力机内介效率:65%~80%最大输出功率:1500Kw转速范围:1500~3000rpm,动态调整拖动负载:发电机、各种泵、风机、磨煤机等;探索适合我国国情的冶金高温烟气治理及节能技术引言1972年在瑞典斯德哥尔摩召开了人类第一次环境大会。
至今已有30年,在环境与发展的问题上,人们已逐渐——懂得了自然规律是不可背离的,懂得了发展过程是不可以随意逾越的,懂得了主观愿望不能代替客观的现实。
环境与发展是当今国际社会普遍关注的问题,保护生态环境,实现可持续发展,已经成为全世界紧迫而艰巨的任务,冶金工业亦不能背离可持续发展这一大趋势。
对于冶金行业环保工作者而言,探索符合我国国情的高温烟气治理及节能技术的新路子,是一项迫在眉睫的艰巨任务。
我国冶金高温烟气治理与节能技术现状主要存在的二大问题:(一)高温烟气控制水平较低,不能最大限度地控制排放总量,特别是对无组织排放的控制更为严重,普遍存在的捕集率较低的问题。
(二)高温烟气治理运行能耗高,用综合指标功流比考核,功流比高,指标较落后,即实际每获得104m3/h风量,风机电机功率很大,运行电耗普遍较高。
通过对某厂九十年代新建的一座60t超高功率电炉,除尘系统各项参数的对比,充分说明以上问题。
某厂60t电炉除尘系统改造前后参数比较按吨钢产尘量12kg计算。
由此可见,无论是“三同时”项目,还是对老除尘系统进行改造,采用先进高温烟气治理与节能技术,均可获得满意的环保效果和可观的经济效益。
其中三个方面是造成上述情况的重要因素。
1、沿袭国外的高温烟气捕集技术,未能在找出传统捕集技术有悖高温烟气捕集机理的本质问题的基础上,探索各种在确保生产工艺及操作的前提下既能确保环保要求,又能降低运行能耗的捕集形式。
2、治袭国外高温烟气治理工艺路线,或者是将国外工艺设备拼凑组合成一套工艺系统,其工艺路线仍超越不了国外的工艺路线模式。
3、对除尘系统的节能研究往往把风机调速与节能相提并论,进入了一个误区,未认识到烟气治理工艺技术的进步是节能的主要途径。
高温烟气治理工艺路线的探讨工艺路线的设计决定了系统工艺的设计,设备的设计选型和配置,最终决定了整套高温烟气治理技术的优劣。
它是一个涉及到设计思想,基础理论以及污染源的生产工艺、厂房布置等一系列条件,是一个理论与实践并重的课题,而决非是除尘器、风机、冷却装置及管道等的简单组合。
目前高温烟气治理工艺路线主要有三点:其一,强制冷却工艺路线——高阻、高温、小流量其二,混合工艺路线——高阻、中温、中流量其三,短流程工艺路线——低阻、中温、大流量短流程工艺路线分为一次捕集和二次捕集两类。
一次捕集——混冷风型短流程工艺二次捕集——一、二次烟气温合短流程工艺上述三类工艺路线的选择是决定系统综合指标优劣的重要条件,然而,往往因没有认识到重要性而不被重视,经常出现未经计算论证凭感觉否定一种,选择另一种。
其实上述各种工艺线路均有特定的适用条件,它将大大影响环保效果、运行电耗以及一次性投资、维护管理等的重要技经指标。
一般情况下,在能确保一次性将高温烟气捕集并达标时(如铁合金炉),可采用第一类工艺路线,既能保证环保达标,能耗又不高,但由于高温烟气采用传统的强制冷却方式,且阻力很高,为此只能认为在现阶段是较好的方案。
当然,如果采用第一类工艺路线,而冷却技术不过关,不能保证进入除尘器的烟气温度低于允许上限值而混入一定空气降温,那也是迫不得已。
对于第二类工艺路线,由于不必要的工艺环节过多,冷却器低效且阻力又高等等问题,使得整个系统特征为高阻、长流程,所以在消耗功率很大的情况下却得不到较大的处理风量,一般情况则应尽量避免使用。
当高温烟尘源面积较大、烟气发生量变化大、生产工艺动作状态多时,则应选择第三类工艺路线,例如,炼钢电炉仅采用第一类(内排烟)解决了吹氧出钢、加料等二次的烟气捕集问题无法确保环保指标。
为此,采用第三类混合工艺路线(天车通过式集烟罩、短流程工艺)。
如果随着高温烟气的变化而分阶段分别采用第一类和第三类工艺路线,只要能满足环保和节能双重目标,也是可行的,但这必须是分阶段的分别单独应用,而不是全过程的组合使用。
然而,在国内全过程的组合使用十分普遍,既难保证环保要求,又大大提高运行电耗,这方面的例子举不胜举。
近期东方环境工程设计研究所针对大中型电炉铁水热装强化冶炼工艺又研制成功内外排混合短流程工艺,即典型的第三类一、二次烟气混合短流程工艺,较好地解决了长期以来得不到解决的一些问题,取得了可喜的效果。
1、用低温的二次烟气混入高温的一次烟气,使之进入除尘器的混合烟气温度在允许使用温度下。
2、删除了一次系统中冷却器等高阻、维修量大、噪声大的工艺设备,使一次系统阻力大幅下降;删除了一次系统中的又一故障因子加压风机。