材料力学的四种基本变形

合集下载

材料力学概念及基础知识

材料力学概念及基础知识

一、基本概念1 材料力学的任务是:研究构件的强度、刚度、稳定性的问题,解决安全与经济的矛盾。

2 强度:构件抵抗破坏的能力。

3 刚度:构件抵抗变形的能力。

4 稳定性:构件保持初始直线平衡形式的能力。

5 连续均匀假设:构件内均匀地充满物质。

6 各项同性假设:各个方向力学性质相同。

7 内力:以某个截面为分界,构件一部分与另一部分的相互作用力。

8 截面法:计算内力的方法,共四个步骤:截、留、代、平。

9 应力:在某面积上,内力分布的集度(或单位面积的内力值)、单位Pa。

10 正应力:垂直于截面的应力(σ)11 剪应力:平行于截面的应力()12 弹性变形:去掉外力后,能够恢复的那部分变形。

13 塑性变形:去掉外力后,不能够恢复的那部分变形。

14 四种基本变形:拉伸或压缩、剪切、扭转、弯曲。

二、拉压变形15 当外力的作用线与构件轴线重合时产生拉压变形。

16 轴力:拉压变形时产生的内力。

17 计算某个截面上轴力的方法是:某个截面上轴力的大小等于该截面的一侧各个轴向外力的代数和,其中离开该截面的外力取正。

18 画轴力图的步骤是:①画水平线,为X轴,代表各截面位置;②以外力的作用点为界,将轴线分段;③计算各段上的轴力;④在水平线上画出对应的轴力值。

(包括正负和单位)19 平面假设:变形后横截面仍保持在一个平面上。

20 拉(压)时横截面的应力是正应力,σ=N/A21 斜截面上的正应力:σα=σcos²α22 斜截面上的切应力:α=σSin2α/223 胡克定律:杆件的变形时与其轴力和长度成正比,与其截面面积成反比,计算式△L=NL/EA(适用范围σ≤σp)24 胡克定律的微观表达式是σ=Eε。

25 弹性模量(E)代表材料抵抗变形的能力(单位Pa)。

26 应变:变形量与原长度的比值ε=△L/L(无单位),表示变形的程度。

27 泊松比(横向变形与轴向变形之比)μ=∣ε1/ε∣28 钢(塑)材拉伸试验的四个过程:比例阶段、屈服阶段、强化阶段、劲缩阶段。

2020年智慧树知道网课《材料力学(东华理工大学)》课后章节测试满分答案》课后章》课后章

2020年智慧树知道网课《材料力学(东华理工大学)》课后章节测试满分答案》课后章》课后章

第一章测试1【判断题】(10分)强度问题为构件抵抗破坏的能力。

A.错B.对2【判断题】(10分)材料力学的基本任务为强度、刚度和稳定性。

A.对B.错3【判断题】(10分)杆件的四种基本变形为轴向受拉、轴向受压、扭转和弯曲。

A.对B.错4【判断题】(10分)外力作用在杆件轴线上时发生轴向拉压变形。

A.错B.对5【单选题】(10分)材料力学的研究对象为?A.质点系B.刚体C.质点D.可变形固体6【单选题】(10分)在荷载作用下,构件应不至于破坏(断裂或失效),即具有抵抗破坏的能力。

这一问题属于?A.稳定性问题B.刚度问题C.强度问题7【单选题】(10分)在荷载作用下,构件所产生的变形应不超过工程上允许的范围,即具有抵抗变形的能力。

这一问题属于?A.稳定性问题B.强度问题C.刚度问题8【单选题】(10分)承受荷载作用时,构件在其原有形态下的平衡应保持为稳定的平衡。

这一问题属于?A.刚度问题B.强度问题C.稳定性问题9【单选题】(10分)构件的强度、刚度和稳定性问题均与所用材料的什么有关?A.受力状态B.构件体系特点C.力学性能10【多选题】(10分)材料力学的基本任务为?A.强度问题B.稳定性问题C.刚度问题第二章测试1【判断题】(10分)杆件轴力图的绘制方法可采用截面法,截面法步骤可分为一截二代三平衡,其中平衡方程中力的正负号与轴力正负号规定准则一致。

A.错B.对2【判断题】(10分)轴力图可以清晰展示轴力沿着杆件各个横截面内力的分布规律。

A.对B.错3【判断题】(10分)弹性模量的单位为帕A.错B.对4【判断题】(10分)拉压超静定问题求解过程中需补充变形协调方程。

A.错B.对5【判断题】(10分)静定结构构件体系在温度作用下也会产生温度内力和应力。

A.错B.对6【单选题】(10分)轴向拉压变形时,哪个截面上的切应力最大。

A.45度斜截面上B.横截面C.60度斜截面上D.30度斜截面上7【单选题】(10分)屈服阶段的强度指标为?A.屈服应力B.比例极限C.弹性极限D.强度极限8【单选题】(10分)轴向拉压变形会在横截面上产生何种应力分量?A.正应力B.全应力C.切应力9【多选题】(10分)轴向拉压变形时,斜截面应力分量包含有?A.切应力B.正应力10【多选题】(10分)低碳钢单轴拉伸时,应力应变关系曲线的弹性阶段包含?A.非比例阶段B.强化阶段C.线性比例阶段D.颈缩阶段第三章测试1【判断题】(10分)薄壁圆筒扭转时横截面形状与大小均发生变化A.错B.对2【判断题】(10分)圆轴扭转时,圆周线大小、形状和间距均保持不变。

04、基本知识 怎样推导轴向拉压和扭转的应力公式、变形公式(供参考)

04、基本知识 怎样推导轴向拉压和扭转的应力公式、变形公式(供参考)

04、基本知识 怎样推导轴向拉压和扭转的应力公式、变形公式(供参考)同学们学习下面内容后,一定要向老师回信(****************),说出你对本资料的看法(收获、不懂的地方、资料有错的地方),以便考核你的平时成绩和改进我的工作。

回信请注明班级和学号的后面三位数。

1 * 问题的提出 ........................................................................................................................... 1 2 下面就用统一的步骤,研究轴向拉压和扭转的应力公式和变形公式。

........................... 2 3 1.1 轴向拉压杆的应力公式推导 ............................................................................................ 2 4 1.2 轴向拉压杆的变形公式推导 ............................................................................................ 4 5 1.3 轴向拉压杆应力公式和变形公式的简要推导 ................................................................ 4 6 1.4 轴向拉压杆的强度条件、刚度条件的建立 .................................................................... 4 7 2.1 扭转轴的应力公式推导 .................................................................................................... 5 8 2.2 扭转轴的变形公式推导 .................................................................................................... 7 9 2.3 扭转轴应力公式和变形公式的简要推导 ........................................................................ 7 10 2.4 扭转的强度条件、刚度条件的建立 ............................................................................ 8 11 3. 轴向拉压、扭转、梁的弯曲剪切,应力公式和变形公式推导汇总表 .. (9)1* 问题的提出在材料力学里,分析杆件的强度和刚度是十分重要的,它们是材料力学的核心内容。

材料力学第二章

材料力学第二章

拉伸和压缩是杆件基本受力与变形形式 中最简单的一种,所涉及的一些基本原理与方 法比较简单,但在材料力学中却有一定的普遍 意义。
承受轴向载荷的拉(压)杆在工程中的应用 非常广泛。
一些机器和结构中所用的各 种紧固螺栓,在紧固时,要对螺 栓施加预紧力,螺栓承受轴向拉 力,将发生伸长变形。
承受轴向载荷的拉(压)杆在工程中的应用 非常广泛。
FN F A A
0 , max p sin cos sin sin 2 45 , max 2
2
A A F F F cos F F F p cos cos A A A p 2 k
一 试 件 和 实 验 条 件
常 温 、 静 载
材料压缩时的力学性能
二 塑 性 材 料 ( 低 碳 钢 ) 的 压 缩
p —
S —
比例极限
e —
弹性极限
屈服极限 E --- 弹性摸量
拉伸与压缩在屈服 阶段以前完全相同。
材料压缩时的力学性能
三 脆 性 材 料 ( 铸 铁 ) 的 压 缩 脆性材料的抗拉与抗压性质不完全 相同 压缩时的强度极限远大于拉伸时的 强度极限 bc bt
观察变形:
横向线ab、cd仍为直线,且仍垂直于杆轴 线,只是分别平行移至a’b’、c’d’。
F
a b
a
b
c
d
c d
F
平面假设—变形前原为平面的横截面, 变形后仍保持为平面且仍垂直于轴线。
直杆轴向拉伸或压缩时横截面上的内力和应力
从平面假设可以判断: (1)所有纵向纤维伸长相等
(2)因材料均匀,故各纤维受力相等 (3)内力均匀分布,各点正应力相等,为常量

第四单元 构件基本变形的分析

第四单元 构件基本变形的分析
由于杆件原来处于平衡状态,故截开后的两段 也应处于平衡状态。
由平衡方程
FX 0
FN F 0 FN F
左右
截面法求内力的步骤
1、截:在欲求处假想用截面将构件截成两段。 2、取:取其中任意一段为研究对象。 3、代:用作用于截面上的内力,代替切去部
分对留下部分的作用力。 4、平:对研究对象列平衡方程,由外力确定
图4-10
解:(1)计算外力(设约束反力FR)如图 ΣFx = 0 - FR - F1 +F2 = 0
FR = - F1 + F2 = - 50 + 140 = 90KN (FR方向是正确的)
FR
X
(2)计算各截面上的轴力并画出轴力图
1-1截面上的轴力
FN1= - F 1
= - 50KN FR
(杆受压)
第四单元 构件基本变形的分析
学习目标
通过本单元的学习,了解有关构件基 本变形的概念及形式,明确求解构件在各 种基本变形状态下的内力和应力,掌握强 度条件和刚度条件的公式,并能应用其解 决简单的工程问题。
综合知识模块一 基本变形分析的基础
能力知识点1
变形分析的基本概念
一、变形固体及其基本假设
任何物体受载荷(外力)作用后其内部质 点都将产生相对运动,从而导致物体的形状和 尺寸发生变化,称为变形。
构件的承载能力分为:
强度、刚度、稳定性。
一、强度
构件抵抗破坏的能力。 构件在外力作用下不破坏必须具有足够 的强度,例如房屋大梁、机器中的传动轴不 能断裂,压力容器不能爆破等。
强度要求是对构 件的最基本要求。
二、刚度
构件抵抗变形的能力。 在某些情况下,构件虽有足够的强度,但若 受力后变形过大,即刚度不够,也会影响正常工 作。例如机床主轴变形过大,将影响加工精度; 吊车梁变形过大,吊车行驶时会产生较大振动, 使行驶不平稳,有时还会产生“爬坡”现象,需要 更大的驱动力。因此对这类构件要保证有足够的 刚度。

材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)K点相邻的微小面积取得越来越小,使得合力趋近于一个点力,这个点力就是在K点处的应力。

因此,应力是指杆件横截面上单位面积内的内力分布情况,通常用符号σ表示。

应力的单位是帕斯卡(Pa),即XXX/平方米。

第三章:应变、XXX定律和XXX模量1.应变的概念:应变是指固体在外力作用下发生形状和尺寸改变的程度,通常用符号ε表示。

应变分为线性应变和非线性应变两种。

线性应变是指应变与应力成正比,即应变与内力的比值为常数,这个常数被称为材料的弹性模量。

非线性应变则不满足这个比例关系。

2.胡克定律:胡克定律是描述材料弹性变形的基本定律,它规定了应力和应变之间的关系,即在弹性阶段,应力与应变成正比,比例系数为弹性模量。

3.XXX模量:杨氏模量是描述材料抗拉、抗压变形能力的物理量,它是指单位面积内拉应力或压应力增加一个单位时,材料相应的纵向应变的比值。

XXX模量的大小反映了材料的柔软程度和刚度。

杨氏模量的单位是帕斯卡(Pa)或兆帕(MPa)。

综上所述,材料力学是研究构件在外力作用下内力、变形、破坏等规律的科学。

构件应具备足够的强度、刚度和稳定性以负荷所承受的载荷。

截面法是求解内力的基本方法,应力是指杆件横截面上单位面积内的内力分布情况,应变是指固体在外力作用下发生形状和尺寸改变的程度。

胡克定律描述了材料弹性变形的基本定律,而XXX模量则描述了材料抗拉、抗压变形能力的物理量。

应力是指在截面m-m上某一点K处的力量。

它的方向与内力N的极限方向相同,并可分解为垂直于截面的分量σ和切于截面的分量τ。

其中,σ称为正应力,τ称为切应力。

将应力的比值称为微小面积上的平均应力,用表示。

在国际单位制中,应力的单位是帕斯卡(Pa),常用兆帕(MPa)或吉帕(GPa)。

杆件是机器或结构物中最基本的构件之一,如传动轴、螺杆、梁和柱等。

某些构件,如齿轮的轮齿、曲轴的轴颈等,虽然不是典型的杆件,但在近似计算或定性分析中也可简化为杆。

材料力学复习总结知识点


功能原理 卡氏定理 虚 功 原 理
导出
F F M M T T N N d x d x d x i EA F EI F GI F i i p i l l l
ห้องสมุดไป่ตู้单 位 载 荷 法
莫尔积分
(线弹性)
图乘法 其他
M
C xc
ω
(等刚度直杆)
M
非线弹性
MC
1 Δ F d Δl M d T d N
2 2 M T , r 3 W 2 2 M 0 . 75 T r 4 W
2
四、压杆稳定
1. 欧拉公式:
2. 压杆的柔度: 细长杆
2 EI Fcr 2 ( l)
(适用范围:细长杆)
况) 长度因数(反应约束情 l i 截面形状、大小 i l 杆长
正负号规定: FQ (+) M (+ )
一、基本变形(2)
基本变形 拉(压)
外力 应力
FN A
扭转
弯曲
圆轴

T IP
τ


My IZ
FQ S Z IZb
*
拉 (+ )
(平面假设) d4
IP 32
d Wt 16
3
平面假设
σ τ
3 2 bh bh 矩形: IZ , W Z 12 6
强度计算11强度理论依据材料性质外力结构条件确定应力状态计算相当应力主应力表达一般应力表达内力表达主应力表达一般应力表达内力表达如r31133223r4?????tm22??w3r??22内容强度校核内容核强度校核669例例886计载荷设计9915计计计截面设计例例995533形式简单形式组合变形形式简单形式形组合变形99557711构构21构组合结构66题移动载荷问题661121反问题9918194

工程力学终于知识点

三、扭转轴的内力 扭矩 ——T 扭矩的正负规定:
按右手螺旋法则, 扭矩矢量沿截面外法线方
向为正;反之为负。
3、扭矩图
扭矩图——表示扭矩沿杆件轴线变化规律的图线。
要求:
①扭矩图和受力图对齐; ②扭矩图上标明扭矩的大小、正负和单位。
快速作扭矩图
上上下下
四、薄壁圆筒的扭转
r0/d≥10 时,称为薄壁圆筒。
作用于杆上的合外力的作用线与杆的轴线重合。
2、变形特点
杆件产生轴向的伸长或缩短。
二、 内力·截面法·轴力和轴力图 1、内力
指截面上分布内力系的合力。
2、截面法
截面法四部曲 —截开 —取出 —代替 —平衡
3、轴力FN
沿杆轴线方向作用的内力,称为轴力。
轴力正负规定:
以使脱离体受拉为正,使脱离体受压为负。
F N3
一定为零力杆。
F N2
3
3、两杆相结,不共线,且节点 处的载荷沿其中某一杆件, 则另一杆为零力杆。
2 A 1 FN1 F N2
2
F A 1 F N1
三、重心坐标的一般公式
xc
Pi xi P
yc
Pi yi P
zc
Pi zi P
四、组合形体的重心
1、分割法
如果一个物体由几个简单形状的物体组合而成,而
此法适合于求桁架部分杆件的内力。
注:
(1)所有杆件均假设受拉。 (2)每次对象只能列出三个方程。 (3)合理确定坐标方位、矩心位置及方程次序。
两种方法并不 相互独立,可 配合使用。
二、桁架零力杆的判断方法
F N2
1、两杆相结,不共线,且节点
2
处没载荷,则此两杆均为零力杆。

材料变形材料力学基础

3.横向变形系数:
′= -
虎克定律 :实验表明,对拉(压)杆,当应力不
超过某一限度时,杆的轴向变形与轴力FN 成正比, 与杆长L成正比,与横截面面积A 成反比。这一比例
关系称为虎克定律。引入比例常数E,其公式为:
L FN L EA
或 E
E 为材料的拉(压)弹性模量,单位是Gpa
F`N
F
面为负(受压)。
以上求内力的方法称为截面法,截面法是求内力 最基本的方法。
轴力图:
m
用平行于杆轴线的x坐 F
F
标表示横截面位置,
用垂直于x的坐标FN表
m
示横截面轴力的大小,
按选定的比例,把轴
FN
力表示在x-FN坐标系
中,描出的轴力随截
面位置变化的曲线,
x
称为轴力图。
轴力(内力)和轴力图
40KN
55KN 25KN
20KN
A 600
B 300 C 500
D
E
400
解:求支座反力
X 0
R 40 55 25 20 0
R 10KN
40KN
55KN 25KN
20KN
A 600
B 300 C 500
D
E
400
R
A
40KN B
55KN 25KN
C
D
20KN E
FN、E、A均为常量,否则,应分段计算。
由此,当轴力、杆长、截面面积相同的等直杆,E
值越大, 就越小,所以 E 值代表了材料抵抗拉(压)变 形的能力,L 是衡量材料刚度的指标。
例2:如图所示杆件,求各段内截面的轴力和应力,并画出

材料力学复习考点

南通大学建工学院材料力学考点复习(个人自己参考一些资料,总结的复习考点)01 本章小结1.材料力学研究的问题是构件的强度、刚度和稳定性。

2.构成构件的材料是可变形固体。

3.对材料所作的基本假设是:均匀性假设,连续性假设及各向同性假设。

4.材料力学研究的构件主要是杆件,且是小变形杆件。

5.内力是指在外力作用下,物体内部各部分之间的相互作用;显示和确定内力可用截面法;应力是单位面积上的内力。

点应力可用正应力与剪应力表示。

6.对于构件任一点的变形,只有线变形和角变形两种基本变形。

7.杆件的四种基本变形形式是:拉伸(或压缩),剪切,扭转以及弯曲。

02-1 本章小结1.本章主要介绍轴向拉伸和压缩时的重要概念:内力、应力、变形和应变、变形能等。

轴向拉伸和压缩的应力、变形和应变的基本公式是: 正应力公式AN=σ 胡克定律EEAll σε==∆,F 胡克定律是揭示在比例极限内应力和应变的关系,它是材料力学最基本的定律之一。

平面假设:变形前后横截面保持为平面,而且仍垂直于杆件的轴线。

轴向拉伸或压缩的变形能。

2.材料的力学性能的研究是解决强度和刚度问题的一个重要方面。

对于材料力学性能的研究一般是通过实验方法,其中拉伸试验是最主要、最基本的一种试验。

低碳钢的拉伸试验是一个典型的试验。

它可得到如下试验资料和性能指标:拉伸全过程的曲线和试件破坏断口;b s σσ,—材料的强度指标; ψδ,—材料的塑性指标。

其中E —材料抵抗弹性变形能力的指标;某些合金材料的2.0σ—名义屈服极限等测定有专门拉伸试验。

3.工程中一般把材料分为塑性材料和脆性材料。

塑性材料的强度特征是屈服极限 sσ和强度极限 b σ(或 2.0σ),而脆性材料只有一个强度指标,强度极限 b σ。

4.强度计算是材料力学研究的重要问题。

轴向拉伸和压缩时,构件的强度条件:[]σσ≤=AN它是进行强度校核、选定截面尺寸和确定许可载荷的依据。

5.应通过本章初步掌握拉压超静定问题的特点及解法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学的四种基本变形
以材料力学的四种基本变形为标题,我们来探讨一下这四种变形分别是什么。

一、拉伸变形
拉伸变形是指材料在受到拉力作用下发生的长度增加的变形。

当外力作用于材料上时,材料内部的原子或分子之间的键结构会发生改变,从而导致材料发生形变。

拉伸变形是材料力学中最常见的一种变形方式。

例如,当我们拉伸一块金属棒时,金属棒会逐渐变长。

二、压缩变形
压缩变形是指材料在受到压力作用下发生的长度减小的变形。

与拉伸变形相反,压缩变形是材料在受到压力作用下发生的。

例如,当我们用手压一块海绵时,海绵会逐渐变厚。

三、剪切变形
剪切变形是指材料在受到剪切力作用下发生的形状变化。

当外力作用于材料的表面时,材料内部的原子或分子会发生滑动,从而导致材料的形状发生变化。

例如,当我们用剪刀剪断一张纸时,纸张会发生形状的改变。

四、弯曲变形
弯曲变形是指材料在受到弯矩作用下发生的形状变化。

当外力作用于材料的一侧时,材料会发生弯曲,使得受力一侧的材料被拉伸,
另一侧的材料被压缩。

例如,当我们将一根木棍两端固定在支架上,然后在中间施加力,木棍就会发生弯曲。

这四种基本变形是材料力学中非常重要的概念,对于我们理解材料的性能和力学行为具有重要意义。

在工程实践中,我们经常需要考虑材料在受力时会发生的这些变形,以便能够设计出更加安全和可靠的结构。

拉伸变形和压缩变形是材料在承受拉力或压力时发生的变形,其主要区别在于拉伸变形是材料的长度增加,而压缩变形是材料的长度减小。

这两种变形是材料力学中最基本也是最常见的变形形式。

例如,当我们拉伸一根橡皮筋时,橡皮筋会逐渐变长;而当我们用手指压橡皮筋时,橡皮筋会逐渐变短。

剪切变形是材料在受到剪切力作用时发生的变形。

与拉伸变形和压缩变形不同,剪切变形是材料内部的原子或分子发生滑动,导致材料的形状发生变化。

例如,当我们用剪刀剪断一张纸时,纸张会发生形状的改变,这就是剪切变形。

弯曲变形是材料在受到弯矩作用下发生的形状变化。

当外力作用于材料的一侧时,材料会发生弯曲,使得受力一侧的材料被拉伸,另一侧的材料被压缩。

例如,当我们将一根木棍两端固定在支架上,然后在中间施加力,木棍就会发生弯曲,这就是弯曲变形。

这四种基本变形在材料力学中具有重要的应用价值。

通过研究材料在受力时的变形行为,我们可以更好地理解材料的性能和力学行为,从而为工程设计和材料选择提供参考依据。

因此,对于材料力学的学习来说,掌握这四种基本变形是非常重要的。

通过对这四种变形的理解和应用,我们可以更好地应对各种工程问题,提高工程设计的质量和效率。

相关文档
最新文档