小升初数学牛吃草问题及答案 (9)

合集下载

牛吃草问题含例题答案讲解

牛吃草问题含例题答案讲解

小学数学牛吃草问题知识点总结: 牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

小升初冲刺第2讲牛吃草问题基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。

例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)÷(20-10)=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷(25-5)=5天[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)÷(20-10)=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

数学:第9讲《牛吃草》

数学:第9讲《牛吃草》
例2 牧场上长满牧草,每天牧草都匀速生长。这片牧场可供 10 头牛吃 20 天,可供 15 头牛吃 10 天。供 25 头牛可吃 几天? 【解析】 5 天 设 1 头牛 1 天的吃草量为“1”,10 头牛吃 20 天共吃了 10 20 200份;15 头牛吃 10 天共吃了1510 150份.第
10天吃完需要牛的头数是:150 10 10 5(头).
例 12 学校有一片均匀生长的草地,可以供 18 头牛吃 40 天,或 者供 12 头牛与 36 只羊吃 25 天,如果 1 头牛每天的吃草 量相当于 3 只羊每天的吃草量。请问:这片草地让 17 头 牛与多少只羊一起吃,刚好 16 天吃完? 【解析】 48 只羊 将羊转化为牛,题目转化为可以供 18 头牛吃 40 天,或者
原有草量为15 8 5 8 80,起初这 15 头牛吃了 2 天后, 又来了 5 头牛,再过[80 (15 5) 2] (15 5 5) 4天可 以把草吃完
例8 进入冬季后,有一片牧场上的草开始枯萎,因此草会均匀 地减少。现在开始在这片牧场上放羊,如果有 38 只羊, 把草吃完需要 25 天;如果有 30 只羊,把草吃完需要 30 天。如果有 20 只羊,这片牧场可以吃多少天? 【解析】 40 设1头羊1天吃1份草,则草的减少速度为 (38 25 30 30) (30 25) 10, 原有草量为38 25 10 25 1200,如果放养 20 头羊最多 吃1200 (20 10) 40(天)
例4 一只船发现漏水时,已经进了一些水,水匀速进入船内。 如果 10 人淘水,3 小时淘完;如果 5 人淘水,8 小时淘完。
如果要求 2 小时淘完,要安排多少人淘水? 【解析】 14 人 设 1 人 1 小时淘出的水量是“1”,进水速度是 (58 10 3) (8 3) 2,原有水量(10 2) 3 24,要求 2 小时淘完,要安排24 2 2 14人淘水.

小升初数学培优第十五讲牛吃草问题 -

小升初数学培优第十五讲牛吃草问题 -

我试试:
1、一块草地长满草,每天牧草都匀速生长,这片牧场可供 10 头牛吃 20 天,或可供 15 头牛吃 10 天,那么可供 25 头牛吃多少天?
2、有一块草地,草每天都均匀生长,这片草地可供 20 头牛吃 15 天,或可供 18 头牛吃 20 天, 那 么这片草地可供 16 头牛吃多少天?
3、24 头牛 6 天可以将一片牧草吃完,21 头牛 8 天也可以将这片牧草吃完。如果每天草的增长量 相等,要使这片牧草永远吃不完,至多放几头牛吃这片牧草。
我试试:
1、有一个装满水的池子,现欲将一池水全部抽干,但同时又有水匀速流入池内,若用 8 台抽水机 10 天可以抽干;用 6 台抽水机 20 天能抽干。那么要 5 天抽干需要多少台同样的抽水机?
2、有一牧场,牧场上的草每天匀速生长,可供 17 头牛吃 30 天,或可供 19 头牛吃 24 天,现在有 若干头牛吃了 6 天后,卖掉了 4 头牛,余下的牛再吃两天将草吃完,问原来有多少头牛?
第十五讲 牛吃草问题
例 2.一只船发现漏水时,已经进了一些水,水匀速进入船内。如果 10 人淘水,3 小时可淘完; 如果 5 人淘水,8 小时可淘完。如果要求 2 小时淘完,要安排多少人淘水? 解析:这类问题都有它的共同的特点,即总水量随漏水时间延长而增加,所以总水量是个变 量。而单位时间内漏进船的水的增量是不变的。船内原有的水量也是不变的量。也可以分两步解 答,即求出每小时船内新增长的水量和船内原有的水量。 解:假设一个人一小时淘水一份。 船内每小时新增的水量:10 3=30 份 5 8=40 份 (40-30)÷(8-3)=2 份 船内原有的水量:10 3-2 3=24(份) 需要的人数:船内的水在 2 小时内淘完则需:24÷2=12(人) 每小时漏进水量又要安排 2 人,24÷2+2=14(人) 答:要安排 14 人淘水。

小升初奥数:牛吃草问题

小升初奥数:牛吃草问题

小升初奥数:牛吃草问题牛吃草问题概念及公式牛吃草问题又称为消长问题或牛顿牧场,牛吃草问题的历史起源是17世纪英国伟大的科学家牛顿1642—1727)提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

解决牛吃草问题常用到四个基本公式,分别是︰五大基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=草量差÷时间差;3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。

这五个公式是解决牛吃草问题的基础。

首先一般假设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

求天数例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)÷(20-10)=5份10×20=200份=原草量+20天的生长量原草量:200-20×5=100份或15×10=150份=原草量+10天的生长量原草量:150-10×5=100份100÷(25-5)=5天答:这片牧草可供25头牛吃5天?练习(求时间)1.有一片草地,草每天生长的速度相同。

这片草地可供5头牛吃40天,或6供头牛吃30天。

如果4头牛吃了30天后,又增加2头牛一起吃,这片草地还可以再吃几天?2.牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?求牛的数量例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

(完整版)牛吃草问题、工程问题经典例题(含答案版),推荐文档

(完整版)牛吃草问题、工程问题经典例题(含答案版),推荐文档
戴氏教育龙泉校区
VIP
小升初冲刺第 2 讲
数学教研组
牛吃草问题
基本公式:
1建) 设定议一头牛收一天吃藏草量为下“1”载本文,以便随时学习!
2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数
-吃的较少天数);
3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`
分析:这道题看起来像行程问题,但是既没有路程又没有速度,所以不能用时间、路程、速度三者
的关系来解答。甲出发 5 分钟后返回,路上耽误 10 分钟,再加上取东西的 5 分钟,等于比乙晚出发 15
分钟。我们将题目改述一下:完成一件工作,甲需 60 分钟,乙需 40 分钟,乙先干 15 分钟后,甲、乙合
答:甲队干了 12 天。
[自主训练]
单独干某项工程,甲队需 100 天完成,乙队需 150 天完成。甲、乙两队合干 50 天后,
剩下的工程乙队干还需多少天? 分析与解:以全部工程量为单位 1。甲队单独干需 100 天,甲的工作效
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙
戴氏教育龙泉校区
4)吃的天数=原有草量÷(牛头数-草的生长速度);
5)牛头数=原有草量÷吃的天数+草的生长速度。
例 1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供 10 头牛吃 20 天,可供 15
头牛吃 10 天。问:这片牧草可供 25 头牛吃多少天?
解:假设 1 头牛 1 天吃的草的数量是 1 份 草每天的生长量:(200-150)÷(20-10)=5 份
水排完。如果一开始是空池,打开放水管 1 时后又打开排水管,那么再过多长时间池内将积有半池水?
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙

牛吃草问题、工程问题经典例题(含答案版)

牛吃草问题、工程问题经典例题(含答案版)

小升初冲刺第2讲牛吃草问题基本公式:1)设定一头牛一天吃草量为“1”2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度.例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天.问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200—150)÷(20—10)=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷(25—5)=5天[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)÷(20-10)=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷(18—3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

照此计算,可供多少头牛吃10天?解:假设1头牛1天吃的草的数量是1份草每天的减少量:(100—90)÷(6-5)=10份20×5=100份……原草量—5天的减少量原草量:100+5×10=150 或90+6×10=150份15×6=90份……原草量—6天的减少量(150-10×10)÷10=5头[自主训练]由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天,那么可供21头牛吃几天?解:假设1头牛1天吃的草的数量是1份草每天的减少量:(240—225)÷(9-8)=15份30×8=240份……原草量-8天的减少量原草量:240+8×15=360份或220+9×15=360份25×9=225份……原草量-9天的减少量 360÷(21+15)=10天例3、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。

六年级下小升初典型奥数之牛吃草问题

六年级下小升初典型奥数之牛吃草问题在六年级的奥数学习中,“牛吃草问题”是一个让很多同学感到困惑但又十分有趣的经典题型。

今天,咱们就一起来揭开“牛吃草问题”的神秘面纱,看看它到底是怎么一回事。

首先,咱们来认识一下什么是牛吃草问题。

简单来说,就是有一片草地,牛在吃草,草在生长,然后让我们计算在不同条件下,草地的草量变化以及牛吃完草需要的时间等。

比如说,有一块草地,每天都匀速长出新草。

已知 27 头牛 6 天可以把草吃完,23 头牛 9 天可以把草吃完。

假设每头牛每天的吃草量是 1 份,那么咱们就要通过这些条件来求出草地原有的草量以及每天新长的草量。

那怎么来解决这类问题呢?咱们得先搞清楚几个关键的量。

一个是原有的草量,就是草地一开始本身就有的草的数量;另一个是草每天的生长量,也就是每天新长出来的草的数量;还有就是牛每天的吃草量。

为了更好地理解,咱们来举个具体的例子。

有一片草地,可供 10 头牛吃 20 天,或 15 头牛吃 10 天。

假设每头牛每天吃草量为 1 份,那咱们先算一下 10 头牛 20 天一共吃了多少草,这就是 10×20 = 200 份草。

同理,15 头牛 10 天吃的草就是 15×10 = 150 份草。

为什么这两种情况下吃的草量不一样呢?这是因为草在生长啊!20 天里草生长的时间长,所以长出来的草就多;10 天里草生长的时间短,长出来的草就少。

那这多出来的草量,其实就是多生长的那些天里新长出来的草。

所以 20 10 = 10 天里新长出来的草就是 200 150 = 50 份,那么每天新长的草就是 50÷10 = 5 份。

这样咱们就知道了草每天的生长量。

那原有的草量怎么算呢?用牛吃的总量减去新长出来的草量就行啦。

比如 10 头牛 20 天吃了 200 份草,20 天新长出来的草是 5×20 = 100 份,所以原有的草量就是 200 100 = 100 份。

行测牛吃草问题(含例题、答案、讲解)

小升初冲刺第2讲牛吃草问题基本公式:1)设定一头牛一天吃草量为“ 1”2)草的生长速度=(对应的牛头数X吃的较多天数一相应的牛头数X吃的较少天数)*(吃的较多天数一吃的较少天数);3)原有草量=牛头数X吃的天数一草的生长速度X吃的天数;'4)吃的天数=原有草量十(牛头数—草的生长速度);5)牛头数=原有草量十吃的天数+草的生长速度。

例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)-(20-10)=5份10X 20=200份……原草量+20天的生长量原草量:200-20 X 5=100 或150-10 X 5=100份15X 10=150份……原草量+10天的生长量100 -(25-5 )=5天[自主训练]牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)-(20-10)=3份9X 20=180份……原草量+20天的生长量原草量:180-20 X 3=120份或150-10 X 3=120份15X 10=150份……原草量+10天的生长量120 -(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

照此计算,可供多少头牛吃10天?解:假设1头牛1天吃的草的数量是1份草每天的减少量:(100-90)十(6-5)=10份20X 5=100份……原草量-5天的减少量原草量:100+5X 10=150或90+6X 10=150份15X6=90份……原草量-6天的减少量(150-10X 10)- 10=5头[自主训练]由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天,那么可供21头牛吃几天?解:假设1头牛1天吃的草的数量是1份草每天的减少量:(240-225) - (9-8 )=15份30X 8=240份……原草量-8天的减少量原草量:240+8X 15=360份或220+9X15=360份25X 9=225份……原草量-9天的减少量360 -(21+15)=10天例3、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。

奥数牛吃草问题

奥数牛吃草问题1、整片牧场上的草长的一样密一样快。

已知70头牛24天里把草吃完,而30头牛就得60天,如果要在96天内把牧场的草吃完,那么有几头牛?解:把一头牛一天吃的草看成一份(30x60-70x24)/(60-24)=10/3 每日新增量(70-10/3)x24=1600 原有的草(1600/96)+10/3=20头答:那么有20头牛.2、一堆草,可供3头牛和4 只羊吃14天,或者供4头牛和15只羊吃7天,可供6头牛和7只羊吃几天?解:设牛羊每天的食草量分别是X和Y,这堆草的量为T可供6头牛和7只羊食用n天:则:(3X+4Y)*14=T (4X+15Y)*7=T (6X+7Y)*n=T由上面两式求得2X=7Y 将2、3两式的X用Y替代,得n=29/43、有12头牛28天可以吃完10亩草,21头牛63天可以吃完30亩草,问;多少头牛126天可以吃完72亩草?(每亩原有草相等,每天生长量相等)解析:设1头牛1天吃1份牧草,则每公亩牧场上的牧草每天的生长量:(21×63÷30-12×28÷10)÷(63-28)=0.3(份),每亩牧场上的原有草量:21×63÷30-0.3×63=25.2(份),则72亩的牧场126天可提供牧草:(25.2+0.3×126)×72=4536(份),可供养4536÷126=36头牛。

4、火车站的检票处检票前已有一些人排队等待检票进站,假若每分钟前来检票处排队检票的人数一定,那么当开一个检票口时,需要20分钟检完;当开两个检票口时,8分钟就无人排队。

如果开三个检票口,需要多少分钟可以检完?5分钟。

解:设原来排队的人数为X,每分钟进来Y,每分钟检票Z20*Z=X+20*Y 2*8*Z=X+8*Y 解方程组得Z=3Y,X=40Y设开3个检票口需要A分钟可以检完票3*A*3Y=40Y+A*Y A=5 5、经计算,地球上的资源可供100亿人生活100年,或者可供80亿人生活300年.假设地球新生资源的生长速度是一定的,为了使人类有不断发展的潜力,地球最多能养多少人? 解:设1亿人生活1年需要1份资源。

牛吃草问题含例题答案讲解

小学数学牛吃草问题知识点总结:牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的;典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天;由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化;小升初冲刺第2讲牛吃草问题基本公式:1 设定一头牛一天吃草量为“1”2草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;3原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4吃的天数=原有草量÷牛头数-草的生长速度;5牛头数=原有草量÷吃的天数+草的生长速度;例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天;问:这片牧草可供25头牛吃多少天解:假设1头牛1天吃的草的数量是1份草每天的生长量:200-150÷20-10=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷25-5=5天自主训练牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天解:假设1头牛1天吃的草的数量是1份草每天的生长量:180-150÷20-10=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷18-3=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少;已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天;照此计算,可供多少头牛吃10天解:假设1头牛1天吃的草的数量是1份草每天的减少量:100-90÷6-5=10份20×5=100份……原草量-5天的减少量原草量:100+5×10=150 或90+6×10=150份15×6=90份……原草量-6天的减少量 150-10×10÷10=5头自主训练由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天,那么可供21头牛吃几天解:假设1头牛1天吃的草的数量是1份草每天的减少量:240-225÷9-8=15份30×8=240份……原草量-8天的减少量原草量:240+8×15=360份或220+9×15=360份25×9=225份……原草量-9天的减少量 360÷21+15=10天例3、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼;已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上;问:该扶梯共有多少级男孩:20×5 =100级自动扶梯的级数-5分钟减少的级数女孩;15×6=90级自动扶梯的级数-6分钟减少的级数每分钟减少的级数= 20×5-15×6 ÷6-5=10级自动扶梯的级数= 20×5+5×10=150级自主训练两个顽皮孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级阶梯,女孩每秒可走2级阶梯,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒;问该扶梯共有多少级3×100=300自动扶梯级数+100秒新增的级数2×300=600自动扶梯级数+300秒新增的级数每秒新增的级数:2×300-3×100÷300-100=级自动扶梯级数= 3×100-100×=150级1. 有一片牧场,操每天都在匀速生长每天的增长量相等,如果放牧24头牛,则6天吃完草,如果放牧21头牛,则8天吃完草,设每头牛每天的吃草量相等,问:要使草永远吃不完,最多只能放牧几头牛假设1头1天吃1个单位246=144218=168168-144=24每天长的草可供24/2=12头牛吃最多只能放12头牛2,有一片草地,草每天生长的速度相同;这片草地可供5头牛吃40天,或6供头牛吃30天;如果4头牛吃了30天后,又增加2头牛一起吃,这片草地还可以再吃几天假设1头1天吃1个单位540=200;630=180200-180=20每天长的草:20/40-30=2原有草:200-240=120430=120 ,302=60 60/4=15天3,假设地球上新增长资源的增长速度是一定的,照此推算,地球上的资源可供110亿人生活90年,或可供90亿人生活210年,为了人类不断繁衍,那么地球最多可以养活多少亿人假设1亿人头1天吃1个单位11090=9900;90210=1890018900-9900=90009000/210-90=754,一游乐场在开门前有100人排队等候,开门后每分钟来的游客是相同的,一个入口处每分钟可以放入10名游客,如果开放2个入口处20分钟就没人排队,现开放4个入口处,那么开门后多少分钟后没人排队22010=400400-100=300300/20=15100+154=160160/410=41因为草量=原有草量+新长出的草量,而且草量是均匀增长的;所以“对应的牛头数×吃的较多天数”就代表了第一次情况下的总草量, 即为:吃的较多天数时的总草量=草地原有草量+草的生长速度较多天数时的时间;同理“相应的牛头数×吃的较少天数”代表了第二次情况下的总草量,即为:吃的较少天数时的总草量=草地原有草量+草的生长速度较少天数时的时间;两个一做差,式子中的“原有草量”就被减掉了,等号的左边就是两次情况之下总草量的差,右边等于草的生长速度两次情况下的时间差,所以直接把时间差除到左边去,就得到了草的生长速度了;2牛吃的草的总量包括两个方面,一是原来草地上的草,而是新增长出来的草;所以“牛头数×吃的天数”表示的就是牛一共吃了多少草,牛在这段时间把草吃干净了,所以牛一共吃了多少草就也表示草的总量;当然草的总量减去新增长出来的草的数量,就剩下原来草地上面草的数量了;牛吃草问题概念及公式牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的;典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天;由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化;解决牛吃草问题常用到四个基本公式,分别是︰1 设定一头牛一天吃草量为“1”1草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;2原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`3吃的天数=原有草量÷牛头数-草的生长速度;4牛头数=原有草量÷吃的天数+草的生长速度;这四个公式是解决消长问题的基础;由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量;牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的;正是由于这个不变量,才能够导出上面的四个基本公式;牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草;由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天;解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题;这类问题的基本数量关系是:1.牛的头数×吃草较多的天数-牛头数×吃草较少的天数÷吃的较多的天数-吃的较少的天数=草地每天新长草的量;2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草;解多块草地的方法多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,我们一般把面积统一为“1”相对简单些;“牛吃草”问题分析华图公务员考试研究中心数量关系资料分析教研室研究员姚璐华图名师姚璐例1有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天华图名师姚璐答案C华图名师姚璐解析设该牧场每天长草量恰可供X头牛吃一天,这片草场可供25头牛吃Y天根据核心公式代入200-150/20-10=5 1020-520=100 100/25-5=5天璐例2有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天华图名师姚璐答案C华图名师姚璐解析设该牧场每天长草量恰可供X头牛吃一天,根据核心公式代入20×10-15×10=5 10×20-5×20=100 100÷4+5=30头华图名师姚璐例3如果22头牛吃33公亩牧场的草,54天后可以吃尽,17头牛吃28公亩牧场的草,84天可以吃尽,那么要在24天内吃尽40公亩牧场的草,需要多少头牛华图名师姚璐答案D华图名师姚璐解析设每公亩牧场每天新长出来的草可供X头牛吃1天,每公亩草场原有牧草量为Y ,24天内吃尽40公亩牧场的草,需要Z头牛根据核心公式:,代入,因此,选择D华图名师姚璐注释这里面牧场的面积发生变化,所以每天长出的草量不再是常量;下面我们来看一下上述“牛吃草问题”解题方法,在真题中的应用;华图名师姚璐例4有一个灌溉用的中转水池,一直开着进水管往里灌水,一段时间后,用2台抽水机排水,则用40分钟能排完;如果用4台同样的抽水机排水,则用1 6分钟排完;问如果计划用10分钟将水排完,需要多少台抽水机广东2006上台台台台华图名师姚璐答案B华图名师姚璐解析设每分钟流入的水量相当于X台抽水机的排水量,共需Y台抽水机有恒等式:解,得,代入恒等式华图名师姚璐例5有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时北京社招2006华图名师姚璐答案C华图名师姚璐解析设每分钟流入的水量相当于X台抽水机的排水量,共需Y小时有恒等式:解,得,代入恒等式华图名师姚璐例6林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光假定野果生长的速度不变浙江2007周周周周华图名师姚璐答案C华图名师姚璐解析设每天新生长的野果足够X只猴子吃,33只猴子共需Y周吃完有恒等式:解,得,代入恒等式华图名师姚璐例7物美超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款;某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了浙江2006小时小时小时小时华图名师姚璐答案D华图名师姚璐解析设共需X小时就无人排队了;例题:1、旅客在车站候车室等车,并且排队的乘客按一定速度增加,检查速度也一定,当车站放一个检票口,需用半小时把所有乘客解决完毕,当开放2个检票口时,只要1 0分钟就把所有乘客OK了求增加人数的速度还有原来的人数设一个检票口一分钟一个人1个检票口30分钟30个人2个检票口10分钟20个人30-20÷30-10=个人原有1×30-30×=15人或2×10-10×=15人2、有三块草地,面积分别是5,15,24亩;草地上的草一样厚,而且长得一样快;第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天这是一道牛吃草问题,是比较复杂的牛吃草问题;把每头牛每天吃的草看作1份;因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份所以45-30=15天,每亩面积长84-60=24份所以,每亩面积每天长24÷15=份所以,每亩原有草量60-30×=12份第三块地面积是24亩,所以每天要长×24=份,原有草就有24×12=288份新生长的每天就要用头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=头牛所以,一共需要+=42头牛来吃;两种解法:解法一:设每头牛每天的吃草量为1,则每亩30天的总草量为:1030/5=60;每亩45天的总草量为:2845/15=84那么每亩每天的新生长草量为84-60/45-30=每亩原有草量为30=12,那么24亩原有草量为1224=288,24亩80天新长草量为2480=3072,2 4亩80天共有草量3072+288=3360,所有3360/80=42头解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15亩,可以推出15亩每天新长草量28×45-30×30/45-30=24;15亩原有草量:1260-24×45=180;15亩80天所需牛180/80+24头24亩需牛:180/80+2424/15=42头。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初数学牛吃草问题
1.一艘轮船行驶在大海上,船长发现船底破了个小洞,发现时船舱中已经进了不少水,水还在不断地涌入船舱内,每分钟涌入的水量相等.如果让5个船员来排水,40分钟可以排完;如果让8个船员来排水,20分钟可排完.现在船长要求12分钟内必须把水排完,需要多少个船员?
【分析】设每小时每人排水量为1份,根据“如果让5个船员来排水,40分钟可以排完;
如果让8个船员来排水,20分钟可排完.”,先求出漏水的速度,列式为:(40×5﹣20×8)÷(40﹣20)=2(份);再求出船中原有的水,列式为:40×5﹣2×40=120(份);然后根据(船中原有水的份数+2小时漏水的份数)÷时间就是12分钟排完,需要安排的人数.
【解答】解:设每小时每人排水量为1份,
(40×5﹣20×8)÷(40﹣20)
=40÷20
=2(份)
40×5﹣2×40
=200﹣80
=120(份)
(120+2×12)÷12
=144÷12
=12(个)
答:需要12个船员.
【点评】本题是典型的牛吃草问题,关键是求出草的生长速度(本题相当于每小时漏出水的水量)和草地原有的份数(本题相当于船中原有的水量).
第1 页共1 页。

相关文档
最新文档