2014年全国各地中考数学试卷解析版分类汇编_规律探索
中考2014年全国各地中考数学真题分类解析汇编:02 实数

实数一、选择题1. (2014•安徽省,第1题4分)(﹣2)×3的结果是()A.﹣5 B.1C.﹣6 D.6考点:有理数的乘法.分析:根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.解答:原式=﹣2×3=﹣6.故选:C.点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值的运算.2. (2014•安徽省,第6题4分)设n为正整数,且n<<n+1,则n的值为()A.5 B.6C.7D.8考点:估算无理数的大小.分析:首先得出<<,进而求出的取值范围,即可得出n的值.解答:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.点评:此题主要考查了估算无理数,得出<<是解题关键.3. (2014•福建泉州,第1题3分)2014的相反数是()4. (2014•广东,第1题3分)在1,0,2,﹣3这四个数中,最大的数是()A.1B.0C.2D.﹣3考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:﹣3<0<1<2,故选:C.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.5. (2014•珠海,第1题3分)﹣的相反数是()根据相反数的定义,只有符号不同的两个数是互为相反数,﹣的相反数为与﹣符号相反的数是,所以﹣的相反数是;故选6. (2014•广西贺州,第1题3分)在﹣1、0、1、2这四个数中,最小的数是()A.0B.﹣1 C.1D.1考点:有理数大小比较分析:根据正数大于0,0大于负数,可得答案.解答:﹣1<0<1<2,故选:B.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.7. (2014•广西贺州,第4题3分)未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元B.8.45×103亿元C.8.45×104亿元D.84.5×102亿元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:将8450亿元用科学记数法表示为8.45×103亿元.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8. (2014•广西玉林市、防城港市,第1题3分)下面的数中,与﹣2的和为0的是()9. (2014•广西玉林市、防城港市,第2题3分)将6.18×10﹣3化为小数的是()10.(2014•新疆,第1题5分)下表是四个城市今年二月份某一天的平均气温:其中平均气温最低的城市是()11.(2014•毕节地区,第3题3分)下列运算正确的是().+=12.(2014•武汉,第1题3分)在实数﹣2,0,2,3中,最小的实数是()13.(2014·台湾,第11题3分)如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与11﹣239最接近?()A.A B.B C.C D.D分析:先确定的范围,再求出11﹣239的范围,根据数轴上点的位置得出即可.解析:∵62=36<39<42.25=6.52,∴6<39<6.5,∴12<239<13,∴﹣12>﹣239<﹣13,∴﹣1>11﹣239<﹣2,故选B.点评:本题考查了数轴和估算无理数的大小的应用,解此题的关键是求出11﹣239的范围.14. (2014•湘潭,第1题,3分)下列各数中是无理数的是()15. (2014•益阳,第1题,4分)四个实数﹣2,0,﹣,1中,最大的实数是()<﹣16. (2014年江苏南京,第4题,2分)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.考点:实数的大小的比较分析:根据无理数的定义进行估算解答即可.解答:A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故答案为B.点评:此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.17. (2014年江苏南京,第5题,2分)8的平方根是()A.4 B.±4 C.2D.考点:平方根的定义分析:直接根据平方根的定义进行解答即可解决问题.解答:∵,∴8的平方根是.故选D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18. (2014•扬州,第6题,3分)如图,已知正方形的边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()(第8题图)19.(2014•呼和浩特,第1题3分)下列实数是无理数的是().20.(2014•呼和浩特,第7题3分)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()21.(2014•滨州,第1题3分)估计在(),所以和之间.22.(2014•德州,第1题3分)下列计算正确的是()=323.(2014•菏泽,第3题3分)下列计算中,正确的是().=±3=3二.填空题1. (2014•安徽省,第11题5分)据报载,2014年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:将25000000用科学记数法表示为2.5×107户.故答案为:2.5×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2. (2014•福建泉州,第8题4分)2014年6月,阿里巴巴注资1200000000元入股广州恒大,将数据1200000000用科学记数法表示为.3. (2014•福建泉州,第16题4分)已知:m、n为两个连续的整数,且m<<n,则m+n=.估算出<题考查的是估算无理数的大小,先根据题意算出4. (2014•广东,第12题4分)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:将618 000 000用科学记数法表示为:6.18×108.故答案为:6.18×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5. (2014•珠海,第6题4分)比较大小:﹣2﹣3.6. (2014•广西玉林市、防城港市,第13题3分)3的倒数是.的倒数是.7.(2014年四川资阳,第11题3分)计算:+(﹣1)0=.考点:实数的运算;零指数幂.分析:分别根据数的开方法则、0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:原式=2+1=3.故答案为:3.点评:本题考查的是实数的运算,熟知数的开方法则、0指数幂的运算法则是解答此题的关键.8.(2014•新疆,第15题5分)规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]=.求出(<[9.(2014年广东汕尾,第11题5分)4的平方根是.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解析:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.(2014•毕节地区,第21题8分)计算:)3×+1﹣11. (2014•湘潭,第12题,3分)计算:()2﹣|﹣2|=.12. (2014•泰州,第7题,3分)=.,∴三.解答题1. (2014•安徽省,第15题5分)计算:﹣|﹣3|﹣(﹣π)0+2013.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,计算即可得到结果.解答:原式=5﹣3﹣1+2013=2014.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2. (2014•福建泉州,第18题9分)计算:(2﹣1)0+|﹣6|﹣8×4﹣1+.8×+43. (2014•广东,第17题6分)计算:+|﹣4|+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:原式=3+4+1﹣2=6.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.4. (2014•珠海,第11题6分)计算:()﹣1﹣(﹣2)0﹣|﹣3|+.﹣5. (2014•广西贺州,第19题(1)4分)(1)计算:(﹣2)0+(﹣1)2014+﹣sin45°;考点:零指数幂;二次根式的混合运算;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用乘方的意义化简,第三项利用二次根式性质化简,最后一项利用特殊角的三角函数值计算即可得到结果;解答:(1)原式=1+1+﹣=2;点评:此题考查了零指数幂法则计算,第二项利用乘方的意义化简,第三项利用二次根式性质化简.6.(2014•广西玉林市、防城港市,第19题6分)计算:(﹣2)2﹣•+(sin60°﹣π)0.×+1=47.(2014•新疆,第16题6分)计算:(﹣1)3++(﹣1)0﹣.+1=.8.(2014•温州,第17题10分)(1)计算:+2×(﹣5)+(﹣3)2+20140;(2)化简:(a+1)2+2(1﹣a)﹣10+9+1=29.(2014•舟山,第17题6分)(1)计算:+()﹣2﹣4cos45°;(2)化简:(x+2)2﹣x(x﹣3)+44×=2=410.(2014年广东汕尾,第17题7分)计算:(+π)0﹣2|1﹣sin30°|+()﹣1.分析:原式第一项利用零指数幂法则计算,第二项利用特殊角的三角函数值及绝对值的代数意义化简,最后一项利用负指数幂法则计算即可得到结果.解答:原式=1﹣2×+2=1﹣1+2=2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11.(2014•孝感,第19题6分)计算:(﹣)﹣2+﹣|1﹣|=﹣213.(2014•四川自贡,第16题8分)计算:(3.14﹣π)0+(﹣)﹣2+|1﹣|﹣4cos45°. =1+4+2﹣4×=414.(2014·云南昆明,第15题5分)计算:︒-+-+-45cos 2)3(|2|10)(π15.(2014·浙江金华,第1题61014cos 4522-⎛⎫-++- ⎪⎝⎭.【解析】16. (2014•益阳,第14题,6分)计算:|﹣3|+30﹣.17. (2014•株洲,第17题,4分)计算:+(π﹣3)0﹣tan45°.18. (2014•泰州,第17题,12分)(1)计算:﹣24﹣+|1﹣4sin60°|+(π﹣)0;(2)解方程:2x2﹣4x﹣1=0.+219.(2014•扬州,第19题,8分)(1)计算:(3.14﹣π)0+(﹣)﹣2﹣2sin30°;(2)化简:﹣÷.﹣•=﹣=20.(2014•呼和浩特,第17题5分)计算(1)计算:2cos30°+(﹣2)﹣1+|﹣|=2×+=﹣(=21.(2014•菏泽,第15题6分)(1)计算:2﹣1﹣3tan30°+(2﹣)0+3×+1+2=+。
2014年各地中考数学真题分类解析汇编(17)点、线、面、角

2014年各地中考数学真题分类解析汇编(17)点、线、面、角D解答:解:A、所有的实数都可用数轴上的点表示,所以A选项的说法正确;B、等角的补角相等,所以B选项的说法正确;C、无理数包括正无理数和负无理,所以C 选项的说法错误;D、两点之间,线段最短,所以D选项的说法正确.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.4.(2014·浙江金华,第2题4分)如图,经过刨平的木析上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线. 能解释这一实际问题的数学知识是【】A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .在同一平面内,过一点有且只有一条直线与已知直线垂直5.(2014•滨州,第5题3分)如图,OB 是∠AOC 的角平分线,OD 是∠COE 的角平分线,如果∠AOB =40°,∠COE =60°,则∠BOD 的度数为( )A .50B . 60C . 65D . 70考点: 角的计算;角平分线的定义分析: 先根据OB 是∠AOC 的角平分线,OD是∠COE的角平分线,∠AOB=40°,∠COE=60°求出∠BOC与∠COD的度数,再根据∠BOD=∠BOC+∠COD即可得出结论.解答:解:∵OB是∠AOC的角平分线,OD是∠COE的角平分线,∠AOB=40°,∠COE=60°,∴∠BOC=∠AOB=40°,∠COD=∠COE=×60°=30°,∴∠BOD=∠BOC+∠COD=40°+30°=70°.故选D.点评:本题考查的是角的计算,熟知角平分线的定义是解答此题的关键.6.(2014•济宁,第3题3分)把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.三角形两边之和大于第三边考点: 线段的性质:两点之间线段最短. 专题: 应用题. 分析: 此题为数学知识的应用,由题意把一条弯曲的公路改成直道,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理. 解答: 解:要想缩短两地之间的里程,就尽量是两地在一条直线上,因为两点间线段最短.故选C .点评: 本题考查了线段的性质,牢记线段的性质是解题关键.7.(2014年山东泰安,第5题3分)如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是( )A.∠1+∠6>180°B.∠2+∠5<180°C.∠3+∠4<180°D.∠3+∠7>180°分析:根据平行线的性质推出∠3+∠4=180°,∠2=∠7,根据三角形的内角和定理得出∠2+∠3=180°+∠A,推出结果后判断各个选项即可.解:A、∵DG∥EF,∴∠3+∠4=180°,∵∠6=∠4,∠3>∠1,∴∠6+∠1<180°,故本选项错误;B、∵DG∥EF,∴∠5=∠3,∴∠2+∠5=∠2+∠3=(180°﹣∠1)+(180°﹣∠ALH)=360°﹣(∠1+∠ALH)=360°﹣(180°﹣∠A)=180°+∠A>180°,故本选项错误;C、∵DG∥EF,∴∠3+∠4=180°,故本选项错误;D、∵DG∥EF,∴∠2=∠7,∵∠3+∠2=180°+∠A>180°,∴∠3+∠7>180°,故本选项正确;故选D.点评:本题考查了平行线的性质,三角形的内角和定理的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.二.填空题1. ( 2014•福建泉州,第9题4分)如图,直线AB 与CD 相交于点O ,∠AOD =50°,则∠BOC =50 °.考点: 对顶角、邻补角. 分析: 根据对顶角相等,可得答案. 解答: 解;∵∠BOC 与∠AOD 是对顶角,∴∠BOC =∠AOD =50°,故答案为:50.点评: 本题考查了对顶角与邻补角,对顶角相等是解题关键.2. ( 2014•福建泉州,第13题4分)如图,直线a ∥b ,直线c 与直线a ,b 都相交,∠1=65°,则∠2= 65 °.考点: 平行线的性质. 分析: 根据平行线的性质得出∠1=∠2,代入求出即可. 解答: 解:∵直线a ∥b ,∴∠1=∠2,∵∠1=65°,∴∠2=65°,故答案为:65.点评: 本题考查了平行线的性质的应用,注意:两直线平行,同位角相等.3. ( 2014•福建泉州,第15题4分)如图,在△ABC 中,∠C =40°,CA =CB ,则△ABC 的外角∠ABD = 110 °.考点: 等腰三角形的性质. 分析: 先根据等腰三角形的性质和三角形的内角和定理求出∠A ,再根据三角形的外角等于等于与它不相邻的两个内角的和,进行计算即可.解答: 解:∵CA =CB ,∴∠A =∠ABC , ∵∠C =40°,∴∠A =70°∴∠ABD =∠A +∠C =110°.故答案为:110.点评: 此题考查了等腰三角形的性质,用到的知识点是等腰三角形的性质、三角形的外角等于等于与它不相邻的两个内角的和.4.(2014•邵阳,第11题3分)已知∠α=13°,则∠α的余角大小是 77° . 考点: 余角和补角.分析:根据互为余角的两个角的和等于90°列式计算即可得解.解答:解:∵∠α=13°,∴∠α的余角=90°﹣13°=77°.故答案为:77°.点评:本题考查了余角的定义,是基础题,熟记概念是解题的关键.5.(2014•浙江湖州,第13题4分)计算:50°﹣15°30′=.分析:根据度化成分乘以60,可得度分的表示方法,根据同单位的相减,可得答案.解:原式=49°60′﹣15°30′=34°30′,故答案为:34°30′.点评:此类题是进行度、分、秒的加法计算,相对比较简单,注意以60为进制即可.。
2014年全国各地中考数学真题分类解析汇编(26)梯形

2014年全国各地中考数学真题分类解析汇编(26)梯形梯形一、选择题1. (2014•广西贺州,第9题3分)如图,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,则梯形ABCD的周长为()A.12B.15C.12 D.15考点:等腰梯形的性质.分析:过点A作AE∥CD,交BC于点E,可得出四边形ADCE是平行四边形,再根据等腰梯形的性质及平行线的性质得出∠AEB=∠BCD=60°,由三角形外角的定义求出∠EAC的度数,故可得出四边形ADEC是菱形,再由等边三角形的判定定理得出△ABE是等边三角形,由此可得出结论.解解:过点A作AE∥CD,交BC于点E,答:∵梯形ABCD是等腰梯形,∠B=60°,∴AD∥BC,∴四边形ADCE是平行四边形,∴∠AEB=∠BCD=60°,∵CA平分∠BCD,∴∠ACE=∠BCD=30°,∵∠AEB是△ACE的外角,∴∠AEB=∠ACE+∠EAC,即60°=30°+∠EAC,∴∠EAC=30°,∴AE=CE=3,∴四边形ADEC是菱形,∵△ABE中,∠B=∠AEB=60°,∴△ABE是等边三角形,∴AB=BE=AE=3,∴梯形ABCD的周长=AB+(BE+CE)+CD+AD=3+3+3+3+3=15.故选D.点评:此题主要考查了等腰三角形的性质,以及平行线的性质,关键是掌握两直线平行,同位角相等,同旁内角互补.3.(2014·台湾,第3题3分)如图,梯形ABCD 中,AD∥BC,E点在BC上,且AE⊥B C.若AB=10,BE=8,DE=6,则AD的长度为何?()A.8 B.9 C.6 2 D.6 3分析:利用勾股定理列式求出AE,再根据两直线平行,内错角相等可得∠DAE=90°,然后利用勾股定理列式计算即可得解.解:∵AE⊥BC,∴∠AEB=90°,∵AB=10,BE=8,∴AE=AB2-BE2=102-82=6,∵AD∥BC,∴∠DAE=∠AEB=90°,∴AD=DE2-AE2=(63)2-62=62.故选C .点评:本题考查了梯形,勾股定理,是基础题,熟记定理并确定出所求的边所在的直角三角形是解题的关键.4.(2014•浙江宁波,第8题4分)如图,梯形ABCD 中,AD ∥BC ,∠B =∠ACD =90°,AB =2,DC =3,则△ABC 与△DCA 的面积比为( )A . 2:3B . 2:5C . 4:9D .:考点: 相似三角形的判定与性质.分析: 先求出△CBA ∽△ACD ,求出=,COS ∠ACB •COS ∠DAC =,得出△ABC 与△DCA 的面积比=.解答: 解:∵AD ∥BC ,∴∠ACB =∠DAC又∵∠B =∠ACD =90°,∴△CBA ∽△ACD==,AB=2,DC=3,∴===,∴=,∴COS∠ACB==,COS∠DAC==∴•=×=,∴=,∵△ABC与△DCA的面积比=,∴△ABC与△DCA的面积比=,故选:C.点评:本题主要考查了三角形相似的判定及性质,解决本题的关键是明确△ABC与△DCA的面积比=.5. (2014•湘潭,第3题,3分)如图,AB是池塘两端,设计一方法测量AB的距离,取点C,连接AC、BC,再取它们的中点D、E,测得DE=15米,则AB=()米.(第1题图)A.7.5 B.15 C.22.5 D.30考点:三角形中位线定理分析:根据三角形的中位线得出AB=2DE,代入即可求出答案.解答:解:∵D、E分别是AC、BC的中点,DE=15米,∴AB=2DE=30米,故选D.点评:本题考查了三角形的中位线的应用,注意:三角形的中位线平行于第三边,并且等于第三边的一半.6.(2014•德州,第7题3分)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()A . 4米B . 6米C . 12米D . 24米考点: 解直角三角形的应用-坡度坡角问题. 分析: 先根据坡度的定义得出BC 的长,进而利用勾股定理得出AB 的长.解答: 解:在Rt △ABC 中,∵=i =,AC =12米,∴BC =6米,根据勾股定理得:AB ==6米,故选B .点评: 此题考查了解直角三角形的应用﹣坡度坡角问题,勾股定理,难度适中.根据坡度的定义求出BC 的长是解题的关键.二.填空题1. ( 2014•广西玉林市、防城港市,第17题3分)如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,∠A =120°,AD =2,BD 平分∠ABC ,则梯形ABCD 的周长是7+ .考点: 直角梯形. 分析: 根据题意得出AB =AD ,进而得出BD 的长,再利用在直角三角形中30°所对的边等于斜边的一半,进而求出CD 以及利用勾股定理求出BC 的长,即可得出梯形ABCD 的周长. 解答: 解:过点A 作AE ⊥BD 于点E ,∵AD ∥BC ,∠A =120°, ∴∠ABC =60°,∠ADB =∠DBC ,∵BD 平分∠ABC ,∴∠ABD =∠DBC =30°,∴∠ABE =∠ADE =30°, ∴AB =AD ,∴AE =AD =1,∴DE =,则BD =2,∵∠C =90°,∠DBC =30°,∴DC =BD =,∴BC ===3,∴梯形ABCD 的周长是:AB +AD +CD +BC =2+2++3=7+.故答案为:7+.点评: 此题主要考查了直角梯形的性质以及勾股定理和直角三角形中30°所对的边等于斜边的一半等知识,得出∠DBC 的度数是解题关键.2. (2014•扬州,第13题,3分)如图,若该图案是由8个全等的等腰梯形拼成的,则图中的∠1= 67.5° .(第1题图)考点: 等腰梯形的性质;多边形内角与外角 分析: 首先求得正八边形的内角的度数,则∠1的度数是正八边形的度数的一半.解答: 解:正八边形的内角和是:(8﹣2)×180°=1080°,则正八边形的内角是:1080÷8=135°, 则∠1=×135°=67.5°.故答案是:67.5°. 点评: 本题考查了正多边形的内角和的计算,正确求得正八边形的内角的度数是关键.3. (2014•扬州,第14题,3分)如图,△ABC 的中位线DE =5cm ,把△ABC 沿DE 折叠,使点A 落在边BC 上的点F 处,若A 、F 两点间的距离是8cm ,则△ABC 的面积为40 cm 3.(第2题图)考点: 翻折变换(折叠问题);三角形中位线定理 分析: 根据对称轴垂直平分对应点连线,可得AF即是△ABC 的高,再由中位线的性质求出BC ,继而可得△ABC 的面积.解解:∵DE 是△ABC 的中位线,答: ∴DE ∥BC ,BC =2DE =10cm ;由折叠的性质可得:AF ⊥DE ,∴AF ⊥BC ,∴S △ABC =BC ×AF =×10×8=40cm 2.故答案为:40.点评: 本题考查了翻折变换的性质及三角形的中位线定理,解答本题的关键是得出AF 是△ABC 的高.三.解答题1. (2014年江苏南京,第19题)如图,在△ABC中,D 、E 分别是AB 、AC 的中点,过点E 作EF ∥AB ,交BC 于点F .(1)求证:四边形DBFE 是平行四边形;(2)当△ABC 满足什么条件时,四边形DBEF 是菱形?为什么?(第1题图)考点:三角形的中位线、菱形的判定分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解答:当AB=BC时,四边形DBEF是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE 是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.。
2014年全国各地中考数学试卷解析版分类汇编 :反比例函数专题

解答:解:∵反比例函数 y= k (k 是常数,k≠0),在其图象所在的每一个象限内,y 的值随 x
B、把 x=代入 y=可得 y=4,把 x=2 代入 y=可得 y=1,故此选项错误;
C、把 x=代入 y= 可得 y=,把 x=2 代入 y= 可得 y= ,故此选项错误;
D、把 x=代入 y=可得 y=16,把 x=2 代入 y=可得 y=4,故此选项错误; 故选:A. 点评:此题主要考查了反比例函数图象的性质,关键是正确理解题意,根据自变量的值求出 对应的函数值. 4. (2014 年贵州黔东南 8.(4 分))如图,正比例函数 y=x 与反比例函数 y=的图象相交于 A、 B 两点,BC⊥x 轴于点 C,则△ ABC 的面积为( )
A.x<1
B.x<﹣2
C.﹣2<x<0 或 x>1 D.x<﹣2 或 0<x<1
考点:反比例函数与一次函数的交点问题 分析:根据一次函数图象位于反比例函数图象的下方,可得不等式的解. 解答:解;一次函数图象位于反比例函数图象的下方.,
x<﹣2,或 0<x<1, 故选:D. 点评:本题考查了反比例函数与一次函数的交点问题,一次函数图象位于反比例函数图象的 下方是解题关键.
考点:反比例函数与一次函数的交点问题.
分析:画出函数图象,取反比例函数图象位于一次函数图象下方时对应的 x 的取值范围即可.
解答:一次函数
y1=kx+b
与反比例函数
y2=
m x
的图象相交于
A、B
2014年各地中考数学试卷解析版分类精品汇编实数

2014年各地中考数学试卷解析版分类汇编实数一、选择题1. (2014•安徽省)(﹣2)×3的结果是()A.﹣5 B.1C.﹣6 D.6考点:有理数的乘法.分析:根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.解答:解:原式=﹣2×3=﹣6.故选:C.点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值的运算.2. (2014•安徽省)设n为正整数,且n<<n+1,则n的值为()A.5 B.6C.7D.8考点:估算无理数的大小.分析:首先得出<<,进而求出的取值范围,即可得出n的值.解答:解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.点评:此题主要考查了估算无理数,得出<<是解题关键.3. (2014•福建泉州)2014的相反数是()A.2014 B.﹣2014 C.D.考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:2014的相反数是﹣2014.故选B.点评:本题考查了相反数的概念,在一个数的前面加上负号就是这个数的相反数.4. (2014•广东)在1,0,2,﹣3这四个数中,最大的数是()A.1B.0C.2D.﹣3考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣3<0<1<2,故选:C.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.5. (2014•珠海)﹣的相反数是()A.2B.C.﹣2 D.﹣考点:相反数.专题:计算题.分析:根据相反数的定义,只有符号不同的两个数是互为相反数,﹣的相反数为.解答:解:与﹣符号相反的数是,所以﹣的相反数是;故选B.点评:本题主要相反数的意义,只有符号不同的两个数互为相反数,a的相反数是﹣a.6. (2014•广西贺州)在﹣1、0、1、2这四个数中,最小的数是()A.0B.﹣1 C.1D.1考点:有理数大小比较分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣1<0<1<2,故选:B.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.7. (2014•广西贺州)未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元B.8.45×103亿元C.8.45×104亿元D.84.5×102亿元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将8450亿元用科学记数法表示为8.45×103亿元.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.8. (2014•广西玉林市、防城港市)下面的数中,与﹣2的和为0的是()A.2B.﹣2 C.D.考点:有理数的加法.分析:设这个数为x,根据题意可得方程x+(﹣2)=0,再解方程即可.解答:解:设这个数为x,由题意得:x+(﹣2)=0,x﹣2=0,x=2,故选:A.点评:此题主要考查了有理数的加法,解答本题的关键是理解题意,根据题意列出方程.9. (2014•广西玉林市、防城港市)将6.18×10﹣3化为小数的是()A.0.000618 B.0.00618 C.0.0618 D.0.618考点:科学记数法—原数.分析:科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“6.18×10﹣3中6.18的小数点向左移动3位就可以得到.解答:解:把数据“6.18×10﹣3中6.18的小数点向左移动3位就可以得到为0.00618.故选B.点评:本题考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.10.(2014•新疆)下表是四个城市今年二月份某一天的平均气温:城市吐鲁番乌鲁木齐喀什阿勒泰气温(℃)﹣8 ﹣16 ﹣5 ﹣25其中平均气温最低的城市是()A.阿勒泰B.喀什C.吐鲁番D.乌鲁木齐考点:有理数大小比较分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣25<﹣16<﹣8<﹣5,故选:A.点评:本题考查了有理数比较大小,负数比较大小,绝对值大的数反而小.11.(2014•毕节地区)下列运算正确的是()A.π﹣3.14=0 B.+=C.a•a=2a D.a3÷a=a2考点:同底数幂的除法;实数的运算;同底数幂的乘法.分析:根据是数的运算,可判断A,根据二次根式的加减,可判断B,根据同底数幂的乘法,可判断C,根据同底数幂的除法,可判断D.解答:解;A、π≠3.14,故A错误;B、被开方数不能相加,故B错误;C、底数不变指数相加,故C错误;D、底数不变指数相减,故D正确;故选:D.点评:本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.12.(2014•武汉)在实数﹣2,0,2,3中,最小的实数是()A.﹣2 B.0C.2D.3考点:实数大小比较分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣2<0<2<3,最小的实数是﹣2,故选:A.点评:本题考查了实数比较大小,正数大于0,0大于负数是解题关键.13.(2014·台湾)如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与11﹣239最接近?()A.A B.B C.C D.D分析:先确定的范围,再求出11﹣239的范围,根据数轴上点的位置得出即可.解:∵62=36<39<42.25=6.52,∴6<39<6.5,∴12<239<13,∴﹣12>﹣239<﹣13,∴﹣1>11﹣239<﹣2,故选B.点评:本题考查了数轴和估算无理数的大小的应用,解此题的关键是求出11﹣239的范围.14. (2014•湘潭)下列各数中是无理数的是()A.B.﹣2 C.0D.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、正确;B、是整数,是有理数,选项错误;C、是整数,是有理数,选项错误;D、是分数,是有理数,选项错误.故选A.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15. (2014•益阳)四个实数﹣2,0,﹣,1中,最大的实数是()A.﹣2 B.0C.﹣D.1考点:实数大小比较.分析:根据正数大于0,0大于负数,正数大于负数,比较即可.解答:解:∵﹣2<﹣<0<1,∴四个实数中,最大的实数是1.故选D.点评:本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.16. (2014年江苏南京)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.考点:实数的大小的比较分析:根据无理数的定义进行估算解答即可.解答:A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故答案为B.点评:此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.17. (2014年江苏南京)8的平方根是()A.4 B.±4 C.2D.考点:平方根的定义分析:直接根据平方根的定义进行解答即可解决问题.解答:∵,∴8的平方根是.故选D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18. (2014•扬州)如图,已知正方形的边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()(第8题图)A.0.1 B.0.2 C.0.3 D.0.4考点:估算无理数的大小分析:先估算出圆的面积,再根据S阴影=S正方形﹣S圆解答.解答:解:∵正方形的边长为1,圆与正方形的四条边都相切,∴S阴影=S正方形﹣S圆=1﹣0.25π≈﹣0.215.故选B.点评:本题考查的是估算无理数的大小,熟知π≈3.14是解答此题的关键.19.(2014•呼和浩特)下列实数是无理数的是()A.﹣1 B. 0 C.πD.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是整数,是有理数,选项错误;B、是整数,是有理数,选项错误;C、正确;D、是分数,是有理数,选项错误.故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.20.(2014•呼和浩特)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a c>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c考点:实数与数轴.分析:先根据各点在数轴上的位置比较出其大小,再对各选项进行分析即可.解答:解:∵由图可知,a<b<0<c,∴A、ac<bc,故本选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故本选项错误;C、∵a<b<0,∴﹣a>﹣b,故本选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故本选项正确.故选D.点评:本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.21.(2014•滨州)估计在()A.0~1之间B.1~2之间C.2~3之间D.3~4之间考点:估算无理数的大小.分析:根据二次根式的性质得出,即:2,可得答案.解答:解:∵出,即:2,所以在2到3之间.故答案选:C.点评:本题考查了估算无理数的大小和二次根式的性质,解此题的关键是知道在和之间.22.(2014•德州)下列计算正确的是()A.﹣(﹣3)2=9 B.=3 C.﹣(﹣2)0=1 D.|﹣3|=﹣3考点:立方根;绝对值;有理数的乘方;零指数幂.分析:A.平方是正数,相反数应为负数,B,开立方符号不变.C.0指数的幂为1,1的相反数是﹣1.D.任何数的绝对值都≥0解答:解:A、﹣(﹣3)2=9此选项错,B、=3,此项正确,C、﹣(﹣2)0=1,此项正确,D、|﹣3|=﹣3,此项错.故选:B.点评:本题主要考查立方根,绝对值,零指数的幂,解本题的关键是确定符号.23.(2014•菏泽)下列计算中,正确的是()A.a3•a2=a6B.(π﹣3.14)0=1 C.()﹣1=﹣3 D.=±3考点:负整数指数幂;算术平方根;同底数幂的乘法;零指数幂.分析:根据同底数幂相乘,底数不变指数相加;任何非零数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数,算术平方根的定义对各选项分析判断利用排除法求解.解答:解:A、a3•a2=a3+2=a5,故本选项错误;B、(π﹣3.14)0=1,故本选项正确;C、()﹣1=3,故本选项错误;D、=3,故本选项错误.故选B.点评:本题考查了负整数指数次幂等于正整数指数次幂的倒数,同底数幂的乘法,零指数幂的定义以及算术平方根的定义,是基础题.二.填空题1. (2014•安徽省)据报载,2014年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为2.5×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将25000000用科学记数法表示为2.5×107户.故答案为:2.5×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2. (2014•福建泉州)2014年6月,阿里巴巴注资1200000000元入股广州恒大,将数据1200000000用科学记数法表示为 1.2×109.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1200000000用科学记数法表示为:1.2×109.故答案为:1.2×109.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. (2014•福建泉州)已知:m、n为两个连续的整数,且m<<n,则m+n=7.考点:估算无理数的大小.分析:先估算出的取值范围,得出m、n的值,进而可得出结论.解答:解:∵9<11<16,∴3<<4,∴m=3,n=4,∴m+n=3+4=7.故答案为:7.点评:本题考查的是估算无理数的大小,先根据题意算出的取值范围是解答此题的关键.4. (2014•广东)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为 6.18×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将618 000 000用科学记数法表示为:6.18×108.故答案为:6.18×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5. (2014•珠海)比较大小:﹣2>﹣3.考点:有理数大小比较分析:本题是基础题,考查了实数大小的比较.两负数比大小,绝对值大的反而小;或者直接想象在数轴上比较,右边的数总比左边的数大.解答:解:在两个负数中,绝对值大的反而小,可求出﹣2>﹣3.点评:(1)在以向右方向为正方向的数轴上两点,右边的点表示的数比左边的点表示的数大.(2)正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.6. (2014•广西玉林市、防城港市)3的倒数是.考点:倒数.分析:根据倒数的定义可知.解答:解:3的倒数是.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.7.(2014年四川资阳)计算:+(﹣1)0=.考点:实数的运算;零指数幂.分析:分别根据数的开方法则、0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=2+1=3.故答案为:3.点评:本题考查的是实数的运算,熟知数的开方法则、0指数幂的运算法则是解答此题的关键.8.(2014•新疆)规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]=.考点:估算无理数的大小专题:新定义.分析:先求出(﹣1)的范围,再根据范围求出即可.解答:解:∵9<13<16,∴3<<4,∴2<﹣1<3,∴[﹣1]=2.故答案是:2.点评:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.9.(2014年广东汕尾)4的平方根是.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.(2014•毕节地区)计算:(﹣)﹣2﹣|﹣﹣2|+(﹣1.414)0﹣3tan30°﹣.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值专题:计算题.分析:原式第一项利用负指数幂法则计算,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,第四项利用特殊角的三角函数值计算,最后一项利用平方根定义化简,计算即可得到结果.解答:解:原式=4﹣(2﹣)+1﹣3×﹣2=4﹣2++1﹣﹣2=1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11. (2014•湘潭)计算:()2﹣|﹣2|=1.考点:实数的运算.分析:原式第一项利用平方根定义化简,第二项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=3﹣2=1.故答案为:1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12. (2014•泰州)=2.考点:算术平方根.分析:如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.解答:解:∵22=4,∴=2.故结果为:2点评:此题主要考查了学生开平方的运算能力,比较简单.三.解答题1. (2014•安徽省)计算:﹣|﹣3|﹣(﹣π)0+2013.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,计算即可得到结果.解答:解:原式=5﹣3﹣1+2013=2014.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2. (2014•福建泉州)计算:(2﹣1)0+|﹣6|﹣8×4﹣1+.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、绝对值、负指数幂、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1+6﹣8×+4=1+6﹣2+4=9.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值、负指数幂、二次根式化简等考点的运算.3. (2014•广东)计算:+|﹣4|+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+4+1﹣2=6.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.4. (2014•珠海)计算:()﹣1﹣(﹣2)0﹣|﹣3|+.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负指数幂、绝对值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣1﹣3+2=2﹣1﹣3+2=0.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、负指数幂、绝对值、二次根式化简等考点的运算.5. (2014•广西贺州)计算:(﹣2)0+(﹣1)2014+﹣sin45°;考点:零指数幂;二次根式的混合运算;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用乘方的意义化简,第三项利用二次根式性质化简,最后一项利用特殊角的三角函数值计算即可得到结果;解答:解:(1)原式=1+1+﹣=2;点评:此题考查了零指数幂法则计算,第二项利用乘方的意义化简,第三项利用二次根式性质化简.6.(2014•广西玉林市、防城港市)计算:(﹣2)2﹣•+(sin60°﹣π)0.考点:实数的运算;零指数幂;特殊角的三角函数值.分析:本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=4﹣2×+1=4﹣2+1=3.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.7.(2014•新疆)计算:(﹣1)3++(﹣1)0﹣.考点:实数的运算;零指数幂.分析:先根据数的乘方法则与开方法则、0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=﹣1+2+1﹣=.点评:本题考查的是实数的运算,熟知数的乘方法则与开方法则、0指数幂的运算法则是解答此题的关键.8.(2014•温州)(1)计算:+2×(﹣5)+(﹣3)2+20140;(2)化简:(a+1)2+2(1﹣a)考点:实数的运算;整式的混合运算;零指数幂.分析:(1)分别根据有理数乘方的法则、数的开放法则及0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)根据整式混合运算的法则进行计算即可.解答:解:(1)原式=2﹣10+9+1=2;(2)原式=a2+2a+1+2﹣2a=a2+3.点评:本题考查的是实数的运算,熟知有理数乘方的法则、数的开放法则及0指数幂的运算法则是解答此题的关键.9.(2014•舟山)(1)计算:+()﹣2﹣4cos45°;(2)化简:(x+2)2﹣x(x﹣3)考点:实数的运算;整式的混合运算;负整数指数幂;特殊角的三角函数值专题:计算题.分析:(1)原式第一项化为最简二次根式,第二项利用负指数幂法则计算,第三项利用特殊角的三角函数值计算即可得到结果;(2)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算即可得到结果.解答:解:(1)原式=2+4﹣4×=2+4﹣2=4;(2)原式=x2+4x+4﹣x2+3x=7x+4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.10.(2014年广东汕尾)计算:(+π)0﹣2|1﹣sin30°|+()﹣1.分析:原式第一项利用零指数幂法则计算,第二项利用特殊角的三角函数值及绝对值的代数意义化简,最后一项利用负指数幂法则计算即可得到结果.解:原式=1﹣2×+2=1﹣1+2=2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11.(2014•孝感)计算:(﹣)﹣2+﹣|1﹣|考点:实数的运算;负整数指数幂.分析:本题涉及负整指数幂、绝对值、二次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=+2﹣|﹣2|=4+2﹣2 =4.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.12.(2014•邵阳)计算:()﹣2﹣+2sin30°.考点:实数的运算;负整数指数幂;特殊角的三角函数值分析:本题涉及负整指数幂、特殊角的三角函数值、二次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答: 解:原式=4﹣2+1=3.点评: 本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.13.(2014•四川自贡)计算:(3.14﹣π)0+(﹣)﹣2+|1﹣|﹣4cos 45°. 考点: 实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值专题: 计算题.分析: 原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答: 解:原式=1+4+2﹣1﹣4×=4.点评: 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.(2014·云南昆明)计算:︒-+-+-45cos 221)3(|2|10)(π 考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值. 分析:分别进行绝对值、零指数幂、负整数指数幂的运算,再代入特殊角的三角函数值,合并即可得出答案.解答:解:原式 222212⨯-++= 32212=-++=点评:本题考查了实数的运算,涉及了绝对值、零指数幂、负整数指数幂及特殊角的三角函数值,属于基础题.15.(2014·浙江金华)计算:10184cos4522-⎛⎫-++- ⎪⎝⎭【答案】4.【解析】16. (2014•益阳)计算:|﹣3|+30﹣.考点:实数的运算;零指数幂.分析:原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,最后一项利用立方根定义化简,计算即可得到结果.解答:解:原式=3+1﹣3=1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17. (2014•株洲)计算:+(π﹣3)0﹣tan45°.考点:实数的运算;零指数幂;特殊角的三角函数值.分析:原式第一项利用平方根定义化简,第二项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=4+1﹣1=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18. (2014•泰州)(1)计算:﹣24﹣+|1﹣4sin60°|+(π﹣)0;(2)解方程:2x2﹣4x﹣1=0.考点:实数的运算;零指数幂;解一元二次方程-公式法;特殊角的三角函数值.分析:(1)原式第一项利用乘方的意义化简,第二项化为最简二次根式,第三项利用特殊角的三角函数值及绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果;(2)找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.解答:解:(1)原式=﹣16﹣2+2﹣1+1=﹣16;(2)这里a=2,b=﹣4,c=﹣1,∵△=16+8=24,∴x==.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.19.(2014•扬州)(1)计算:(3.14﹣π)0+(﹣)﹣2﹣2sin30°;(2)化简:﹣÷.考点:实数的运算;分式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果;(2)原式第二项利用除法法则变形,约分后两项利用同分母分式的减法法则计算即可得到结果.解答:解:(1)原式=1+4﹣1=4;(2)原式=﹣•=﹣=.点评:此题考查了实数的运算,以及分式的混合运算,熟练掌握运算法则是解本题的关键.20.(2014•呼和浩特)计算:2cos30°+(﹣2)﹣1+|﹣|考点:二次根式的混合运算;负整数指数幂;特殊角的三角函数值.分析:(1)根据特殊角的三角函数、负指数幂运算、绝对值进行计算即可;解答:解:(1)原式=2×++=﹣(+2)+=﹣点评:本题考查了二次根式的混合运算、负指数幂运算以及特殊角的三角函数值,是基础知识要熟练掌握.21.(2014•菏泽)计算:2﹣1﹣3tan30°+(2﹣)0+考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.。
2014年全国各地中考数学真题分类解析汇编:41 开放性问题

开放性问题
一、选择题
二.填空题
1. (2014•湘潭,第13题,3分)如图,直线a、b被直线c
所截,若满足∠1=∠2,
则a、b平行.[来源:学|科|网]
(第1题图)
考点:平行线的判定.[来源]
专题:开放型.
分析:
[来源]
根据同位角相等两直线平行可得∠1=∠2时,a∥B.
解答:解:∵∠1=∠2,[来源:学§科§网]
∴a∥b(同位角相等两直线平行),
故答案为:∠1=∠2.
点评:此题主要考查了平行线的判定,关键是掌握同位角相等两直线平行.[来源:学§科§网]
2.(2014•滨州,第14题4分)写出一个运算结果是a6的算式a2•a4.[来源:学科网]
考点:幂的乘方与积的乘方;同底数幂的乘法;同底数幂的除法
专题:开放型.
分析:根据同底数幂的乘法底数不变指数相加,可得答案.[来源:学科
网]
解答:[来源]解:a2•a46,
故答案为:a2•a46.
点评:本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相
加.。
2014年全国各地中考数学试题分类汇编答案
2014年全国各地中考数学试题分类汇编—— 一次函数一、选择题1、A2、B3、B4、C5、C6、C7、B二、填空题1、x 2-2、3y x =3、 x <24、15、(20)(40)-,,,.6、167、3y x = 三、解答题1、解:(1)设此一次函数解析式为.y kx b =+ 则1525,2020.k b k b +=⎧⎨+=⎩解得k =-1,b =40. 即一次函数解析式为40y x =-+.(2)每日的销售量为y =-30+40=10件, 所获销售利润为(30-10)×10=200元2、解:(1)设y kx b =+.由图可知:当4x =时,10.5y =;当7x =时,15y =.把它们分别代入上式,得 10.54,157.k b k b =+⎧⎨=+⎩, 解得 1.5k =, 4.5b =.∴ 一次函数的解析式是 1.5 4.5y x =+.(2)当4711x =+=时, 1.511 4.521y =⨯+=.即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm .3、解:设s =kt +b ,则90680b k b =⎧⎨+=⎩,解得:5390k b ⎧=-⎪⎨⎪=⎩,所以s =-53t +90 4、解:(1)小李3月份工资=2000+2%×14000=2280(元)小张3月份工资=1600+4%×11000=2040(元)(2)设2y kx b =+,取表中的两对数(1,7400),(2,9200)代入解析式,得274001800560092002,k b k y x k b b =+⎧⎧=+⎨⎨=+⎩⎩=1800 解得 即=5600(3)小李的工资120002%(120010400)242208w x x =++=+小李的工资216004%(18005600)721824w x x =++=+当小李的工资211824242208w w x x >+>+时,即72解得,x>8答:从9月份起,小张的工资高于小李的工资。
2014年全国各地中考数学真题分类解析汇编:34 正多边形与圆(2)
正多边形与圆一、选择题1. ( 2014•广西玉林市、防城港市,第11题3分)蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△的顶点都在格点上.设定边如图所示,则△是直角三角形的个数有( )A . 4个B . 6个C . 8个D . 10个考点: 正多边形和圆.分析: 根据正六边形的性质,分是直角边和斜边两种情况确定出点C 的位置即可得解.解答: 解:如图,是直角边时,点C 共有6个位置, 即,有6个直角三角形,是斜边时,点C 共有2个位置,即有2个直角三角形,综上所述,△是直角三角形的个数有6+2=8个.[来源]故选C .[来源:学科网][来源] [来源:学科网]点评:[来源:学|科|网]本题考查了正多边形和圆,难点在于分是直角边和斜边两种情况讨论,熟练掌握正六边形的性质是解题的关键,作出图形更形象直观.2.(2014年天津市,第6 题3分)正六边形的边心距为,则该正六边形的边长是( ) A . B . 2 C . 3 D . 2[来源:学§科§网]考点:正多边形和圆.[来源:学科网]分析:运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理解决.解答:解:∵正六边形的边心距为,∴,,[来源]∵222,∴2=()2+()2,[来源:学&科&网]解得2.故选B.点评:本题主要考查了正六边形和圆,注意:外接圆的半径等于正六边形的边长.二.填空题1. (2014年江苏南京,第12题,2分)如图,是正五边形的一条对角线,则∠.(第1题图)考点:正多边形的计算分析:设O是正五边形的中心,连接、,求得∠的度数,然后利用圆周角定理即可求得∠的度数.解答:设O是正五边形的中心,连接、.则∠×360°=144°,∴∠∠72°,故答案是:72°.点评:本题考查了正多边形的计算,正确理解正多边形的内心和外心重合是关键.。
全国各地2014年中考数学试卷解析版分类汇编 二次根式
二次根式一、选择题1. (2014•某某,第1题4分)计算的结果是( ) A .B .C .D . 3考点: 二次根式的乘除法.分析: 根据二次根式的乘法运算法则进行运算即可. 解答: 解:•=,故选:B . 点评: 本题主要考查二次根式的乘法运算法则,关键在于熟练正确的运用运算法则,比较简单.2. (2014•某某某某,第4题3分)要使式子有意义,则m 的取值X 围是( )A .m >﹣1B . m ≥﹣1C . m >﹣1且m ≠1D . m ≥﹣1且m ≠1考点:二次根式及分式的意义.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的X 围. 解答:根据题意得:,解得:m ≥﹣1且m ≠1.故选D .点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数. 3. (2014•某某潍坊,第5题3分)若代数式2)3(1-+x x 有意义,则实数x 的取值X 围是( ) A.x ≥一1 B .x ≥一1且x ≠3 C.x >-l D .x >-1且x ≠3 考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的X 围.解答:根据题意得:⎩⎨⎧≠-≥+0301x x 解得x ≥-1且x ≠3.故选B.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.4. (2014•某某某某,第14题3分)在函数中,自变量x的取值X围是.考点:二次根式及分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.(2014•某某某某,第6题,3分)若+(y+2)2=0,则(x+y)2014等于()A.﹣1 B.1C.32014 D .﹣32014考点:非负数的性质:算术平方根;非负数的性质:偶次方.分析:根据非负数的性质列出方程求出x 、y的值,代入所求代数式计算即可.解答:解:∵+(y+2)2=0,∴,解得,∴(x+y)2014=(1﹣2)2014=1,故选B.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.6. (2014•某某聊城,第5题,3分)下列计算正确的是()A .2×3=6B .+=C.5﹣2=3D.÷=二次根式的加减法;二次根式的乘除法.考点:分根据二次根式的乘除,可判断A、D,根据二次根式的加减,可判断B、C.析:解答:解:A、2=2×=18,故A错误;B、被开方数不能相加,故B 错误;C、被开方数不能相减,故C错误;D、==,故D正确;故选:D.点评:本题考查了二次根式的加减,注意被开方数不能相加减.7. (2014•某某某某,第4题3分)若式子在实数X围内有意义,则x的取值X围是()A.x≤﹣4 B.x≥﹣4 C.x≤4D.x≥4考点:二次根式有意义的条件分析:二次根式有意义,被开方数是非负数.解答:解:依题意知,x﹣4≥0,解得x≥4.故选:D.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.8. (2014•某某某某,第4题3分)下列运算中错误的是()A .+=B.×=C.÷=2 D.=3 考点:二次根式的乘除法;二次根式的加减法.分析:利用二次根式乘除运算法则以及加减运算法则分别判断得出即可.解答:解:A、+无法计算,故此选项正确;B、×=,正确,不合题意;C、÷=2,正确,不合题意;D、=3,正确,不合题意.故选:A.点评:此题主要考查了二次根式的加减乘除运算,熟练掌握运算法则是解题关键.9. 1.(2014•年某某东营,第1题3分)的平方根是()A.±3B. 3 C.±9D.9考点:平方根;算术平方根.分析:根据平方运算,可得平方根、算术平方根.解答:解:∵,9的平方根是±3,故答案选A.点评:本题考查了算术平方根,平方运算是求平方根的关键.10.(2014•年某某东营,第2题3分)下列计算错误的是()A.3﹣=2B.x2•x3=x6C.﹣2+|﹣2|=0 D.(﹣3)﹣2=考点:二次根式的加减法;有理数的加法;同底数幂的乘法;负整数指数幂.分析:四个选项中分别根据二次根式的加减法求解,同底数幂的乘法法则求解,绝对值的加减法用负整数指数幂的法则求解.解答:解:A,3﹣=2正确,B,x2•x3=x6 同底数的数相乘,底数不变指数相加,故错,C,﹣2+|﹣2|=0,﹣2+2=0,正确,D,(﹣3)﹣2==正确.故选:B.点评: 本题主要考查了二次根式的加减法,同底数幂的乘法,绝对值的加减法,负整数指数幂,解题的关键是根据它们各自和法则认真运算.11.(2014•某某某某,第7题4分)若()2m 1n 20-++=,则m n +的值是【 】A .1-B .0C .1D .212.(2014•某某某某、某某,第4题3分)下列计算错误的是( ) A . •=B . +=C .÷=2D . =2考点: 二次根式的混合运算.分析: 利用二次根式的运算方法逐一算出结果,比较得出答案即可. 解答: 解:A 、•=,计算正确;B 、+,不能合并,原题计算错误;C 、÷==2,计算正确;D 、=2,计算正确.故选:B . 点评: 此题考查二次根式的运算方法和化简,掌握计算和化简的方法是解决问题的关键.6.7. 8. 二、填空题1.(2014•某某抚州,第9题,3分)计算:273-=-------------23.解析:-=-273333=23.2. (2014•某某11.(4分))+= 4.考点: 二次根式的加减法分析: 先化简,然后合并同类二次根式. 解答: 解:原式=3+=4.故答案为;4.点评:本题考查了二次根式的加减法,掌握二次根式的化简是解答本题的关键.3. (2014•某某某某,第10题3分)使有意义的x 的取值X 围是x≥2.考点: 二次根式有意义的条件.分析: 当被开方数x ﹣2为非负数时,二次根式才有意义,列不等式求解.解答: 解:根据二次根式的意义,得 x ﹣2≥0,解得x≥2. 点评: 主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义. 4.(2014•某某凉山州,第15题,4分)已知x 1=+,x 2=﹣,则x 12+x 22= 10 .考点: 二次根式的混合运算.分析: 首先把x 12+x 22=(x 1+x 2)2﹣2x 1x 2,再进一步代入求得数值即可. 解答:解:∵x 1=+,x 2=﹣,∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2 =(++﹣)2﹣2(+)(﹣)=12﹣2 =10.故答案为:10.点评:此题考查二次根式的混合运算,把代数式利用完全平方公式化简是解决问题的关键.5.(2014•某某某某,第13题4分)计算:()()2121+-=.6.(2014•某某某某、某某,第16题4分)已知x 、y 为实数,且y =﹣+4,则x ﹣y =. 考点: 二次根式有意义的条件.专题: 计算题.分析: 根据一对相反数同时为二次根式的被开方数,那么被开方数为0可得x 可能的值,进而得到y 的值,相减即可. 解解:由题意得x 2﹣9=0,答:解得x=±3,∴y=4,∴x﹣y=﹣1或﹣7.故答案为﹣1或﹣7.点评:考查二次根式有意义的相关计算;得到x可能的值是解决本题的关键;用到的知识点为:一对相反数同时为二次根式的被开方数,那么被开方数为0.。
2014年全国中考数学真题分类解析汇编(整式与因式分解)
2014年全国中考数学真题分类解析汇编(整式与因式分解)
一、选择题1. ( 2014 安徽省,第2题4分)x2ox3=()A. x5 B. x6 C. x8 D. x9考点同底数幂的乘法.分析根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即amoan=am+n计算即可.解答解x2ox3=x2+3=x5.故选A.点评主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2. ( 2014 安徽省,第4题4分)下列四个多项式中,能因式分解的是()A. a2+1 B. a2﹣6a+9 C. x2+5y D. x2﹣5y考点因式分解的意义分析根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答解A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规律探索
一、选择题
1. (2014•山东威海,第12题3分)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,
∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2014的纵坐标为()
)
(
==3×
(
(
=3×
=3×
(
(
(
(
C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为( )
A.(—2012,2) B.(一2012,一2) C. (—2013,—2) D. (—2013,2)
考点:坐标与图形变化-对称;坐标与图形变化-平移.
专题:规律型.
分析:首先求出正方形对角线交点坐标分别是(2,2),然后根据题意求得第1次、2次、3次变换后的点M的对应点的坐标,即可得规律.
解答:∵正方形ABCD,点A(1,3)、B(1,1)、C(3,1).∴M的坐标变为(2,2)
∴根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),
第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),
第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),
第2014次变换后的点M的对应点的为坐标为(2-2014,2),即(-2012,2)
故答案为A.
点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.
3. (2014•山东烟台,第9题3分)将一组数,,3,2,,…,3,按下面的方式进行排列:
,,3,2,;
3,,2,3,;
…
若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()
A.(5,2)B.(5,3)C.(6,2)D.(6,5)考点:规律探索.
分析:根据观察,可得,根据排列方式,可得每行5个,根据有序数对的表示方法,可得答案.
解答:3=,3得被开方数是得被开方数的30倍,
3在第六行的第五个,即(6,5),故选:D.
点评:本题考查了实数,利用了有序数对表示数的位置,发现被开方数之间的关系是解
题关键.
4.(2014•十堰7.(3分))根据如图中箭头的指向规律,从2013到2014再到2015,箭头的方向是以下图示中的( )
,箭头的方向是5.(2014•四川宜宾,第7
题,3分)如图,将n 个边长都为2的正方形按如图所示摆放,点A 1,A 2,…A n 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是( )
6.(2014•四川内江,第12题,3分)如图,已知A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1、A2、A3、…、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,连接A1B2、B1A2、B2A3、…、A n B n+1、B n A n+1,依次相交于点P1、P2、P3、…、P n.△A1B1P1、△A2B2P2、△A n B n P n的面积依次记为S1、S2、S3、…、S n,则S n为()
=
,
.
6.
7.
8.
二、填空题
1. (2014•上海,第17题4分)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”
2. (2014•四川巴中,第20题3分)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4=.
考点:规律探索.
分析:由(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n﹣1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1.
解答:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.故答案为:a4+4a3b+6a2b2+4ab3+b4.
点评:本题考查了完全平方公式,学生的观察分析逻辑推理能力,读懂题意并根据所给的式子寻找规律,是快速解题的关键.
3.(2014•遵义16.(4分))有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是3.
4.(2014•娄底19.(3分))如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由3n+1个▲组
成.
5. (2014年湖北咸宁14.(3分))观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).
考点:算术平方根.
专题:规律型.
分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1n+1),可以得到第16个的答案.
(﹣1)2+1,…解答:解:由题意知道:题目中的数据可以整理为:,
(﹣1n+1),
∴第16个答案为:.
故答案为:.
点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.
6. (2014•江苏盐城,第18题3分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则S n 的值为24n﹣5.(用含n的代数式表示,n为正整数)
7. (2014•年山东东营,第18题4分)将自然数按以下规律排列:
表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为(45,12).
考点:规律型:数字的变化类.
分析:根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2014所在的位置.
解答:解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,
第一行的偶数列的数的规律,与奇数行规律相同;
∵45×45=2025,2014在第45行,向右依次减小,
∴2014所在的位置是第45行,第12列,其坐标为(45,12).
故答案为:(45,12).
点评:此题主要考查了数字的规律知识,得出第一列的奇数行的数的规律与第一行的偶数列的数的规律是解决问题的关键.
8.(2014•四川遂宁,第15题,4分)已知:如图,在△ABC中,点A1,B1,C1分别是BC、AC、AB的中点,A2,B2,C2分别是B1C1,A1C1,A1B1的中点,依此类推….若△ABC的周长为1,则△A n B n C n的周长为
.
的相似比为
的相似比为
的周长为.
故答案为
左向右排列,那么第2014个图形是□.
10.(2014•四川南充,第15题,3分)一列数a1,a2,a3,…a n,其中a1=﹣1,a2=,a3=,…,a n=,则a1+a2+a3+…+a2014=.
分析:分别求得a1、a2、a3、…,找出数字循环的规律,进一步利用规律解决问题.
解:a1=﹣1,a2==,a3==2,a4==﹣1,…,
由此可以看出三个数字一循环,2004÷3=668,
则a1+a2+a3+…+a2014=668×(﹣1++2)=1002.故答案为:1002.
点评:此题考查了找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律是解题的关键.
11.(2014•甘肃白银、临夏,第18题4分)观察下列各式:
13=12
13+23=32
13+23+33=62
13+23+33+43=102
…
猜想13+23+33+…+103=.
S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是.
故答案为:
13.(2014•广东梅州,第13题3分)如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,则点P3的坐标是;点P2014的坐标是.。