AFOS自动频率优化系统算法介绍

(完整版)win7系统优化方法(超级牛逼)

Win7优化 1、通过关闭特效,有效提高windows7的运行速度右键单击我的电脑-->属性-->高级系统设置-->性能-->设置-->视觉效果,留下五项"平滑屏幕字体边缘"、"启用透明玻璃"、"启用桌面组合"、"在窗口和按钮启用视觉样式"、"在桌面上为图标标签使用阴影",其余的把勾全拿了,可以马上感觉到速度快了不少,而视觉上几乎感觉不到变化。另外还可以勾选上“显示缩略图,而不是显示图标” 2、据说可提高文件打开速度10倍的设置控制面板-->硬件和声音-->显示【显示或缩小文本及其他项目】-->设置自定义文本大小(DPI)去掉“使用Windows XP 风格DPI 缩放比例”的勾选,确定。【按照提示,注销计算机】 3、轻松访问控制面板-->轻松访问-->轻松访问中心-->使计算机易于查看-->勾选“关闭所有不必要的动画(如果可能)” 4、更改“Windows资源管理器”的默认打开的文件夹启动参数的命令格式为:%SystemRoot%explorer.exe /e,〈对象〉/root, 〈对象〉/select, 〈对象〉开始-->所有程序-->附件-->Windows资源管理器-->右击-->属性-->“快捷方式”选项卡-->目标修改为“%windir%\explorer.exe /e, D:\Downloads”,确定。然后右击“Windows资源管理器”-->锁定到任务栏 5、修改“我的文档”、“桌面”、“收藏夹”、“我的音乐”、“我的视频”、“我的图片”、“下载”等文件夹的默认位置方法一:CMD-->regedit,修改

“[HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVers ion\Explorer\User Shell Folders]”方法二:系统盘-->用户-->“当前用户名”,分别右击上述文件夹-->属性-->位置-->移动 6、更改临时文件夹位置(%USERPROFILE%\AppData\Local\Temp) 右击“计算机”-->属性-->高级系统设置-->“高级”选项卡-->“环境变量”按钮-->X用户环境变量 7、更改“IE临时文件夹”位置IE-->Internet选项-->“常规”选项卡-->“设置”按钮-->“移动文件夹”按钮-->选择 8、系统自动登录cmd-->“control userpasswords2”-->去掉“要使用本机,用户必须输入用户名和密码”复选勾 9、关闭系统休眠 cmd-->“powercfg -h off” 10、去除历史纪录cmd-->“gpedit.msc”-->打开“本地组策略编辑器” (1)计算机配置-管理模板-系统-关机选项-关闭会阻止或取消关机(启动) (2)用户配置-->管理模板-->"开始"菜单和任务栏-->不保留最近打开的历史(启用) (3)用户配置-->管理模板-->"开始"菜单和任务栏-->退出系统时清除最近打开的文档的历史(启用) (4)用户配置→管理模板→Windows组件→Windows资源管理器→在Windows资源管理器搜索框中关闭最近搜索条目的显示(启用) 11、在任务栏同时显示“星期几”控制面板→时钟、语言和区域→区域和语言→更改日期、时间或数字格式,点击弹出窗口中的“更改

信息系统优化方案

4.5.1针对安得物流信息系统应该采取的措施和解决方案 2010年,随着安得业务的激速增长,对其信息发展规划也产生了新的需要;加之目前安得物流信息系统体系存在可扩展性较差、缺乏良好协同性、统一管控与个性化管理需求的矛盾等问题,因此,其物流信息系统的优化势在必行。总体来说,安得需要实现静态系统向动态系统转变、被动反应向主动支持发展、从事后分析进化到过程即时监控的飞跃。现将EMAP系统与RMS系统做为试点模型,以系统平台融合为架构发展思路,就安得物流信息系统优化措施坐一简要陈述。 4.5.2根据货件生命周期进行优化 根据货件生命质量周期的分析,货件在流转过程中有三方面的重要环节需要进行监控、预警和优化。 ●货件的收派过程 通过EMAP系统,应可以实现在货件收派过程中,对预收派货件、收派件人员、营运车辆进行三维坐标定位,对货件收派、收派件人员和营运车辆的工作状态、班次调拨的运行压力进行实时数据监控。同时,EMAP系统将这些实时数据同步传输至RMS系统,RMS根据预警规则与对策对数据进行实时分析,将对预收派货件时效异常、收派件人员工作状态异常、营运车辆的工作状态异常、班次调拨的分配异常进行即时的监控和预警,并提供问题分析和优化配置方案。 预警规则与对策应包括但不局限于: 人员和车辆短时间内产生大量劳动强度的预警,及其压力疏导方案; 人员和车辆于某坐标长期停留的预警,及其问题分析和优化方案; 人员和车辆非最优化或最合理路线运行与路线差错、油料数量异常的预警,及其优化方案; 人员和车辆运营中对现金流的收缴和结算异常预警,及其优化方案; 运营班次压力异常和调拨异常预警,及其优化配置方案; 货件收派数据错误、虚假的异常预警及其管控方案。 ●货件在中转场过程 通过EMAP系统,应可以实现在货件中转过程中,对货件在中转场位置、中转人员、移动或固定中转设备进行三维坐标定位,对货件中转和留存状态、中

启发式优化算法

启发式优化算法
Heuristic Optimization Algorithm
理论与应用 Theory & Application

内容纲要
? ?
优化问题与优化算法 常用的启发式优化算法
模拟退火算法 ? 遗传算法 ? 粒子群优化算法 ? 混合策略优化算法
?
?
讨论

优化问题
?
组合式优化问题
? ? ? ?
七桥问题 最短路径问题 公路连接问题 旅行商问题 无约束函数优化问题 有约束函数优化问题 函数优化+组合优化
?
函数优化问题
? ?
?
混合优化问题
?

七桥问题
?
Euler在1736年访问Konigsberg时,他发现Konigsberg城中有 一条名叫Pregel的河流,河上建有七座桥如图所示: 市民有 趣的消遣活动是星期六作一次走过所有七座桥的散步,每 座桥只能经过一次而且起点与终点必须是同一地点。
Impossible Task!

最短路径问题 SPP-shortest path problem
?
?
?
货柜车司机奉命在最短的时间内将一车货 物从甲地运往乙地。 从甲地到乙地的公路网纵横交错,因此有 多种行车路线,这名司机应选择哪条线路 呢? 假设货柜车的运行速度是恒定的,那么这 一问题相当于需要找到一条从甲地到乙地 的最短路。

公路连接问题
?
?
某一地区有若干个主要城市,现准备修建 高速公路把这些城市连接起来,使得从其 中任何一个城市都可以经高速公路直接或 间接到达另一个城市。 假定已经知道了任意两个城市之间修建高 速公路成本,那么应如何决定在哪些城市 间修建高速公路,使得总成本最小?

第5章频域分析法习题解答

第5章频域分析法 5.1 学习要点 1 频率特性的概念,常用数学描述与图形表示方法; 2 典型环节的幅相频率特性与对数频率特性表示及特点; 3 系统开环幅相频率特性与对数频率特性的图示要点; 4 应用乃奎斯特判据判断控制系统的稳定性方法; 5 对数频率特性三频段与系统性能的关系; 6 计算频域参数与性能指标; 5.2 思考与习题祥解 题5.1 判断下列概念的正确性 ω的正弦信号加入线性系统,这个系统的稳态输出也将是同 (1) 将频率为 一频率的。 M仅与阻尼比ξ有关。 (2) 对于典型二阶系统,谐振峰值 p (3) 在开环传递函数中增加零点总是增加闭环系统的带宽。 (4) 在开环传递函数中增加极点通常将减少闭环系统的带宽并同时降低稳定性。 (5) 对于最小相位系统,如果相位裕量是负值,闭环系统总是不稳定的。 (6) 对于最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (7) 对于最小相位系统,如果幅值裕量是负分贝值,闭环系统总是不稳定的。 (8) 对于非最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (9) 对于非最小相位系统,须幅值裕量大于1且相位裕量大于0,闭环系统才是稳定的。 (10) 相位穿越频率是在这一频率处的相位为0。 (11) 幅值穿越频率是在这一频率处的幅值为0dB。 (12) 幅值裕量在相位穿越频率处测量。 (13) 相位裕量在幅值穿越频率处测量。 (14) 某系统稳定的开环放大系数25 K<,这是一个条件稳定系统。 (15) 对于(-2/ -1/ -2)特性的对称最佳系统,具有最大相位裕量。 (16) 对于(-2/ -1/ -3)特性的系统,存在一个对应最大相位裕量的开环放大系数值。 (17) 开环中具有纯时滞的闭环系统通常比没有时滞的系统稳定性低些。 (18) 开环对数幅频特性过0分贝线的渐近线斜率通常表明了闭环系统的相对稳定性。 M和频带宽BW (19) Nichols图可以用于找到一个闭环系统的谐振峰值 p 的信息。

频率选择表面分析方法

频率选择表面的研究起始于上世纪60年代,国内外大批学者均为之投入了大量精力进行广泛深入的工作,提出了各种不同的数学分析与计算方法,如交分法,等效电路法,模式匹配法,谱方法等,这些计算方法主要可分为两大类,即标量分析方法与矢量分析方法。前者包括变分法,等效电路法等,其仅可通过计算获得关于反射透射系数的幅度信息,通用性差,但计算量小,耗时短;后者包括模式匹配法,谱方法等,其通过计算不仅可获得反射透射系数的幅度信息,还可以获得相关的相位与极化信息,通用性强,但计算量大且耗时长。 值得一提的是,国内研究目前普遍采用模式匹配法进行计算分析,该方法不仅适用于求解任意单元形 状及排列方式的无限大平面FSS 结构,还可应用于多层的FSS 以及均匀层状衬底等组合结构。但这种方法 依然存在不足,即处理复杂多层FSS 时计算量非常大,而且在数值求解过程中,选择适合复杂单元形状的 基函数非常困难,因而难以保证解的收敛速度,降低了有效性。 与一般模式匹配法相比,谱方法原理上也能分析任意单元形状的FSS 结构,在求解无限大FSS 问题时 与模式匹配法相当,该方法在求解过程中要求选取合适的基函数来保证收敛性,但可直接用于求解有耗FSS 的散射问题,与迭代技术相结合可以求解有限尺寸的FSS 散射问题。并且谱方法利用了场的周期性,注意 电流分布的周期性特征,所以求解模型简单,计算量小,是一种很好的方法。 谱展开法 在周期性结构的分析中,谱展开法是一种重要的分析方法。 Floquet 定理; 一维周期结构如图2.5所示。设入射平面波z TM ()0j wt z E E e ?-= 则空间沿x 方向相距为m 个周期的两点之间场为 cos ,(,,)x jm D x x mD y w x y w e βθ-ψ( +,) =ψ 式中ψ 为电磁场的某一分量。m 为一整数,β为传播常数,x D 为沿x 方向的周期长度,θ为入射角,上式即是Floquet 定理。 如果这个周期结构的单元是偶极子等贴片型类型,则入射场在单元上将感应出电压,并产生电流,如果我们将其中一个单元的电流作为基准单元电流(表示为0I ),则距它m 个周期的单元电流表示为m I 。根据Floquet 定理,两者的关系为 cos 0x j mD m I I e βθ-=

启发式算法研究小结

启发式算法研究小结 0.探究启发式算法的缘由 在选《管理优化决策》这门课的时候,我抱着很强的好奇心和巨大的求知欲,试图尝试在这门课上学到我感兴趣的知识点以及确定我今后极有可能的研究领域和大方向。很幸运的是,我找到了。为什么这么说呢?就在我选择博士专业内选修课和专业外选修课的同时我发现了管理优化决策这门课和计算机学院那边开的选修课——《启发式优化》(由吕志鹏教授讲授),有很多是相通的,发现管理界尤其是在管理科学与工程方向和计算机技术应用领域所探究的问题出奇的一致,已经很难分清,哪个是管理方面的问题,哪个是计算机技术应用的范围了。正如各位都知道的是,由于选修课最终确定前一个月是可以去试听的,然而我并没有因为两者看上去内容有些相似就匆忙退选。通过对这两门课的内容进行比较,它给了我很大的触动,也带给我巨大的好奇,到底是管理方面的研究越来越偏向运用计算机等其他学科的知识和工具,还是计算机应用研究的方面越来越偏向实际的管理优化问题了呢?亦或者两个学科的边界正在走向模糊?我想学科交叉和融合的这一说法对于我来说可能并不是很新鲜,但这的确是我亲身经历的一种美妙体验和发现。它带给我新奇的同时也无疑给了我值得我深思几点的启示: 首先,众所周知,管理学科作为一门交叉的新兴学科,它的方法和工具都是依托和借助其他领域和学科而来的,它本身并没有或者几乎没有一个完完整整的只属于管理学科的方法和工具,几乎是其它学科的知识演变而来的,这就是我们所知道的学科交叉和学科融合;然而管理领域和传统计算机研究等领域的视角并不完全一样,其中对于计算机领域的研究者们而言,他们不但在乎启发式算法是否能够解决问题、效率是否大幅提高(而管理领域的专家们更在乎这点,能用第一,好用第二,或者说管理专家们更在乎第一点——问题能够得到的解决,至于第二点就不是那么迫切。而对计算机领域的向专家们而言,可以说两者都非常重要、要求非常苛刻),更在乎它所表现出来的优越特性(就时间、空间复杂度以及算法求解过程中保持一定的集中性和分散性而言的)。然而当管理领域的学者们求解类似问题,一般来说都是和我们生活中的管理者经常遇到且直接和的决策相关的问题,因为由于管理者的决策质量好坏会往往直接导致企业和团体的效率和绩效和高低,进而导致企业和组织的竞争力强弱,所以一般企业或者个人都是基于一定的价值诉求来解决管理问题,进而提高工作效率。由于管理者们非常了解生活中并不存在完完全全的理性人和完全信息,因此他们很难也极少去尝试寻找最优解,找到满意解就可以了,这一点和启发式算法的设计思想不谋而合(由于

启发式开料算法

开料介绍以及启发式算法研究 目前针对PCB行业没有存在可以异形拼版的软件。但是有部分软件可以满足此功能都是应用在其他的行业,如果钢材切割,玻璃。五金之类的行业,这个些行业与PCB的拼版要求有很多工艺上的不一致。比如在钢材比较注重实际的利用率,玻璃行业在留下余料的时候需要考虑加工上的一些可行性。还有就是卷材行业有也类似应用。 下面针对启发式算法做些了初步的探讨 算法分析 问题说明: 一般的开料算法可以简单的表示成如下数学语言: 开料问题是寻找平面最优布局的优化问题,即将一系列二维不规则零件P1,P2,…Pn 合理地排放在原料板 B 中,使材料的利用率(使用面积总和/占用得原料板面积)最高,并满足下面的约束条件; l)料Pi,Pj 互不重叠:i,j=l,2,…n。 2)料Pi 必须放在原料板B 中:i=1,2,…n。 3)满足一定的排样要求。 4)满足加工的便捷以及可能性。 开料问题可以从两个方面加以说明,一个是开料过程中的几何问题,主要是针对规则或者不规则形状的零件,如何确定物料的最佳排放位置,检测物料位置的合理性以及相关算法。 另一个是物料的调度问题,即如何从参加物料的物料库中选出最优的物料零件,如何得到一个优化的物料排样顺序。无论是几何问题还是调度问题,都是非常复杂的问题。这种复杂性一方面来源于物料形状的不规则性,同时也与参与物料零件的多样性以及零件的批量、生产周期、排样方向性要求等有关。这些因素相互没有明确逻辑关系,也很难达到一个预期的全局最优解。在很多情况下,得到的结果都是局部最优解或者是次优解,当然如果只是针对PCB行业,在物料的多样性比其他的开料可能相对比较简单些,一般不会有太多的料需要进行一起拼版,一般针对开料优化搜索算法有启发式搜索算法、人工神经网络算法、模拟退火算法、遗传算法或者他们的组合来解决开料问题。也有这些算法的结果进行比较与分析,以寻求一种最好的优化算法。然而,研究结果表明这些开料算法的开料效率运行时间极长,利用率没有手工开料的高。也有开始从料的形状着手,通过求解任意多边形的临界多边形(NFP)来研究开料问题。目前的

系统优化方法(《生活与哲学》)

《生活与哲学》第七课重难点解析 掌握系统优化的方法 一. 系统的含义及基本特征 系统是相互联系、相互作用的诸要素构成的统一整体。要素是组成系统整体的各个部分。无论是自然事物还是社会事物,包括人们的思想意识,一般都是以系统的方式而存在的。每一事物或过程,因其内在要素相互联系而形成小系统,又同周围的其他事物相互联系,构成更大的系统。如:在自然界中,每一个细胞都是由细胞核、细胞质、细胞膜等组成的系统;每一个生物体也都是由细胞组成的系统;每一个生物种属和生物群落也都自成系统。在人类社会中,每一个人都同他人结成层次不同的系统,如家庭、乡村、政党、民族、国家等。人类社会就是由生产力和生产关系、经济基础和上层建筑等要素组成的系统。 系统的基本特征主要有:(1)整体性。任何系统都是由各个要素相互联接、相互作用而构成的有机整体。整体性是系统的本质特征。这种整体性表现为,系统对外来作用能作为一个统一的整体作出反应,而不管它作用于哪一部分;同时,系统作为一个整体,具有它的各个要素都不单独具有的功能和性质。整体的新功能来自于各个要素的相互作用和结构优化,即“整体功能大于部分功能之和”。(2)有序性。系统内部结构具有层次等级式的组织化特征,每一系统都是由若干要素按照一定的秩序、方式或比例组合而成。系统中的各个要素各有其特定的位置、顺序和规则。结构稳定,系统就相对稳定;结构变化,系统的性质和功能就发生相应的变化。如整个社会就是一个大系统,随着我国经济的不均衡发展和社会内部结构的变化,影响社会发展的不稳定因素也在增加。构建和谐社会的发展策略也就应势而出。(3)内部结构的优化趋向。从系统的整体发展方向来看,系统的形成是从无序向有序、从低级有序向高级有序的不断演化过程。结构有序合理,会促进系统的发展,结构失序或不合理则阻碍系统的发展。因此,要注重系统内部结构的优化趋向。为促进系统的法则功能状态的提高,就要不断调整、完善和优化系统的结构。除上述特征外,系统还有层次性、开放性、关联性等。 综上所述,我们在把握系统优化的方法时,要注意这样三点:1.要着眼于事物的整体性,从整体上把握系统的功能和性质;2.要注意遵循系统内部结构的有序性;3.要注重系统内部结构的优化趋向。 二、掌握系统优化的意义 掌握系统优化的方法对于我们认识世界和改造世界都具有重要的指导意义。 首先,从认识世界来说,系统优化的方要求我们用综合的思维方式来认识事物。既要着眼于事物的整体,从整体出发认识事物和系统,又要把事物和系统的各个要素联系起来进行考察,在联系中把握各要素,把握事物整体,统筹考虑,优化组合,最终形成关于此事物的完整的、准确的认识。 从改造世界来说,系统优化方法要求处理和解决问题是要着眼于整体功能状态的优化,做到从整体出发,统筹全局,寻求最优目标。在工作实践中,要注重系统内部结构的优化趋向,实现整体功能大于部分功能之和。如在经济和社会发展中,社会发展是一个系统工程。经济发展和人口、资源、环境、社会保障等必须相互配合,东部地区的快速发展必须和西部大开发、东北老工业基地的振兴、中部地区的崛起协调共进,物质文明、精神文明、政治文明应该共同进步。所有

系统优化方案

拿到了新的本本,换装了新的系统,可是用起来还不是特别的带劲,那么简单的设置一下,或许可以给你带来更加给力的感觉! 好下面进入主题 以下方法请根据自己的需要来使用!因为关闭一些东西就会导致不可使用,如果你要使用就自行决定!自括号内出自论坛置顶帖 【1、关闭虚拟内存(4g内存以上) 右键点击我的电脑,选择属性,然后选择左边的高级系统设置,在高级菜单下点击第一项性能的设置按钮,在性能选项框中再点击高级,然后点击下面的虚拟内存的更改按钮,最后选择系统所在的分区,然后点击选择下面的无分页文件,点击确认,最后一步一步确认退出即可。重启系统后,你就会发现虚拟内存不见了,C盘也瘦身了3~4G了。 2、关闭系统休眠 打开C:\Windows\System32目录,找到cmd.exe,右键点击以管理员身份运行,输入powercfg -h off然后回车即可。使用Windows7优化大师亦可以。 3、关闭系统还原并删除还原点 打开我的电脑熟悉-高级系统设置后,选择系统保护菜单,选中C盘(默认就系统盘打开),点击配置,就可以对系统还原进行关闭并清除还原

点操作了。 4、系统服务优化: 强烈建议禁用以关闭的系统服务: 1、Superfetch 2、Program Capability Assistant Service 3、Shall Hardware Detection 4、Windows Defender 5、Windows Search 6、Security Center 7、Windows Time 8、Windows Backup 可以关闭的服务(可关可不关): 1、Internet Connection Sharing (ICS) 2、IPsec Policy Agent 3、Media Center Extender Service 4、Net.Tcp Port Sharing Service 5、Remote Desktop Configuration 6、Remote Desktop Services 7、Remote Registry 8、Routing and Remote Access

启发式优化算法综述

启发式优化算法综述 一、启发式算法简介 1、定义 由于传统的优化算法如最速下降法,线性规划,动态规划,分支定界法,单纯形法,共轭梯度法,拟牛顿法等在求解复杂的大规模优化问题中无法快速有效地寻找到一个合理可靠的解,使得学者们期望探索一种算法:它不依赖问题的数学性能,如连续可微,非凸等特性; 对初始值要求不严格、不敏感,并能够高效处理髙维数多模态的复杂优化问题,在合理时间内寻找到全局最优值或靠近全局最优的值。于是基于实际应用的需求,智能优化算法应运而生。智能优化算法借助自然现象的一些特点,抽象出数学规则来求解优化问题,受大自然的启发,人们从大自然的运行规律中找到了许多解决实际问题的方法。对于那些受大自然的运行规律或者面向具体问题的经验、规则启发出来的方法,人们常常称之为启发式算法(Heuristic Algorithm)。 为什么要引出启发式算法,因为NP问题,一般的经典算法是无法求解,或求解时间过长,我们无法接受。因此,采用一种相对好的求解算法,去尽可能逼近最优解,得到一个相对优解,在很多实际情况中也是可以接受的。启发式算法是一种技术,这种技术使得在可接受的计算成本内去搜寻最好的解,但不一定能保证所得的可行解和最优解,甚至在多数情况下,无法阐述所得解同最优解的近似程度。 启发式算法是和问题求解及搜索相关的,也就是说,启发式算法是为了提高搜索效率才提出的。人在解决问题时所采取的一种根据经验规则进行发现的方法。其特点是在解决问题

时,利用过去的经验,选择已经行之有效的方法,而不是系统地、以确定的步骤去寻求答案,以随机或近似随机方法搜索非线性复杂空间中全局最优解的寻取。启发式解决问题的方法是与算法相对立的。算法是把各种可能性都一一进行尝试,最终能找到问题的答案,但它是在很大的问题空间内,花费大量的时间和精力才能求得答案。启发式方法则是在有限的搜索空间内,大大减少尝试的数量,能迅速地达到问题的解决。 2、发展历史 启发式算法的计算量都比较大,所以启发式算法伴随着计算机技术的发展,才能取得了巨大的成就。纵观启发式算法的历史发展史: 40年代:由于实际需要,提出了启发式算法(快速有效)。 50年代:逐步繁荣,其中贪婪算法和局部搜索等到人们的关注。 60年代: 反思,发现以前提出的启发式算法速度很快,但是解得质量不能保证,而且对大规模的问题仍然无能为力(收敛速度慢)。 70年代:计算复杂性理论的提出,NP问题。许多实际问题不可能在合理的时间范围内找到全局最优解。发现贪婪算法和局部搜索算法速度快,但解不好的原因主要是他们只是在局部的区域内找解,等到的解没有全局最优性。由此必须引入新的搜索机制和策略。 Holland的遗传算法出现了(Genetic Algorithm)再次引发了人们研究启发式算法的兴趣。 80年代以后:模拟退火算法(Simulated Annealing Algorithm),人工神经网络(Artificial Neural Network),禁忌搜索(Tabu Search)相继出现。 最近比较火热的:演化算法(Evolutionary Algorithm), 蚁群算法(Ant Algorithms),拟人拟物算法,量子算法等。

计算机系统优化方法

由于目前技术以及其他因素的限制,主流配置的笔记本电脑仍然与主流台式机的性能有相当的差距,这差距表现出来的就是流畅度,因此许多用惯了台式机的用户对笔记本电脑的性能嗤之以鼻,认为笔记本是高价低能的代名词,对此要说的是:NO! 第一步 首先,从系统下手,如今XP系统已经普及,但由于XP系统的卖点就是绚丽的操作界面,这都是以牺牲性能为代价的,对于笔记本,可以对一些效果适当的进行删减。 右键点击“我的电脑”,然后“属性”---“高级”---“性能”---“视觉效果”,这里选择“调整为最佳性能”,用户如果需要一些效果的话可以选择自定义来手动调整。 仍然在“性能”分页,选择“高级”,打开“虚拟内存”子页,这里把虚拟内存的大小调整为本机物理内存的2倍—3倍,然后应用,确定,退出此页。 第二步 现在打开开始菜单,选择运行,输入“gpedit.msc”; 进入组策略编辑器。 依次打开“计算机配置”—“管理模板”—“网络”—“QoS数据包计划”—“限制可保留带宽”,选择“起用”,在下面的输入栏里把20改成0,这样可以把系统自己占用的20%带宽解放出来。

回到组策略编辑器的主界面,依次打开“用户配置”—“管理模板”—“任务栏和开始菜单”,找到“关闭用户跟踪”一项,选择“启用”,确定,退出。 第三步

打开开始菜单,选择运行,输入“regedit”;进入注册表编辑器(请做好备份工作)。 1、基于CPU的纂改,找到 HKEY_LOCAL_MACHINE—SYSTEM—CurrentControlSet—Control—SessionManager--Memory Management--SecondLevelDataCache然后按照你的本本CPU 的情况修改,若你的本本CPU是CeleronA或Celeron2,就将其果断的改为128;是Mobile PⅡ或PⅢ,就改为256;若是Mobile PIV或是迅驰,那么就修改为512。你可以看出这是内存的参数,没错,这是CPU的二级缓存,与内存参数大同小异。 2、基于读盘速度的纂改,找到 HKEY_LOCAL_MACHINE—SYSTEM—CurrentControlSet—Control-- SessionManager--Memory Management—PrefetcHParameters--EnablePrefetcher然后将数值修改为3。照例重启,你也可以再向更大的数字改动,变化就是速度是令你大跌眼镜,速度快的让你连界面都看不清,就像流星一样!(256兆内存建议设为3,512兆及以上建议设为5) 3、基于弹出菜单的纂改,找到HKEY_CURRENT_USER--Control PanelDesktopMenuShowDelay将数字值改为0就OK了,重新启动,你看看菜单有何变化! 4、基于清楚无用程序的纂改,找到 HKEY_LOCAL_MACHINE—SOFTWARE—Microsoft—Windows—CurrentVersion—Explorer新创建一个名为AlwaysUnloadDLL子键。将名字设置为双字节1的,然后重新启动,这个篡改的目的是清除没有用的DLL程序文件,以达到提升系统速度的目的! 5、基于系统的纂改,找到 HKEY_LOCAL_MACHINE—SYSTEM—CurrentControlSet—Control—SessionManager--Memory Management--LargeSystemCache,将0改成1,这里要值得一提的是,前提是你的本子内存必须是大于等于256MB的,才可以看到效果! 6、基于CMOS时钟的纂改,找到 HKEY_LOCAL_MACHINE—System—CurrentControlSet—Control --PriorityControl在里面重新创建一个名为IRQ8Priority的双字节值,并设为1。重新启动,你主板的性能就会提高了! 7、基于自动关机的纂改,找到HKEY_CURRENT_USER--Control Panel--Desktop将里面的AugoEndTasks键值修改为1。这下就可以消灭恼人的“是否关机”的对话框了,它的消失对于系统来说,真是如释重负!

优化算法开题报告

篇一:基于粒子群算法的电力系统无功优化开题报告 附件 基于粒子群算法的电力系统无功优化 一、选题背景及其意义 电力系统无功优化,一般是指在满足电网的安全运行约束的前提下,通过变压器分接头的合理选择,发电机机端电压的理想配合以及无功补偿的优化配置等措施,使系统无功潮流达到最优分布,减少有功损耗。它对于提高系统电压质量,减少有功损耗,保证系统安全、可靠和经济运行有重要意义。 在我国,随着电力系统的迅速发展,电网规模越来越大,结构也日趋复杂,使系统的稳定性问题更加突出,而单凭经验进行无功配置已不能适应现代系统的需要,需要在现代电子与计算机技术的基础上,研究建立无功优化的数学模型、提出相应的算法,在电网的规划建设和实际调度运行中实现无功优化,并在满足电网安全运行条件下,减少有功损耗和投资。同时对于电力公司而言,减少有功网损就是增加利润,在电力公司由粗放型经营向集约化经营方式转变的今天,进行无功优化就显的更加必要和重要了。本论文通过分析电力系统无功优化中各类主要影响因素,结合当前电力系统无功优化主要的研究方法,建立电力系统无功优化的数学模型。采用智能优化算法——粒子群算法求解数学模型,选取实际的电网作为计算算例,得到无功优化的结果,并与优化前的无功配置方案进行对比,分析粒子群算法在无功优化应用中的优缺点,为今后实际电网的无功规划提供一定的参考价值。 二、国内外研究动态 早在六十年代,电力系统无功优化就受到了国内外学者的关注,经过多年的研究,已经取得了大量成果。总的来看,电力系统的无功优化问题可以分为两类:一类是对系统稳态运行情况下的运行状态进行优化,目的是进行无功平衡,以提高运行电压水平、降低损耗;另一类是研究系统在扰动情况下的电压稳定性。前者根据所研究问题的时间跨度、目标函数和解决方法又可以进一步细分。本文的研究内容为稳定运行时的无功优化及电压控制,不涉及暂态和动态情况下的电压稳定性。 电力系统无功优化问题有离散性、非线性、大规模、收敛性依赖于初值的特点,针对无功优化的特点,近年来许多专家学者就此做了大量的研究,并将各种优化算法应用于这一领域,目前已取得了许多成果。文献[3]提出将一种改进的 tabu 搜索算法用于电力系统无功优化,考虑有功损耗费用和补偿费用,使得总费用最小。在一般的 tabu 搜索算法的基础上,对搜索步长、禁忌表、不同循环点的选择以及算法终止判据等问题做了改进,更容易跳出局部最优解,保证可以搜索整个可行域,从而得到全局最优解的可能性更大。与线性规划算法相比具有更强的全局寻优能力。文献[4]运用改进的模拟退火算法求解高中压配电网的无功优化问题,采用了记忆指导搜索方法来加快搜索速度。采用模拟法来进行局部寻优以增加获得全局最优解的可能性,从而能够以较大概率获得全局最优解,收敛稳定性较好。文献[5]提出了一种应用于电力系统无功规划优化问题的改进遗传算法,该算法采用十进制整数与实数混合的编码方式,在选择算子中使用最优保存策略,并对群体规模的选取加以改进。为了使解更快进入可行解域,作者提出了利用专家知识辅助搜寻可行解,并提出罚因子自适应调整,大大加快了算法的收敛性。 相对模拟退火算法、禁忌搜索算法和遗传算法而言,粒子群算法是模拟鸟群觅食的一种新型算法。粒子群优化(pso) 最初是处理连续优化问题的, 目前其应用已扩展到组合优化问题[6]。由于其简单、有效的特点, pso 已经得到了众多学者的重视和研究,并在电力系统优化中得到广泛应用。文献[7]对粒子群算法经行了改进,用于变电站的选址;文献[8]采用粒子群算法优化分布式电源的接入位置和容量;文献[9]利用改进的粒子群算法进行网络重构的优化。从以上文献的研究可以看出,粒子群算法在求解优化问题时有其自身特有的诸多优点。

系统优化技术

SDD-1 算法原理 上个世纪,美国计算机公司实现的SDD-1 是世界第一套分布式数据库系统,虽然在之后又出现了很多不同版本的分布式数据库系统,但大多数都是建立在此模型基础之上。该系列的分布式数据库系统查询技术就是采用半连接操作技术,为了纪念该成果,后来人们将该系列分布式数据库中查询算法定义为分布式数据库SDD-1 查询算法,在详细介绍SDD-1 查询算法之前,先引入以下概念: 定义1 设有关系R和S,半连接操作R∝S的选择因子有以下公式: 其中card(πa(S))是以R和S的公共属性a对S做投影操作后的元组个数,其 card(S)是关系S的元组个数。 定义2设有关系R和S,半连接操作R∝S的效益有以下公式: 其中size(R)代表R的大小(以字节为单位)。 定义3 设有关系R和S,半连接操作R∝S的费用开销公式: 结果为真那么称此半连接R∝S为有益半连接。 定义5 最有益半连接:在定义4 的多个有益半连接中, 结果值最大的有益半连接称最有益半连接。 SDD-1 查询算法通过循环迭代获得最有益半连接,每次获得最有益半连接都 减少了网络数据传输量,最后选择数据量最大的站点作为数据装备站点。SDD-1 查询算法在执行时主要分两部分:首先执行基本算法,然后执行后优化算法。在 基本算法中,首先统计各半连接的效率、收益、费用等信息,利用这些统计信息 给出半连接缩减程序集,最后得出执行策略;在后优化算法中,修正基本算法得 出的执行策略,使最后的执行策略更高效。 SDD-1 查询基本算法是[24,27,42]: 首先根据查询语句及分布式数据库数据字典得出一个查询图G。 第一步: 对半连接静态特性表中的所有半连接进行收益值估算。 第二步:排序所有半连接的收益值,并选择该值最大的半连接执行 第三步:根据第二步执行的结果更新半连接静态特性表,并重新估算收益值。 第四步:判断半连接静态特性表中所有半连接是否执行完,如执行完转第五 步,如没有执行完转第二步循环执行。 第五步:选取对所有关系经过缩减后的基数(行数)最大所在的站点作为数据

控制系统的频率特性分析

1.已知系统传递函数为:1 2.01)(+=s s G ,要求: (1) 使用simulink 进行仿真,改变正弦输入信号的频率,用示波器观察输 出信号,记录不同频率下输出信号与输入信号的幅值比和相位差,即 可得到系统的幅相频率特性。 F=10时 输入: 输出: F=50时 输入: 输出:

(2)使用Matlab函数bode()绘制系统的对数频率特性曲线(即bode图)。提示:a)函数bode()用来绘制系统的bode图,调用格式为: bode(sys) 其中sys为系统开环传递函数模型。 参考程序: s=tf(‘s’); %用符号表示法表示s G=1/*s+1); %定义系统开环传递函数 bode(G) %绘制系统开环对数频率特性曲线(bode图)

实验七连续系统串联校正 一.实验目的 1.加深理解串联校正装置对系统动态性能的校正作用。 2. 对给定系统进行串联校正设计,并通过matlab实验检验设计的正确性。二.实验内容 1.串联超前校正 系统设计要求见课本例题6-3,要求设计合理的超前校正环节,并完成以下内容用matlab画出系统校正前后的阶跃相应,并记录系统校正前后的超调量及调节时间 num=10; 1)figure(1) 2)hold on 3)figure(1) 4)den1=[1 1 0]; 5)Gs1=tf(num,den1); 6)G1=feedback(Gs1,1,-1); 7)Step(G1) 8) 9)k=10; 10)figure(2) 11)GO=tf([10],[1,1,0]); 12)Gc=tf([,1],[1,00114]); 13)G=series(G0,Gc); 14)G1=feedback(G,1); 15)step(G1);grid

频率分析破密

使用频率分析法,尝试破解密文、概率统计密码、信息安全 WB WI KJB MK RMIT BMIQ BJ RASHMWK RMVP YJERYRKB MKD WBI IWOKWXWVMKVR MKD IJYR YNIB URYMWK NKRASHMWKRD BJ OWER M VJYSHRBR RASHMKMBWJK JKR CJNHD PMER BJLR FNMHWXWRD MKD WKISWURD BJ INVP MK RABRKB BPMB PR VJNHD URMVP BPR IBMBR JX RKHWOPBRKRD YWKD VMSMLHR JX URVJOKWGWKO IJNKDHRII IJNKD MKD IPMSRHRII IPMSR W DJKJB DRRY YTIRHX BPR XWKMH MNBPJUWBT LNB YT RASRUWRKVR CWBP QMBM PMI HRXB KJ DJNLB BPMB BPR XJHHJCWKO WI BPR SUJSRU MSSHWVMB WJK MKD WKBRUSURBMBWJK W JXXRU YT BPRJUWRI WK BPR PISR BPMB BPR RIIRKVR JX JQWKMCMK QMUMBR CWHH URYMWK WKBMVB 翻译为: it is not an easy task to explain each movement and its significance and some must remain unexplained to give a complete explanation one would have tobe qualified and inspired to such an extent that he could reach the state of enlightened mind capable of recognizing soundless sound and shapeless shape i donot deem myself the final authority but my experience with kata has left no doubt that the following is the proper applicat ion and interpretation i offer my theories in the hspe that the essence of okinawan karate will remain intact

最基本的电脑系统优化方法

最基本的电脑优化方法 对一个电脑学习入门者来说,到底我们该怎样优化自己的电脑,如何使用电脑优化方法才能让电脑运行得更快点呢, 这里介绍一些基本电脑优化方法. 一、整理系统盘的电脑优化方法 把一些系统常用的资料请出系统盘,把配置文件从C盘转移. 如临时文件, 缓存文件, 用户文档等. 设置方法如下: 1、打开控制面板--系统--高级--环境变量这里可以设置用户变量 2、点击用户变量中的TEMP--编辑--将那一长串内容变为F:\TEMP, 还要将TMP同样改为F:\TEMP。这些文件是系统临时存放在, 用久了, 会变得越来越大. 3、同样的, 把“系统变量”也像用户变量一样设置. 4、把用户文档也转,右击我的文档”--属性--目标文件夹中设置“目标文件夹位置”,将其改为F:\MyDocuments或D:\我的文档把他转移到其它的盘. 这样做不仅使系统盘干净, 还能做备份文件使用, 万一那天系统不行了,在系统盘中一般没有什么重要的东西,可以重装系统或还原, 因为这些用户的资料都转移到其它的磁盘, 不会受影响. 5、把IE的临时文件也转到其它的地方, 可以右键单击InternetExplorer--属性--常规--Internet临时文件--设置--移动

文件夹--选择D:\TemporaryInternetFiles\(如果没有,可先创建,当然可用D:\TEMP或其它什么, 这就看你自己的喜好)--确定 7、虚拟内存也设置一下, 打开系统--高级--性能--设置--高级--虚拟内存--更改--选择D或其它非系统分区--自定义大小--输入大小M--设置;选C或系统所在分区--无分页文件--设置--确定,这样就把虚拟存储器也转到其他硬盘上了。 二: 删除一些不常用文件的优化方法 1.删除系统文件备份 sfc.exe/purgecache 2.删除驱动备份 windows\drivercache\i386目录下的Driver.cab文件(73MB) 3.取消系统还原, 让出系统的备份空间 4.删除Help文件(减掉40多MB) 5.删掉\WINDOWS\system32\dllcache下文件(减去 200-300mb),这是备用的dll文件,这些文件很少用到,如果你已经安装了程序 6.删除\windows\ime下不用的输入法!(日文,韩文,简体中文输入法,84.5MB) 7. 如没有特殊的需求可以就用ntfs装xp吧, 可以节省不少的空间! 三: 删除msn,windowsmessenger等强加程序

小波分析理论是一种全新的时间频率分析方法

因为微动齿轮的故障特征信号其大部分可以能反映它的机械振动信号当中上,这样发生故障的主要信息就可以从微动齿轮的机械振动信号当中去获得去比较验证。比较普遍的微动齿轮故障有以下几种:微动齿轮断层、微动齿轮面发生了磨损脱落、微动齿轮面发生了损伤,以及微动齿轮面发生了裂痕。它是空间和频率的局部变换,所以小波变换可以正确地从复杂的信号当中获得有用的信号。傅里叶变换有很多的问题都不能很好的去解决,但是对于小波变换,它可以用伸缩域平移两种计算的特性对要处理的信号进行多尺度的细化处理,由于小波变换具有恒Q性质及自动调节对信号分析的时宽/带宽等一系列突出优点 所以很多人给小波变换理论起了个名字“数学中的显微镜".对于短时快速傅里叶变换。但是因 为有不一定测量的准确的原理我们可以知道:时间频率频窗口的面积大小有一 定的限度,也就是说时间频率局部领域的特性是一定的,对于时间领域内的和 频率领域的内部化的内容是不可能得到的不可能:还有,短时快傅里叶变换的 时间频率窗口的宽度和频率领域基本上是没有任何联系的,它分析处理信号频 率的时候,频率都是相同的。因此它不大适应两种成份的信号,第一种成份是 很高频的信号,还有一种成份就是很低的频率信号。当分析的频率很高的时候就可以利用一个比较窄的时间窗口,目的就是为了加强时问的分辨的能力,进一步达到处理信号的频率比较高的部分中的细节成份,但是当所要要分析的频率成份很低的时候它也能够利用一定很宽的时间窗口来最大程度的去处理该频率的特征。小波分析理论有着很大的优势,小波 理论在时间领域与频率领域有着非常好的局部化的特征。 l、首先小波变换在时间领域中是内部领域的一部分,在设计中可以考虑的 频域上的局域性,因而被称为时频分析的新的应用工具。 2、小波变换的变动时非常常见的,主要有两个方面一个是频率高的部分, 另一个是频率低的部分,各个尺度上的时问频率窗口变化较大,在频率高的部 分变化较小,频率低的部分比较大。 ◆Wigner分布中交叉项的存在将严重影响对自项的识别,从而也就严重影响了对信号 时-频行为的识别。 ◆Cohen类”。这些分布提出的一个重要目的是削弱Wigner分布中的交叉项交叉项的 一个有效途径是通过的模糊函数来实现。 ◆傅里叶变换的基函数是复正弦。这一基函数在频 域有着最佳的定位功能(频域的函数),但在时 域所对应的范围是-- ,完全不具备定位功能。 这是FT的一个严重的缺点。 ◆短时傅里叶变换STFT不具备恒Q性质,当然也不具备随着分辨率变化而自动调节 分析带宽的能力 通过上式可获得小波的重构信号【¨】。 为了进一步分析小波重构信号,对其进行 Wigner时频分布处理。Wigner分布作为分析非 平稳时变信号的时频分析工具,解决了传统傅 里叶变换无法同时描述时域与频域的问题。 Wigner分布的另外一个重要特点是具有明确 的物理意义,它可被看作信号能量在时域和频 域中的分布。情况。但是,根据卷积定理,多分量信号的 Wigner-Ville分布会出现交叉项,造成信号的

相关文档
最新文档