复合函数的单调性、定义域与值域

复合函数的单调性、定义域与值域
复合函数的单调性、定义域与值域

复合函数的单调性

设单调函数)

(x

f

y=为外层函数,)

(x

g

y=为内层函数

(1) 若)

(x

f

y=增,)

(x

g

y=增,则))

(

(x

g

f

y=增.

(2) 若)

(x

f

y=增,)

(x

g

y=减,则))

(

(x

g

f

y=减.

(3) 若)

(x

f

y=减,)

(x

g

y=减,则))

(

(x

g

f

y=增.

(4) 若)

(x

f

y=减,)

(x

g

y=增,则))

(

(x

g

f

y=减.

结论:同曾异减

例1. 求函数2

2

2

)

(-+

=x

x

x

f的单调区间.

外层函数:t

y2

=

内层函数:2

2-

+

=x

x

t

内层函数的单调增区间:]

,

2

1

[+∞

-

x

内层函数的单调减区间:]

2

1

,

[-

-∞

x

由于外层函数为增函数

所以,复合函数的增区间为:]

,

2

1

[+∞

-

x

复合函数的减区间为:]

2

1

,

[-

-∞

x

在本例题的讲解的开始就求出内层函数的单调区间,因为在复合函数的单

调性的问题

中很多基础薄弱的同学在此处会出现思维混乱,并且这样可以避免接下来

涉及到定义域

而学生又容易忽略的情况.

例2.求函数)2

(

log

)

(2

2

-

+

=x

x

x

f的单调区间.

解题过程:

外层函数:t

y

2

log

=

内层函数:2

2-

+

=x

x

t

2

2>

-

+

=x

x

t

由图知:

内层函数的单调增区间:[

x

内层函数的单调减区间:]2

,

[-

-∞

x

由于外层函数为增函数

所以,复合函数的增区间为:]

,1[+∞

x

复合函数的减区间为:]2

,

[-

-∞

x

例3.求函数x

y cos

=的单调区间

解题过程:

外层函数:t

y=

内层函数:x

t cos

=

cos≥

=x

t

由图知:

内层函数的单调增区间:]

2,

2

2

π

π

k

k

x+

-

内层函数的单调减区间:]

2

2

,

2[π

π

πk

k

x+

由于外层函数为增函数

所以,复合函数的增区间为:]

2,

2

2

π

π

k

k

x+

-

复合函数的减区间为:]

2

2

,

2[π

π

πk

k

x+

复合函数的定义域

函数的概念:设是,A B非空数集,如果按某个确定的对应关系f,

使对于集合A中的任意一个x,在集合B中都有唯一确定的数()

f x和它

对应,那么就称:f A B

→为集合A到集合B的函数,记作:

(),

y f x x A

=∈。其中x叫自变量,x的取值范围A叫做函数的定义域;

与x的值相对应的y的值叫做函数值.

(另一说法:设

()

u g x

=是A到B的函数,()

y f u

=是'B到'C上

的函数,且B'B

?,当u取遍B中的元素时,y取遍C,那么(())

y f g x

=

就是A到C上的函数。此函数称为由外函数()

y f x

=和内函数()

u g x

=

复合而成的复合函数。)

若)

(u

f

y=,又)

(x

g

u=,且)

(x

g值域与)

(u

f定义域的交集不空,

则函数)]

(

[x

g

f

y=叫x的复合函数,其中)

(u

f

y=叫外层函数,

)

(x

g

u=叫内层函数,简言之:复合函数就是:把一个函数中的自变量替

换成另一个函数所得的新函数.

例如: 2

()35,()1

f x x

g x x

=+=+;复合函数(())

f g x即把()

f x里

面的x换成()

g x,22

(())3()53(1)538

f g x g x x x

=+=++=+

问:函数()

f x和函数(5)

f x+所表示的定义域是否相同?为什么?(不

相同;原因:定义域是

求x的取值范围,这里x和5

x+所属范围相同,导致它们定义域的范围就

]

(3,5

-,求函数(32)

f x-的定义域;

解:由题意得

35

x

-<≤

325

x

<-≤

137

x

-<≤

17

33

x

∴-<≤

所以函数(32)

f x-的定义域为

17

,

33

??

-

?

??

.

例2已知)

(x

f的定义域为]3

0(,,求)

2

(2x

x

f+定义域。

解因为复合函数中内层函数值域必须包含于外层函数定义域中,即

?

?

?

-

>

-

<

?

??

?

?

?

+

>

+

?

+

<

1

3

2

3

2

2

3

2

2

2

2

x

x

x

x

x

x

x

x

x

,或

即2

3-

<

-x或1

0≤

故)

2

(2x

x

f+的定义域为[)(]1,0

2

,3

-

-

例3若函数()x

f2

3-的定义域为[]2,1-,求函数()x f的定义域

解:由题意得

23

x

∴-≤≤

639

x

∴-≤≤

42311

x

∴-≤+≤

所以函数()

f x的定义域为:[]

4,11

-

例4已知)1

(+

x

f的定义域为)3

2

[,

-,求()2-x

f的定义域。

解由)1

(+

x

f的定义域为)3

2

[,

-得3

2<

-x,故4

1

1<

+

-x

即得()x

f定义域为)4

1

[,

-,从而得到4

2

1<

-

-x,所以6

1<

≤x

故得函数()2-x

f的定义域为[)6,1

例5已知函数()x f 定义域为是],[b a ,且0>+b a ,求函数

()()()m x f m x f x h -++=()0>m 的定义域

解: ?

??+≤≤+-≤≤-???

?≤-≤≤+≤m b x m a m

b x m a b m x a b m x a ,m a m a m +<-∴>,0

m b m b +<-,又m b m a +<-

要使函数()x h 的定义域为非空集合,必须且只需m b m a -≤+,即

2

0a

b m -≤<,这时函数()x h 的定义域为],[m b m a -+ 复合函数的值域

关键是由里向外,逐层解决。 求函数的值域。 解

复合而成的。由u 的定义域

得:。由,或y>1,故所给函数的

值域为

求下列函数的值域:

⑴2

23y x x =+- ()x R ∈ ⑵2

23y x x =+- [1,2]x ∈

⑶31

1x y x -=+ ⑷311

x y x -=+ (5)x ≥

y =

⑹ 22

594

1

x x y x +=-+ ⑺31y x x =-++

⑻2y x x =- ⑼

y =

4y =

⑾y x =已知函数222()1

x ax b

f x x ++=+的值域为[1,3],求,a b 的值。

(1){|4}y y ≥- (2)[0,5]y ∈ (3){|3}y y ≠ (4)

7[,3)3

y ∈

(5)[3,2)y ∈- (6)1{|5}2

y y y ≠≠且 (7){|4}y y ≥ (8)y R ∈

(9)[0,3]y ∈ (10)[1,4]y ∈ (11)1{|}2

y y ≤

2,2a b =±=

函数定义域、值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = (2 )01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为 ________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取 值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈

⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式

求函数的定义域和值域的方法

解:求函数的定义域的常用方法 函数的定义域是高考的必考内容,高考对函数的定义域常常是通过函数性质或函数的应用来考查的,具有隐蔽性,所以在研究函数问题时必须树立“函数的定义域优先”的观念。因此掌握函数的定义域的基本求解方法是十分重要的。下面通过例题来谈谈函数的定义域的常见题型和常用方法。 一,已知函数解析式求函数的定义域 如果只给出函数解析式(不注明定义域),其定义域是指使函数解析式有意义的自变量的取值范围(称为自然定义域),这时常通过解不等式或不等式组求得函数的定义域。主要依据是:(1)分式的分母不为零,(2)偶次根式的被开方数为非负数,(3)零次幂的底数不为零,(4)对数的真数大于零,(5)指数函数和对数函数的底数大于零且不等于1,(6)三角函数中的正切函数y=tanx ,{x ︱x ∈R 且 x ≠2 k π π+ , k ∈z }和余切函数y=cotx ,{x ︱x ∈R 且 x ≠k π,k ∈z }等。 例题一 求下列函数的定义域: (1) y=2)0+㏒(x —2)x 2 (2) 解:(1)欲使函数有意义,须满足 2≠0 x —1≥0 x —2>0 解得:x >2 且 x ≠3 ,x ≠5 x —2≠1 ∴ 函数的定义域为(2,3)∪(3,5)∪(5,+∞) x ≠0 (2) 由已知须满足 tanx ﹥0 解得: k π ﹤x ﹤2 k π π+ (k ∈z ) x ≠2 k π π+ -4﹤x ﹤4 16—x 2 ﹥0 ∴ 函数的定义域为(-π,2 π - )∪(0, 2 π )∪(π,4) 二,复合函数求定义域 求复合函数定义域应按从外向内逐层求解的方法。最外层的函数的定义域为次外层函数的值域,依次求,直到最内层函数定义域为止。多个复合函数的求和问题,是将每个复合函数定义域求出后取其交集。 例题二(1)已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。 (2)已知函数y=f (2x+4)的定义域为〔0,1〕,求函数f (x )的定义域。 (3)已知函数f (x )的定义域为〔-1,2〕,求函数y=f (x+1)—f (x 2-1)的定义域。 (4)已知函数y=f (tan2x )的定义域为〔0, 8 π 〕,求函数f (x )的定义域。 分析:(1)是已知f (x )的定义域,求f 〔g (x )〕的定义域。其解法是:已知f

函数的定义域与值域单调性与奇偶性三角函数典型例题

函数的定义域与值域、单调性与奇偶性 一、知识归纳: 1. 求函数的解析式 (1)求函数解析式的常用方法: ①换元法( 注意新元的取值范围) ②待定系数法(已知函数类型如:一次、二次函数、反比例函数等) ③整体代换(配凑法) ④构造方程组(如自变量互为倒数、已知f (x )为奇函数且g (x )为偶函数等) (2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。 (3)理解轨迹思想在求对称曲线中的应用。 2. 求函数的定义域 求用解析式y =f (x )表示的函数的定义域时,常有以下几种情况: ①若f (x )是整式,则函数的定义域是实数集R ; ②若f (x )是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x )是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f (x )是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑤若f (x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题. 3. 求函数值域(最值)的一般方法: (1)利用基本初等函数的值域; (2)配方法(二次函数或可转化为二次函数的函数); (3)不等式法(利用基本不等式,尤其注意形如)0(>+=k x k x y 型的函数) (4)函数的单调性:特别关注)0(>+ =k x k x y 的图象及性质 (5)部分分式法、判别式法(分式函数) (6)换元法(无理函数) (7)导数法(高次函数) (8)反函数法 (9)数形结合法 4. 求函数的单调性 (1)定义法: (2)导数法: (3)利用复合函数的单调性: (4)关于函数单调性还有以下一些常见结论: ①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______; ②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性; ③互为反函数的两个函数在各自定义域上有______的单调性; (5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等 (6)应用:比较大小,证明不等式,解不等式。 5. 函数的奇偶性 奇偶性:定义:注意区间是否关于原点对称,比较f (x ) 与f (-x )的关系。f (x ) -

高一必修一数学-复合函数定义域

复合函数的定义域 讲解内容: 复合函数的定义域求法 讲解步骤: 第一步:函数概念及其定义域 函数的概念:设是,A B 非空数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为集合A 到集合B 的函数,记作:(),y f x x A =∈。其中x 叫自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值. 第二步:复合函数的定义 一般地:若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数. 例如: 2()35,()1f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x ,22 (())3()53(1)538f g x g x x x =+=++=+ 问:函数()f x 和函数(5)f x +所表示的定义域是否相同?为什么?(不相同;原因:定义域是 求x 的取值范围,这里x 和5x +所属范围相同,导致它们定义域的范围就不同了。) 第三步:介绍复合函数的定义域求法 例1. 已知()f x 的定义域为](3,5-,求函数(32)f x -的定义域; 解:由题意得 35x -<≤ 3325x ∴-<-≤ 137x -<≤ 1 7 33x ∴-<≤ 所以函数(32)f x -的定义域为17,33? ?- ??? . 练1.已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。 解 因为复合函数中内层函数值域必须包含于外层函数定义域中,即 ???≤≤->-+?≤+<13023202320222 x x x x x x x x x ,或

复合函数的单调性完全解析与练习(终审稿)

复合函数的单调性完全 解析与练习 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

课题:函数的单调性(二) 复合函数单调性 北京二十二中刘青 教学目标 1.掌握有关复合函数单调区间的四个引理. 2.会求复合函数的单调区间. 3.必须明确复合函数单调区间是定义域的子集. 教学重点与难点 1.教学重点是教会学生应用本节的引理求出所给的复合函数的单调区间. 2.教学难点是务必使学生明确复合函数的单调区间是定义域的子集. 教学过程设计 师:这节课我们将讲复合函数的单调区间,下面我们先复习一下复合函数的定义. 生:设y=f(u)的定义域为A ,u=g(x)的值域为B ,若AB ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 师:很好.下面我们再复习一下所学过的函数的单调区间. (教师把所学过的函数均写在黑板上,中间留出写答案的地方,当学生回答得正确时,由教师将正确答案写在对应题的下边.) (教师板书,可适当略写.) 例求下列函数的单调区间. 1.一次函数y=kx+b(k ≠0). 解当k >0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间. 2.反比例函数y=x k (k ≠0). 解当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间. 3.二次函数y=ax 2+bx+c(a ≠0). 解当a >0时(-∞,-a b 2)是这个函数的单调减区间,(-a b 2,+∞)是它的单调增区间; 当a <0时(-∞,-a b 2)是这个函数的单调增区间,(-a b 2,+∞)是它的单调减区间; 4.指数函数y=ax(a >0,a ≠1). 解当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间. 5.对数函数y=log a x(a >0,a ≠1). 解当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间. 师:我们还学过幂函数y=x n (n 为有理数),由于n 的不同取值情况,可使其定义域分几种情况,比较复杂,我们不妨遇到具体情况时,再具体分析. 师:我们看看这个函数y=2x 2+2x+1,它显然是复合函数,它的单调性如何

函数的单调性与值域的关系

函数的单调性和值域 1.函数单调性的定义 一般地,设函数f(x)的定义域为I: 如果对于定义域I某个区间D上的任意两个自变量的值 x,2x,当 1 x<2x时,都有f(1x)(2x),,那么就说函数f(x)在区间D上是减函数; 1 如果函数f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。 2.函数单调性的证明方法,通常用两种方法证明:①定义法②导数法 (1)利用定义法证明函数单调性的一般步骤是:①取值②作差(有时也可作商)③变形④定号⑤作出结论判断. 用定义法证明函数的单调性时,要比较f( x)与f(2x)的大小,最常 1 用的方法是作差(或作商)比较法。 (2)用导数法证明函数单调性的理论为:若函数y=f(x)在某区间可 导,且满足'() f x<0, f x>0,则f(x)在该区间上单调递增;若满足'() 则f(x)在该区间上单调递减。 3.函数单调性的应用: (1)比较(函数值)大小(2)求函数的值域或最值

(3) 解、证不等式 (4)作函数的图象 (5)讨论方程根的分布。 4.判断函数单调性的方法: (1)常用方法有:定义法、导数法、图象法、特殊值法(主要用于解选择题) (2)利用有关于单调性的一些结论:①奇函数在其对称区间上单调性相同;②偶函数在其对称区间上单调相反;③在公共定义域:增函数f(x)+增函数g(x)是增函数;减函数f(x)+减函数g(x)是减函数;增函数f(x)-减函数g(x)是增函数;减函数f(x)-增函数g(x)是减函数. 注意:f(x)为增函数,若a>0,则af(x)为增函数,若a<0,则af(x)为减函数. (3)互为反函数的两个函数具有相同的单调性 (4)利用复合函数的“同增异减”原则,若f(x)与g(x)的单调性相同,则复合函数y=f[g(x)]是增函数;若f(x)与g(x)的单调性相反,则复合函数y=[g(x)]是减函数。(简称同增异减) 例如:①函数f(x)=log ()23x 1-在其定义域为增函数;②f(x)=函数 log ()12 3x 1-在其定义域是减函数。函数f(x)=log ()23x 2-在定义域 ∞)为增函数,在定义域(-∞, 是减函数 5.函数的值域和最值 (1)函数的值域(见函数的概念一节) (2)函数的最值 ①函数最大值的定义:一般地,设函数y=f(x)的定义域为I ,若存在

复合函数定义域与值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义 域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1 (2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = ⑹ 22 5941x x y x +=-+

⑺31y x x =-++ ⑻2y x x =- ⑼ y = ⑽ 4y = ⑾y x =- 6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+ ,则当(,0)x ∈-∞时 ()f x =____ _ ()f x 在R 上的解析式为

《复合函数及其定义域》专题

《复合函数及其定义域》专题 2014年( )月( )日 班级 姓名 成大事不在于力量多少,而在能坚持多久。 【例】 已知y 与x -3成正比例,当x =4时,y =3. (1)写出y 与x 之间的函数关系式; (2)y 与x 之间是什么函数关系; 已知y 与x 2成正比例,并且当x =-1时,y =-3. 求: y 与x 的函数关系式; 【复合函数的定义】对于两个函数()y f u =和()u g x =,通过中间变量u ,y 可以表示成_____的函数,那么称它为函数()y f u =和()u g x =的_______,记作_______ 简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数. 例:f ( x + 1 ) = (x + 1)2 可以拆成y = f ( u ) = u 2 , u = g ( x ) , g ( x ) = x + 1 ,即可以看成f ( u ) = u 2 与g ( x ) = x + 1 两个函数复合而成。 【类型一】 1.已知函数f ( x) =)3)(1(x x -+,求f ( x + 1 )的值 2.求函数f ( x) =)3)(1(x x -+的定义域,求f ( x + 1 )的定义域 3.已知f ( x) 的定义域为[-1,3],求f ( x + 1 )的定义域

【练习一】 1.已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 2. 若函数)(x f y =的定义域[-1,2],求)1(2-=x f y 的定义域。 3. 设函数的定义域为,则 (1)函数的定义域为________。 (2)函数 的定义域为__________。 【归纳一】已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 【类型二】 1.已知f ( x + 1 )的定义域为[-2,2],求,f (x)的定义域 请仔细对比【类型一】第3题

复合函数的单调性例讲

复 合 函 数 的 单 调 性 例 讲 山西忻州五寨一中 摄爱忠 高考主要考查:①求复合函数的单调区间;②讨论含参复合函数的单调性或求参数范围问题. ①“中间变量”是形成问题转化的桥梁. ②函数思想是解决问题的关键. 复合函数定义: 1. 设)(u f y =定义域为A,)(x g u =的值域为B,若A B ?,则y 关于x 的函数)]([x g f y =叫做函 数 f 与 g 的复合函数,u 叫中间变量. 外函数:)(u f y =; 内函数:)(x g u = 复合函数的单调性:同增异减. 2. 若)(x g u = )(u f y = 则)]([x g f y = 增函数 增函数 增函数 减函数 减函数 增函数 增函数 减函数 减函数 减函数 增函数 减函数 3.求解复合函数的单调性的步骤如下: (1)求复合函数定义域; (2)将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数); (3)判断每个常见函数的单调性; (4)将中间变量的取值范围转化为自变量的取值范围; (5)求出复合函数的单调性。 题型1:内外函数都只有一种单调性的复合型. 例 题1: ◇已知函数y=log a (2-ax)在[0,1]上是x 的减函数,则a 的取值范围是( )

(A).(0,1) (B).(1,2) (C).(0,2) (D).[2,+∞) 解:设y= log a u ,u=2-ax ,∵a 是底数,所以a>0, ∵ 函数y=log a u 在u ∈[0,1]上是减函数,而u=2-ax 在区间x ∈[0,1]上是减函数, ∴ y= log a u 是u ∈(0, +∞)上的增函数,故a>1,还要使2-ax>0在区间上总成立, 令g(x)= 2-ax ,由{g(0)=2-a ·0>0 g(1)=2-a ·1>0 ,解得a<2,∴1-x ,得 00知函数的定义域为),1()3, (∞+-?--∞∈x , 因y= log 0.5u 在u ∈(0,+∞)上是减函数,而u= x 2 +4x+4在x ∈(-∞,-3)上是减函数, 在(-1,+ ∞)上是增函数,根据复合规律知, 函数y=log 0.5(x 2 +4x+4) 在x ∈(-∞,-3)上是增函数;在x ∈(-1,+ ∞)上是减函数. 变式训练: ◇讨论函数3 4252+-? ? ? ??=x x y 的单调性。 解:函数定义域为R. 令u=x 2 -4x+3,y=0.8u 。 指数函数u y ?? ? ??=52在u ∈(-∞,+∞)上是减函数, u=x 2 -4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数, ∴ 函数3 4252+-? ? ? ??=x x y 在(-∞,2]上是增函数,在[2,+∞)上是减函数。 这里没有第四步,因为中间变量允许的取值范围是R ,无需转化为自变量的取值范围。 题型3:外函数有两种单调性内函数有一种单调性的复合型. 例 题3:

必修一函数定义域值域和单调性奇偶性练习题

高一数学函数练习题 一、 求函数的定义域 1、 求下列函数的定义域: ⑴y = ⑵y = ⑶01 (21)1 11y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,, 则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311 x y x -= + ⑷311x y x -=+ (5)x ≥ ⑸ y =⑹ 225941x x y x +=-+

⑺31y x x =-++ ⑻2y x x =- ⑼ y = ⑽ 4y =⑾y x =- 6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式系 1、已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+ ,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是

复合函数定义域三种形式解法

先介绍几个名词:(能理解最好,如果感觉这些名词有点晕,你可以跳过) 【定义域】:就是初中我们所学的,函数y=f(x)的自变量x的取值范围;【值域】:函数y=f(x)的因变量y的取值范围; 【显函数】:俗称常见函数,函数解析式是明确的,例如:y=f(x)=2x2+3x-5; 【隐函数】:俗称抽象函数,函数解析式是不明确的,就用y=f(x)表示,具体f(x)是什么内容是隐藏的; 【复合函数】:如果说y=f(x)是一个简单的抽象函数,那么把自变量x 用一个函数g(x)来代替,就称y=f(g(x))为复合的抽象函数,习惯上称y=f(t)是外函数,t=g(x)为内函数。 讲解之前提醒很关键的一句:凡是函数的定义域,永远是指自变量x 的取值范围。 【题型一】已知抽象函数y=f(x)的定义域[m,n],如何求复合抽象函数y=f(g(x))的定义域? 思路分析:本题型是已知y=f(x)的自变量x的范围,求y=f(g(x))的自变量x的范围,其中的关键是,后者的g(x)相当于前者的x。 解决策略:求不等式m≤g(x)≤n的解集,即为y=f(g(x))的定义域【例题1】已知函数y=f(x)的定义域[0,3],求函数y=f(3+2x)的定义域. 解:令t=3+2x,∵y=f(x)的定义域[0,3],∴y=f(t)的定义域也为[0,3],

即t=3+2x∈[0,3], 关于抽象复合函数定义域的求法 说明:内函数g(x)=3+2x,通过令t=3+2x做了一个换元,此处换元不能写为令x=3+2x。原因是y=f(x)中的x与 y=f(3+2x)的x虽然长得一样,但是意义不同,如果令x=3+2x,则等号两边的x就是一模一样了,x只能为-3了。 【题型二】已知复合抽象函数y=f(g(x))定义域[m,n],如何求抽象函数y=f(x)的的定义域? 思路分析:本题型是已知y=f(g(x))的自变量x的范围,求y=f(x)的自变量x的范围,其中的关键是,前者的 g(x)相当于后者的x。 解决策略:求内函数t=g(x)在区间[m,n]的值域(t的取值范围),即为y=f(x)的定义域 【例题2】已知函数y=f(2x-1)的定义域[0,3],求函数y=f(x)的定义域. 解:∵y=f(2x-1)的定义域[0,3],∴0≤x≤3,令t=2x-1,∴t=2x-1∈[-1,5] 故,函数y=f(t)的定义域为t∈[-1,5], 故,函数y=f(x)的定义域为x∈[-1,5] 说明:函数y=f(x)与y=f(t)是同一个函数,与单个自变量是x还是t 无关。另外,题型二是题型一的逆向题目。

第05讲-函数的单调性与最值(讲义版)

第05讲-函数的单调性与最值 一、考情分析 借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义. 二、知识梳理 1.函数的单调性 (1)单调函数的定义 增函数减函数 定义设函数y=f(x)的定义域为A,区间M?A,如果取区间M中任意两个值x1,x2,改变量Δx=x2-x1>0,则当 Δy=f(x2)-f(x1)>0时,就称 函数y=f(x)在区间M上是增 函数 Δy=f(x2)-f(x1)<0时,就称函数y =f(x)在区间M上是减函数 图象 描述 自左向右看图象是上升的自左向右看图象是下降的 (2)上是增函数或是减函数, 性,区间M称为单调区间. 2.函数的最值 前提设函数y=f(x)的定义域为I,如果存在实数M满足 条件(1)对于任意x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0)=M (3)对于任意x∈I,都有f(x)≥M; (4)存在x0∈I,使得f(x0)=M 结论M为最大值M为最小值 [方法技巧] 1.(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时最值一定在端点处取到. (2)开区间上的“单峰”函数一定存在最大值(或最小值).

2.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1 f (x ) 的单调性相反. 3.“对勾函数”y =x +a x (a >0)的增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ]. 三、 经典例题 考点一 确定函数的单调性(区间) 【例1-1】(2019·安徽省泗县第一中学高二开学考试(理))如果函数f(x)在[a ,b]上是增函数,对于任意的x 1,x 2∈[a ,b](x 1≠x 2),下列结论不正确的是( ) A . ()()1212 f x f x x x -->0 B .f(a)0 D .()() 2121x x f x f x -->0 【答案】B 【解析】 试题分析:函数在[a ,b]上是增函数则满足对于该区间上的12,x x ,当12x x <时有()()12f x f x <,因此 ()()1212 0f x f x x x ->-,(x 1-x 2) [f(x 1)-f(x 2)]>0, ()() 21 210x x f x f x ->-均成立,因为不能确定12,x x 的 大小,因此f(a)

(完整版)几种复合函数定义域的求法

配凑法就是在)]([x g f 中把关于变量x 的表达式先凑成)(x g 整体的表达式,再直接把)(x g 换成x 而得)(x f 。 f(x -1x )=x 2+1x 2,函数f(x)的解析式 换元法就是先设t x g =)(,从中解出x (即用t 表示x ),再把x (关于t 的式子)直接代入)]([x g f 中消去x 得到)(t f ,最后把)(t f 中的t 直接换成x 即得)(x f ,这种代换遵循了同一函数的原则。 f(x +1)=x 2 +x,函数f(x)的解析式: 复合函数的定义域 复合函数的定义 一般地:若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数. 例如: 2()35,()1f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x , 22(())3()53(1)538f g x g x x x =+=++=+ 问:函数()f x 和函数(5)f x +所表示的定义域是否相同?为什么?(不相同;原因:定义域是 求x 的取值范围,这里x 和5x +所属范围相同,导致它们定义域的范围就不同了。)说明: ⑴复合函数的定义域,就是复合函数(())y f g x =中x 的取值范围。 ⑵x 称为直接变量,u 称为中间变量,u 的取值范围即为()g x 的值域。 ⑶))((x g f 与))((x f g 表示不同的复合函数。 设函数53)(,32)(-=+=x x g x x f ,求))(()),((x f g x g f 复合函数的定义域求法 .已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。

复合函数的单调性典型习题

复合函数的单调性练习题 山东 王宪华 ._____________,)21(.1322减区间为的增区间为-+-=x x y ._____________,2.2822减区间为的增区间为++-=x x y ._______________,)32(log .322减区间为的增区间为--=x x y .______________,)82-(log 4.22减区间为的增区间为++=x x y 的取值范围上是减函数,求在且a a a ax y a ]1,0[)1,0)(2(log 5.≠>+-= . 3-13-)(,)(log )(6.25.0的取值范围求)上是增函数,,在(且的值域为a x f R a ax x x f --=

参考答案 ]1,(:),,1[:.1-∞+∞减区间为增区间为 ]4,1[:]1,2[.2,减区间为增区间为:- )1,(:),,3(:.3--∞+∞减区间为增区间为 )4,1[:],1,2(:.4减区间为增区间为- 21:)2)(1() 2......(..................................................1),0(log . ]2,0[)2(log , 0,]2,0[2]2,0[,2s log ]1,0[),1(log ) 1........(..........2021, ]1,0[2,0.]1,0[)2(log ,02],1,0[]1,0[)1,0)(2(log 5min <<>∴+∞=∴+-=>+-=∈+-==∈+-=+?-=∴+-=∴>+-=>+-=∈?∴≠>+-=a a a t y ax y s ax s x ax s y x ax y a a s ax s a ax y ax s x a a ax y a a a a a a 的取值范围为式可知由上是增函数 在知由复合函数的单调性可上是减函数在且上是减函数在而的复合函数,与是上是减函数在上且递减在且上是减函数 在且解 )1...(..................................................04, )(log )(6.2225.0≥+=?∴--=∴--=a a a ax x s R a ax x x f 可以取到所有正实数 的值域为解 上是增函数 在且上是增函数, ,在)31,3()(log )()2.(....................0),31,3()3-13-()(log )(25.0225.0----=>--=--∈?∴--=a ax x x f a ax x s x a ax x x f 0)31()31()2()3........(. (312) :)31,3(:)31,3()(log ),0(log )31,3(,log ) 31,3(),(log )(2225.05.025.02≥--?--?-≥--∴----=∴----=+∞=--∈--==--∈--=a a a a ax x s a ax x y s y x a ax x s s y x a ax x x f a 且由二次函数的图象可知上是减函数在知由复合函数的单调性可上是增函数在是减函数,在而的复合函数 与是 200)31()31(312 04) 3)(2)(1(22≤≤???????≥--?---≥--≥+∴a a a a a a a 解得:同时满足综上可知

复合函数定义域的常见求法

复合函数定义域的常见求法 一、复合函数的概念 假如y 是u 的函数,而u 是x 的函数,即y = f ( u ), u = g ( x ) ,那么y 关于x 的函数y = f [g ( x ) ]叫做函数f 与 g 的复合函数,u 叫做中间变量。 注意:复合函数并不是一类新的函数,它只是反映某些函数在结构方面的某种特点,因此,依照复合函数结构,将它折成几个简单的函数时,应从外到里一层一层地拆,注意不要漏层。 另外,在研究有关复合函数的咨询题时,要注意复合函数的存在条件,即当且仅当g ( x )的值域与f ( u )的定义域的交集非空时,它们的复合函数才有意义,否那么如此的复合函数不存在。 例:f ( x + 1 ) = (x + 1)2 能够拆成y = f ( u ) = u 2 , u = g ( x ) , g ( x ) = x + 1 ,即能够看成f ( u ) = u 2 与g ( x ) = x + 1 两个函数复合而成。 二、求复合函数的定义域: 〔1〕假设f(x)的定义域为a ≤ x ≤ b,那么f [ g ( x ) ] 中的a ≤ g ( x ) ≤ b ,从中解得x 的范畴,即为f [g ( x )]的定义域。 例1、y = f ( x ) 的定义域为[ 0 , 1 ],求f ( 2x + 1 )的定义域。 答案: [-1/2 ,0 ] 例2、f ( x )的定义域为〔0,1〕,求f ( x 2)的定义域。 答案: [-1 ,1] 〔2〕假设f [ g ( x ) ]的定义域为〔m , n 〕那么由m < x < n 确定出g ( x )的范畴即为f ( x )的定义域。 例3、函数f ( 2x + 1 )的定义域为〔0,1〕,求f ( x ) 的定义域。 答案: [ 1 ,3] 〔3〕由f [ g ( x ) ] 的定义域,求得f ( x )的定义域后,再求f [ h ( x ) ]的定义域。 例4、f ( x + 1 )的定义域为[-2 ,3],求f ( 2x 2 – 2 ) 的定义域。 答案:[-√3/2 ,-√3]∪[√3/2 ,√3] 三、求复合函数的解析式。 关于复合函数的解析式的求法,尽管种类专门多,在那个地点重点介绍配凑法和换元法,详细内容请参阅?教学周刊?第6期。 〔1〕配凑法 假设f [ g ( x ) ] = F ( x )是关于x 的函数,能够把F ( x )表示g ( x )的复合函数形式,然后用x 替换g ( x ),即可得到f ( x )的解析式。 例5、f (x x x x x 21)122++=+,求f ( x )的解析式。 答案:f(x)= x 2 例6、f ( x + 331)1x x x +=,求f ( x )的解析式。 答案:f(x)= x 3-2x-1 〔2〕换元法 假设f [ g ( x ) ]的表达式,能够令g ( x ) = t ,从中解出x 再将x 代入f [ g ( x ) ]的表达式中,如此

(完整word版)2017高考一轮复习教案-函数的单调性与最值.doc

第二节函数的单调性与最值 1.函数的单调性 理解函数的单调性及其几何意义. 2.函数的最值 理解函数的最大值、最小值及其几何意义. 知识点一函数的单调性 1.单调函数的定义 增函数减函数 一般地,设函数f(x)的定义域为 I .如果对于定义域 I 内某个区间 A 上的任意两个 自变量的值 x1 2 , x 定义 当 x1f(x2),那么就说函数 就说函数 f(x)在区间 A 上是增加的f( x)在区间 A 上是减少的 图象描述 自左向右看图象是逐渐上升的自左向右看图象是逐渐下降的 2.单调区间的定义 如果函数 y= f(x) 在区间 A 上是增加的或是减少的,那么称 A 为单调区间.易误提醒求函数单调区间的两个注意点: (1)单调区间是定义域的子集,故求单调区间应树立“ 定义域优先” 的原则. (2)单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“ ∪”联结,也不能用“或” 联结. 必记结论 1.单调函数的定义有以下若干等价形式: 设x1, x2∈[a, b] ,那么

f x1- f x2 ①>0? f(x)在 [a, b]上是增函数; x1- x2 f x1- f x2 <0? f(x) 在[a, b] 上是减函数. x1- x2 ②(x1- x2)[f(x1)- f(x2 )]>0 ? f(x)在 [a, b]上是增函数; (x1- x2 )[f(x1)- f(x2)]<0? f(x)在[ a,b]上是减函数. 2.复合函数y= f[ g(x)] 的单调性规律是“同则增,异则减”,即y=f(u)与u=g(x)若具有相同的单调性,则y= f[g(x)]为增函数,若具有不同的单调性,则y= f[g(x)] 必为减函数. [ 自测练习 ] 1.下列函数中,在区间(0,+∞ )上单调递减的是 ( ) 1 A . f(x)=x B . f(x)= (x- 1) 2 C.f(x)= e x D .f(x)= ln( x+1) 2.函数 f(x)= log5(2x+ 1)的单调增区间是________. - x2- ax- 5, x≤ 1, 3.已知函数 f(x)= a 在 R 上为增函数,则 a 的取值范围是 () x, x>1 A . [- 3,0) B . [-3,- 2] C.( -∞,- 2] D .(-∞, 0) 知识点二函数的最值 前提设函数 y= f(x)的定义域为 I,如果存在实数 M 满足 对于任意 x∈ I ,都有 f(x) ≤M 对于任意 x∈ I,都有 f(x)≥ M 条件 存在 x0∈I ,使得 f( x0)= M 存在 x0∈ I,使得 f(x0)= M 结论M 为最大值M 为最小值 易误提醒在求函数的值域或最值时,易忽视定义域的限制性. 必备方法求函数最值的五个常用方法 (1)单调性法:先确定函数的单调性,再由单调性求最值. (2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值. (3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. (4)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等 式求出最值. (5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.

复合函数的定义域和值域

复合函数的定义域和值 域 The manuscript was revised on the evening of 2021

如果y是u的函数,记为,u又是x函数,记为,且g(x)的值域与f(u)的定义域的交集不空,则确定了一个y关于x的函数,这就是函数的复合函数,而称为外函数,称为内函数。本文举例 介绍复合函数问题的一些常见类型及解法。 1.求复合函数的定义域 关键是正确分析函数的复合层次,由里向外或由外向里逐层解决。 例1已知f(x)的定义域为[0,1)若,则函数的定义域是 ________。 解析由 故函数的定义域为。 例2已知函数f(x)的定义域为(1,3],求函数的定义域(a>0)。 解析由 由a>0,而知只有当0

例4求函数的值域。 解析函数是由函数复合而成的。由u的定义域得:。由,或y>1,故所给函 数的值域为。 3.求复合函数的奇偶性 (1)若内函数为偶函数,那么复合函数的奇偶性与外函数无关,必为偶函数; (2)若内与外函数都为奇函数,那么复合函数也是奇函数; (3)若内函数为奇函数,外函数为偶函数,那么复合函数必为偶函数。 除以上类型外,其它类复合函数的奇偶性和须严格按函数奇偶性定义来判断。 例5判断下列函数的奇偶性。 解析(1)由于内函数为偶函数,据以上结论知f(x)必为偶函数。 解析(2)由于内函数为偶函数,虽外函数是非奇非偶函数,但f(x)仍为偶函数。 例6若f(x)为奇函数,试判断函数的奇偶性。 解析根据以上结论,由于内函数和外函数f(u)都为奇函数,故函数必为奇函数。 例7已知,试判断函数f(x)的奇偶性。 解析由于内函数非奇非偶,外函数也非奇偶性,这时,f(x) 的定义域为(-1,1),又所以,函数f(x)为奇函数。

相关文档
最新文档