简论中国古代数学中的“黄金分割率”

简论中国古代数学中的“黄金分割率”
简论中国古代数学中的“黄金分割率”

简论中国古代数学中的“黄金分割率”

黄金分割,被誉为数学上的“黄金”与“宝石”。

古代希腊毕达哥拉斯学派以及大几何学家欧几里德

等都曾深入研究过黄金分割问题。中世纪时,这一

数学命题又与著名的斐波那契数列联系起来,从而

获得许多新的性质。在西方数学传入中国之前,中

国人不曾直接论述黄金分割问题。但是,中国古代

数学中实际上也蕴含着黄金分割问题,只是其表达

方式有所不同。中国古代数学中的黄金分割率不像

欧几里德几何那样演绎得清楚明白,需要我们去发

现。我们无法确证中国古代数学家是否明确意识到

“黄金分割率”,但仍可以从许多中国古代数学问题

中推导和演绎出“黄金分割率”,这有助于充分认识

中国古代数学的价值。

1 勾股术与黄金分割率

明末清初西方数学传入中国,中国数学家知道

了黄金分割率,开始有人试图论证黄金分割率在中

国是“古已有之”。例如,清代数学家梅文鼎(公元1633 - 1721 年) 曾在《几何通解》自序中说:“惟理分中末线(即黄金分割率———引者注) 似与勾股异源,. . . . . . 而仍出于勾股。信古九章之义包举无方。”他是这样推导的:假如一直角三角形的股长是

其勾长的二倍,则这个直角三角形的勾弦之和等于

勾弦之差再加上股,其勾弦之和就被勾弦之差和股

分成中末比。他还说:“《几何原本》理分中末线,但

求作之法而莫知所用。今依法求得十二等面体及二

十等面体之体积,因得其各体中棱线及轴心、对角诸

线之比例,又两体互相容及两体与立方、立圆诸体相

容各比例, 并以理分中末为法, 乃知此线原非徒

设。”〔1〕

按照梅文鼎的观点,中西数学虽然形式上有所

不同,理论上是可以会通的;西方的几何学,无非是

中国的勾股术,中末线也可以从勾股术中导出。应

当说,梅文鼎在中西数学比较中看出了两者的异中

之同,以及黄金分割率与勾股术的联系(现在中学教

科书通常用代数法解作图题,其中运用勾股定理) ,

但中国古代数学毕竟没有明确作出“中末线”,梅文

鼎还是夸大了中西数学的异中之同,他没有看到欧

几里德给黄金分割率严格而清晰的证明的独特价

值。欧几里德在其《几何原本》卷Ⅱ第11 题中表述: “分已知线段为两部分,使全线段与一小线段构成的

矩形的面积等于另一小线段上的正方形的面积。”这

里,欧氏几何学给黄金分割的证明结果上升到定理

的高度。关于这一点,梅文鼎本人也慨叹,中国古代

数学家没有从勾股术中看出黄金分割率是非常可惜

的。

2 “河图”、“洛书”与黄金分割率

从数学上说,河图洛书是一种古老的数字组合

方式,也是中国古代数学的源头。其中也隐含着黄

金分割率。

清代著名学者江永(江慎修) (公元1681 - 1762)

年) 在《河洛精蕴》中已经指出河图中的黄金分割率

(他称之为“神分线”) 。他将河图中宫十数为股,五

数为勾,然后各自自乘,再开方得弦,即:

52 (勾) + 102 (股) = 11. 182 (弦)

再,5 (勾) + 11. 18 (弦) = 16. 18 (勾弦和)

11. 18 (弦) - 5 (勾) = 6. 18 (勾弦较)

10 (股) - 6. 18 (勾弦较) = 3. 819

这样,以16. 18 (勾弦和) 为长,

则,6. 18 (小段) / 10 (大段) = 0. 618

其中,16. 18 (勾弦长) ×6. 18 (勾弦较) = 99. 99

10 (股) ×10 (股) = 100

若,以10 (股) 为长,

则3. 819 (小段) / 6. 18 (大段) = 0. 6179

其中,10 (股) ×3. 819 = 38. 19

如是,江永说:“八线表半径用全数如十,则勾弦

较六一八O 三三九,即十边三十六度之通弦。其列

率即《洛书》三率连比例之理。其所得十边通弦之

数,实生于五与十,而五十即《河图》之中宫,至平中

有至奇焉。西人秘惜其法,谓此线为神分线,岂知神

奇即在目前哉”〔2〕?

这里,我们看到,从河图演算出的黄金分割率是

与数“五”与“十”密切相关的。在河图中,“五”与“十”两数具有特殊的意义。河图由一、二、三、四、

五、六、七、八、九、十共十个数字组成,其中一、二、三、四、五称为生数,六、七、八、九、十称为成数。十

个数相加为55 ,被古人称为“天地之数”。《周易·系

辞传》曰:“天一、地二、天三、地四、天五、地六、天七、地八、天九、地十。天数五,地数五,五位相得,而各

有合,天数二十有五,地数三十,凡天地之数五十有

五,此所以成变化而行鬼神也。”其实,“五十”之为

“天地之数”,并非它能行鬼神之变化,这当中反映出

上古先民所创造的十进制的计数方法,而十以内的

任何数字都可以运用四则运算法加以计算。也就是

说,任何一个数的平方都可以用这种简单的加法求

出来,利用它的逆运算,任何一个数的开方也可以用

简单的减法求出来。《周易·系辞传》曰:“大衍之数

五十,其用四十有九。”《周髀算经》解释说:“禹治洪水,始广用勾股弦,故称其为大衍数。”可见,运用勾

股定理对“天地之数”或“大衍之数”“五”与“十”进行简单的运算即可求出其中蕴含的黄金分割率。这说

明,黄金分割率并非什么神秘之物,它可以明白地表

现在线段和图形之比例关系当中,也可以表现在非

常简单的数字关系中。

至于洛书,它与黄金分割率也有联系。由洛书

演化的“九宫图”,如果将其与斐波那契数列相联系,

亦可找到其中的内在联系。

有趣的是,生活在与贾宪年代相差不远的哲学

家程颐在其《易程传》中,对64 卦按所含阳爻数目

的多少进行分类。其结果正好是杨辉记录的贾宪三

角形的最后一层的数据。

后人将《易程传》原文对

64 卦按阳爻的数目进行组合分类的排列进行统计

的时候,又发现,这个分布图与贾宪三角形十分相

像。从64 卦的分布可以直接导出一个贾宪三角

形〔5〕! 这恐怕不是巧合。联系到八卦与河图、洛

书,河图、洛书与黄金分割和斐波那契数列的内在联

系,我们有理由得出64 卦也与黄金分割、斐波那契

数列有内在联系的结论,由此还可看出,黄金分割率

决不只是单纯的几何学问题,它也广泛地蕴含于以

数值化为特征的中国古代数学中。

4 “五运六气”学说与黄金分割率

我们知道,正五角星形各线段之比为黄金分割

值,而中国传统医学的“五运六气”学说中实际上已

经蕴含了正五角星形,因此也蕴涵了黄金分割率。

“五运六气”学说与五行思想有密切关系。《国

语·郑语》曰:“先王以土与金木水火杂,以成百物。” 《尚书·洪范》曰:“五行:一曰水,二曰火,三曰木,四

曰金,五曰土。”后来“五行”与“五方”联系起来,即中、东、南、西、北五方。在这种观念中“, 土”居中,起支配作用“, 五方”并不构成五个角。到了战国时期,

五行思想有了进一步的发展,形成了以邹衍为代表

的阴阳五行学说。其相生相克的原理突破了殷人以

土居中的“五方”观念,用正五边形和五角星形来形

象地表示这一学说是再恰当不过的了。

5 黄赤交角与黄金分割率

我国是世界上天文学发达最早的国家之一。在

天文观测实践中,古代数学获得了长足进步。特别

是投影几何学、三角函数学等测量数学在当时世界

上取得领先成绩。这其中,黄道面与赤道面交角数

值的确定以及与之相关的36°角、72°角的形成皆与

黄金分割率有明显的联系。

关于黄赤交角。据史料记载,世界上最古老的

星表之一———我国的《石氏星经》已经确定了赤道座标体系,而且已经知道了黄道倾角。成书于公元前

一世纪的《周髀算经》有用圭表测影并用勾股定理进

行天文计算的记录。当时用垂直于地面的高八尺

表,在中午测日影长,用日影长度来定义每年二十四

节气,这是治历各家的重要参数。关于两至影长的

具体数字,东汉的贾逵在注释《周髀算经》时说:“冬

至日距极为百一十五度,夏至日距极六十七度。”(《后汉书》卷十二) 以二除两者之差,得整数二十四

度(折合现在的23°39’18 〃) 。东汉另一位天文学家张衡(公元78 - 139 年) 在《浑仪》一书的残篇中有如下记载:“赤道横带浑天之腹,去极九十一度十九分

之五。黄道斜带其腹,出赤道表里各二十四度。故

夏至去极六十七度而强,冬至去极百一十五度亦强也。”张衡再次给出了黄赤交角的具体数值。隋唐以降,黄赤交角的数值计算得越来越精确。徐昂的宣

明历(公元822 年) 所用的黄赤交角值为23°34′55″,仅比理论值小37″。元代数学家郭守敬等人于《授

时历》中多次应用了沈括的“会圆术”,并配合使用相似三角形各线段间的比例关系,从而在推算“赤道积度”、“赤道内外度”方面创立了新的方法。从数学意义上来讲,新的方法相当于开辟了通往球面三角法

的途径。由于采用了新的方法“, 中国的一整套观测

值(以郭守敬极精确的数值为最高峰) ,曾为18 世纪

天文学家关于所谓黄道倾角易变性的讨论提供了证

据”

6 结语

以上通过对中国古代数学中蕴涵的“黄金分割

率”的分析和论证,我们至少可以得到两点启发:

第一,黄金分割率普遍地蕴含于数学的许多分

支学科中,中国古代数学作为世界数学发展的一种

类型,同样与黄金分割率有着内在的联系。

如前所述,有关黄金分割的数学问题非常广泛,

而尤以斐波那契数列所蕴涵的数学问题最为丰富。

例如,在欧几里德算法的计算过程中,为了求出两个

给定正整数的最大公因数,数学家G. 拉梅(Lame , 1795 - 1870 年) 提出了下述巧妙的定理:为了求出

两个正整数的最大公因数,所需进行的除法的次数

决不大于较少整数的位数的五倍。而这个定理的证

明首先要用到斐波那契数列的某些性质〔9〕。我们

知道,欧几里德关于求取两个正整数的最大公因子

的算法同我国古代《九章算术》中的“更相减损术”是相同的。这也就是说,“更相减损术”与斐波那契数

列的某些性质也是有联系的。相关的问题,我们甚

至还可以在数论的重要分支丢番图逼近(Diophan2

tine Approximation) 中找到。我国著名数学家华罗庚在其数论研究中涉及到的丢番图逼近方程与斐波

那契数列有关〔10〕。上个世纪数学界的领军人物大卫·希尔伯特在1900 年巴黎国际数学家代表大会上

的演讲中曾提到的第十个问题是丢番图方程可解性

的判别。1970 年,前苏联科学家马蒂雅舍维奇在前

人研究的基础上,引入了斐波那契数列,从而解决了

希尔伯特第十个问题〔11〕。这表明,黄金分割率不只是在初等数学有,而且在高等数学甚至数学的前沿

学科中也广泛蕴涵着;不只在西方数学体系中广为

存在,而且在东方诸国的数学体系中也时隐时现。

因此,在西方以外的数学体系中“发掘”出黄金分割

率并不是值得大惊小怪的事情。

第二,黄金分割问题的解决有赖于东西方数学

思想和方法的互补。古代希腊数学家们热衷于对纯

粹几何图形的演绎证明,这使他们作出了包括黄金

分割线段在内的许多几何证明,但他们往往与无理

数概念及离散、无穷、极限等思想失之交臂〔12〕。与此相反,古代东方的印度、中国、阿拉伯诸国,其算术和代数学发展较快。例如中国很早就有了负数《, 九章算术》中明确规定了分数的四则运算;在无理数方面,中国将有理数和无理数同样看待,在开方不尽时

利用十进小数近似地表示之。而从数论角度来看,

最无理的数就是黄金分割数;无理数用有理数是很

难逼近的。这是否昭示人们,那些最早认识到无理

数的国家有可能最早接触到黄金分割数值。这一

点,中国的河图、洛书提供了有力的证明。还有一个

事实,即斐波那契数列是与东方数学密切相关的。

我们已经知道,文艺复兴前哨的意大利,由于其特殊

的地理位置和贸易联系而成为东西方文化的“熔

炉”。意大利学者早在12 - 13 世纪就开始翻译、介

绍希腊与阿拉伯的数学文献。斐波那契早年随父在

北非师从阿拉伯人习算,后又游历地中海沿岸诸国,

其代表作《算盘书》、《几何实践》等也是根据阿拉伯

文与希腊文材料编译而成的。《算盘书》最大的功绩

是系统地介绍印度记数法,并影响和改变了欧洲数

学的面貌。有资料表明《, 算经》中的“契丹算法”,即

我国的“盈不足术”、“物不知其数”和“百鸡问题”等, 它们是经由印度、阿拉伯国家传到欧洲的。对此,我

们似乎可以作出一个大胆的推测:斐波那契数列很

可能是从东方诸国传到西方的,或至少是在受到了

东方特别是中国的算术和代数学的启发而形成的!

此外“, 巴斯卡三角形”也不是巴斯卡最早发现的。

大量研究资料表明,在全世界范围内,东方各国比欧

洲更早知道数字三角形。而关于这一三角形的发明

者贾宪的记载是最早的。至于巴斯卡本人,他在算

术三角形的研究中将经典的几何命题同三角形中数

值关系结合起来进行考虑,并得出一系列新的性质。

这进一步说明,西方数学的发展是在与东方数学的

交流和互动中前进的,不能认为,只有严格的演绎推

理才能发现和证明黄金分割率的存在,算术的直觉

常常能直接洞悉数学命题的真谛。

另一方面,东方的算术和代数学必须依赖于严

密的逻辑体系才能获得大的发展。在黄金分割问题

方面,中国古代数学家也不是没有遇到与之相关的

几何学问题。中国先秦时期的五行观念是与毕达哥

拉斯的五边形数的观念有相似之处的(李约瑟曾指

出两者的共同点)〔13〕。但是,中国古代数学终究难

以在几何学上形成正五边形或五角星形。《周髀算

经》中已给出了“勾股定理”和“弦图”,只要将勾为股

的一半,即可推演出黄金分割率。但《周髀算经》的

作者没有这样做。其中的一个原因,可能是这样做

对于当时的天文观测或其他实际问题的解决并无多

大用处。中国古代数学多是为解决实际问题而提出

的,它往往给出了解决具体问题的算法,却没有上升

到一般公理和定义的高度,没有形成严密的逻辑演

绎体系,因而不可能从几何学上证明黄金分割率。

至于中国古代数学中与黄金分割率相近的“今有

术”,虽然包含着比例问题,并且得出了“二内项之积

等于二外项之积”这一结论,但是它仍然同印度的

“三率法”一样,没有明确地表示出二比率相等的意

义,因此它不是真正意义上的黄金分割率。总之,

“与希腊人的几何学天才相比,中国人的数学是代数

和算法的”〔14〕。中国古代数学没有建立严密的公理

体系和公理化方法,这是它的特点,也是它的局限

性。因此,尽管中国古代数学在数值计算方面触及

到黄金分割率,但终因逻辑思维和几何学的不发达

而未能摘取几何学上的“宝石”。宁可累死在路上,也不能闲死在家里!宁可去碰壁,也不能面壁。是狼就要练好牙,是羊就要练好腿。什么是奋斗?奋斗就是每天很难,可一年一年却越来越容易。不奋斗就是每天都很容易,可一年一年越来越难。能干的人,不在情绪上计较,只在做事上认真;无能的人!不在做事上认真,只在情绪上计较。拼一个春夏秋冬!赢一个无悔人生!早安!—————献给所有努力的人

中国古代数学的成就

中国古代数学的成就 中国是世界文明古国之一。数学是中国古代科学中一门重要学科,其发展源远流长,成就辉煌,其中包括圆周率、割圆术、十进位制计数法、算经十书、勾股定理、杨辉三角和剁积术、珠算等。我想就着这几项谈谈我国古代数学的成就。 一:圆周率。古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。十九世纪前,圆周率的计算进展相当缓慢。中国古算书《周髀算经》中有“径一而周三”的记载,认为圆周率是常数。? 我国数学家刘徽在注释《九章算术》时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形,得出π≈根号10。? 汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。?王蕃发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的? 南北朝时代着名数学家祖冲之进一步得出精确到小数点后7位的π值,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。他的辉煌成就比欧洲至少早了1000年。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的着作中,欧洲不知道是祖冲之先知道密率的,将密率错误的称之为安托尼斯率。 二、割圆术。3世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周长的方法。?中国古代从先秦时期开始,一直是取“周三径一”(即圆周周长与直径的比率为三比一)的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。 三、十进位制计数法。十进位制记数法在我国原始社会就已经形成,完成于奴隶社会初期的商代,到商代已发展为完整的十进制系统,并且有了“十”、“百”、“千”、“万”等专用的大数名称。1899年从河南安阳发掘出来的象形文字,是大约3000多年前的殷代甲骨文。其中载有许多数字记录,最大的数目字是3万。如有一片甲骨上刻着“八日辛亥允戈伐二千六百五十六人。”(八日辛亥那天的战争中,消灭了敌方2656人)。这段文字说明我国在公元前1600年,已经采用了十进位值制记数法。这种记数法中,没有形成零的概念和零号,但由于引入了几个表示数位的特殊的数字如十、百、千、万等.能确切地表示出任何自然数,因而也是相当成功的十进位值制记数法,历代稍有变革,但基本框架则一直延用至今。 四、《算经十书》。《算经十书》是指汉、唐一千多年间的十部着名的数学着作,他们曾经是隋唐时代国子监算学科的教科书。十部书的名称是:《周髀算经》、《九章算术》、《海岛算经》、《张丘建算经》、《夏侯阳算经》、《五经算术》、《辑古算经》、《缀术》。其中阐明“盖天说”的《周髀算经》,被人们认为是流传下来的中国最古老的既谈天体又谈数学的天文历着作。其中提到大禹治水时所应用的数学知识,成为现存文献中提到最早使用勾股定理的例

黄金分割比例

解读构成的自然审美法则—电视背景墙的比例分割 在装饰设计中,直觉感受的设计师更多的是深思熟虑应用知识经验的结果,感性的审美是有理性审美法则做基础的,通过分析自然的审美规律就能获得这个答案,也就是说,设计过程可以遵循某种几何构成和规划方法。以往的艺术设计应用提到黄金分割的关系,但只是作为神奇的自然几何规律引证,常常忽略彼此相关联的理性内容,艺术设计作品常被作为直接灵感的表现。没能真正将自然几何学引入教学和设计,我个人认为是一种遗憾,应当有理念的将设计、几何学、生物学中某种相关的规律注入到设计中,融入自然设计审美法则,使其跳出传统“天赋”、“灵性”等无法传达的设计困惑,获得设计过程中更美好的境界。一.最美构成比例视觉最美构成比例矩形的长宽比是0.618,这一比例称为黄金分割律。此律的意思是:整体与较大部分之比等于较大部分与较小部分之比。如果物体、图形的各部分的关系都符合这种分割律,它就具有严格的比例性,这个比例符合人的视觉审美习惯,使人感到悦目。因此,黄金分割率就是视觉最美构成比例。从数学语言来说,将一条线段分为两部分,整条线段AB与较长部分AC AC与较短部分BC的比值相同,即AB:AC=AC:CB,比例数值为1:61803:1;按百分比来表示的比例是38.2%:61.8%,近似比例为4:6。电视屏幕、写字台面、书籍、门窗等,其短边与长边之比大多为0.618。甚至连火柴盒、国旗的长宽比例,都恪守0.618比值。鉴于审美要求,如果需要用作电视背景墙的墙面不符合黄金分割率的审美比例,差距较大,当然需要合理的分割,使其接近这个审美构成比例。* 黄金分割率的矩形做法从正方形开始;从一边的中点向对角画一条斜线,以这条斜线为半径做一段圆弧,与正方形的延长线相交于C点。这个小矩形和正方形共同构成了黄金矩形;这个黄金矩形可以按上述规则被进一步分割,产生较小比例的正方形和黄金矩形,这个分割过程可以无限继续下去,产生更小的等比例的正方形和黄金矩形。用黄金分割矩形的分割圆弧线可以构造一个黄金分割的螺旋线,方法是用被分割二产生的正方形边长作为圆的半径,对每一个正方形做出圆弧,并连接这些圆弧,就形成了黄金分割螺旋线。黄金分割矩形中的大小正方形之间的面积也符合黄金分割比例. 二.各种根号矩形根号矩形在设计几何学中也是自然审美法则的主要内容,它的奇妙在于能无限分割更小的等比根号矩形,构成根号矩形的比例也大量存在于大自然的造物之中,形成和谐的分割关系,同黄金分割矩形是一样的,在电视背景墙的设计分割中常使用、、和矩形。(一)矩形矩形具有特殊的性质,也能被无限分割为更小的对比矩形,这意味着当一个矩形被二等分时,得到2个较小的矩形,当被四等分时,得到4个较小的矩形,矩形的比例近似于黄金分割率,的比例是1:1.414,黄金分割率的比例是1:1.618.,近似表现为3:7。* 分割方法:从正方形内画一条对角线,以这条对角线为半径做一段圆弧,与正方形的延长线相交于C点。将这个新的图形封闭为矩形,这个矩形就是矩形。这个矩形被进一步分割为两个矩形的矩形,将长边中点连接成中线就得到了两个更小的矩形;这个过程可以无限重复,可以产生无限多的矩形。(二)矩形正如矩形能被分割成相似的矩形一样,、.、矩形也可以被这样分割,这些矩形既能被横向分割也能被纵向分割,还能被分割为3个垂直的矩形,依次类推,3个垂直的矩形能被分割为3个水平的矩形等等,这些分割方法对电视背景墙的分割处理有很大的借鉴作用,矩形的比例近似于黄金分割率,的比例是1:1.732,近似表现为4:6。* 分割方法从矩形内画一条对角线,以这条对角线为半径做一段圆

大自然中的黄金分割

初中数学综合实践课题设计—— 大自然中的黄金分割 龙翔学校 周福兰 ◆ 黄金分割的由来 一天,毕达哥拉斯从一家铁匠铺路过,被铺子中那有节奏的叮叮当当的打铁声所吸引,他走进作坊,拿出一把尺量了一下铁锤和铁砧的寸,发现它们之间存在着一种十分和谐的关系。回到家里,毕达哥拉斯拿出一根线,想将它分为两段。经过反复比较,他最后确定了 0.618:1的比例截断最优美。后来古希腊美学家柏拉图将这比例称为黄金分割律。中世纪的数学家开普勒对黄金分割作了很高的评价。他说:几何学有两大宝藏:一个是勾股定理,另一个是黄金分割。 那么,什么是黄金分割? ◆ 黄金分割自述 点C 把线段AB 分成两条线段AC 和CB ,如果AB AC AC CB =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。 那么,黄金比又是多少呢?如何计算呢? 分析:设线段AB 的长度为1个单位,AC 的长度为x 个单位,则CB 为 ()x -1个单位,根据题意列出方程: 11x x x =- 由比例的基本性质得: 21x x =- 即 012=-+x x 解这个方程求得:AC= 21 5- 所以,求出黄金比为 ≈-=215AB AC 618.0

◆你知道为什么女性爱穿高跟鞋吗? 中世纪意大利的数学家菲波那契测定了大量的人体后得知,人体肚脐以下的长度与身高之比接近0.618,其中少数人的比值等于0.618的被称为:“标准美人”。因此,艺术家们在创作艺术人体时,都以黄金比为标准进行创作。 周老师的身高为162cm,肚脐眼以上的长度为70cm,你能帮周老师挑一双最适合她身高的鞋子吗?试试吧! ◆趣味问答 (问题一):报幕员应站在舞台的什么地方报幕最佳? (问题二):人的正常体温是37℃,对大多数人来说,体感最舒适的温度是22 ℃~23 ℃。你能解释吗? ◆动动脑,画一画 你能利用黄金分割的数学知识设计一幅图案,送给老师吗?动动脑,画一画

最新中国古代数学家成就及其贡献

中国古代著名数学家及其主要贡献 刘徽(生于公元250年左右) 刘徽(生于公元250年左右),三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一.其生卒年月、生平事迹,史书上很少记载。据有限史料推测,他是魏晋时代山东邹平人。终生未做官。他在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产. 《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作. 《海岛算经》一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目. 刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人. 刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富. 祖冲之(公元429年─公元500年) 祖冲之(公元429年─公元500年)是我国杰出的数学家,科学家。南北朝时期人,汉族人,字文远。生于未文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县)。其主要贡献在数学、天文历法和机械三方面。在数学方面,他写了《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本,可惜后来失传了。祖冲之还和儿子祖暅一起圆满地利用「牟合方盖」解决了球体积的计算问题,得到正确的球体积公式。在机械学方面,他设计制造过水碓磨、铜制机件传动的指南车、千里船、定时器等等。此外,对音乐也研究。他是历史上少有的博学多才的人物。

初中数学例题:黄金分割

初中数学例题:黄金分割 5. 如图所示,矩形ABCD 是黄金矩形(即=≈0.618),如果在其内作正方形CDEF ,得到一个小矩形ABFE ,试问矩形ABFE 是否也是黄金矩形? 【思路点拨】(1)矩形的宽与长之比值为 ,则这种矩形叫做黄金矩形. (2)要说明ABFE 是不是黄金矩形只要证明 =即可. 【答案与解析】矩形ABFE 是黄金矩形. 理由如下:因为 = = 所以矩形ABFE 也是黄金矩形. 【总结升华】判断四边形是否是黄金矩形,要根据实际条件灵活选择判断方法. 举一反三: 【变式】以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上,如图所示, BC AB 2 15-2 15-AB AE 215-AB AE AB ED AB AD AB ED AD -=-2 1512151)15)(15() 15(21152 -=-+=-+-+=--

(1)求AM ,DM 的长, (2)试说明AM 2 =AD ·DM (3)根据(2)的结论,你能找出图中的黄金分割点吗? 【答案】(1)∵正方形ABCD 的边长是2,P 是AB 中点, ∴AD =AB =2,AP =1,∠BAD =90°, ∴PD =。 ∵PF =PD , ∴AF = ,在正方形ABCD 中,AM =AF =,MD =AD -AM =3- (2)由(1)得AD ×DM =2(3-)=6-2, ∴AM 2 =AD ·DM . (3)如图中的M 点是线段AD 的黄金分割点. 6.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女士身高165cm ,下半身长与身高的比值是0.60,为了尽可能达到好的效果,她应穿的高跟鞋的高度大约为( ). A.4cm B.6cm C.8cm D.10cm 【答案】C. 522=+AD AP 15-15-555526)15(22-=-=AM x l

高中数学史集黄金分割素材

黄金分割 (浙江省宁波市镇海区外语实验学校 315200)余满龙 在初中数学的相似形这一章中有“黄金分割”的简单介绍:把一条线段(PQ )分成两条线段,使其 中较大的线段(PC )是原线段(PQ )与较小线段(CQ )的比例中项,这种分法用途广泛,且美观,所以人们把它称为黄金分割也称“中外比”或“中末比”。(如图1) 世界上最早接触黄金分割的是古希腊的毕达哥拉斯学派。公元前4世纪(二千多年前),古希腊数学家欧多克斯(约公元前408~公元前355)第一个系统研究了这一问题,并建立起比例理论。他发现: 在这个几何问题里,若CQ 与PC 之比等于PC 与PQ 之比, 那么这一比值就等于…,用式子表示就是: 618.0215=-==PQ PC PC CQ 这个神奇的数字已经让我们着迷了几千年但实际上,这个黄金分割很早就存在了,我们 从 Andros 神庙(公元前10000年)就可以看出,而Kheops (公元前2800年)金字塔(如右图)表现的尤为明显。几何学家,哲学家和建筑师都认为黄金分割是一组非常奇特的比例,是一种空间的和谐,能够组成精确的比例。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克斯的工作,系统论述了黄金分割,成为最早的有证论着。欧多克斯就是从整个比例论的角度考虑黄金分割,他还把上述的C 点分PQ 所成的比PC:CQ 叫做“中外比”。欧多克斯发现这种线段之间的中外比关系存在于许多图形中。如正五边形中, Kheops (公元前Q C P 图1

莱奥纳多·达·芬奇 相邻顶角的两条对角线互相将对方分成中外比,而较长的一段等于正五边形的边。如果将有理线段分成中外比,那末被分成的两个线段长是无理数。 文艺复兴时期的欧洲,由于绘画艺术的发展,促进了对黄金分割的研究。当时,出现了好几个身兼几何学家的画家,着名的有帕奇欧里、丢勒、达芬奇等人。他们反几何学上图形的定量分析用到一般绘画艺术,从而给绘画艺术确立了科学的理论基础。 1228年,意大利数学家斐波那契在《算盘书》的修订本中提出“兔子问题”,导致斐波那契数列:1,1 ,2,3,5,8,13,21,34,55,89,……,它的每一项与后一项比值的极限就是黄金分割数,即黄金分割形成的线段与全线段的比值。(即设F 1 =1,F 2 =1,F n = F n-2 + F n-1,n ≥3,则) 1525年丢勒制定了充分吸收黄金分割几何意义的比例法则,揭示了黄金分割在绘画中的重要地位。丢勒以为,在所有矩形中,黄金分割的矩形,即短边与长边之比为2 15 的矩形最美观。因为这样的矩形,“以短边为边,在这个矩形中分出一个 正方形后,余下的矩形与原来的矩形相似,仍是 一个黄金分割形的矩形”,这使人们产生一种 “和谐”的感觉。 后来意大利伟大画家达·芬奇(1452-1519)(如右图)把欣赏的重点转到使线段构成中外比的分割,而不是中外比本身,提出了“黄金分割”这一名称。这一命名一直延用至今。 欧洲中世纪的物理学家和天文学家开普勒(J .Kepler1571—1630),曾经说过:“几何学里有二个宝库:一个是毕达哥拉斯定理(我们称为“商

数学之美——黄金分割(图形相似)汇总

数学之美——黄金分割 前 言 数学可以说是各学科的灵魂,数学中蕴涵着文化价值、美学价值、以及经济价值,而这些价值究竟是如何体现的?随着我国教育水平的逐步提高,我们对数学这门科学的学习更加透彻,我们就以数学中的两大宝藏之一“黄金分割”为例,黄金分割是我们最常见的一种和谐比例关系,即是毕达哥拉斯学派提出的“黄金分割”又称“黄金段”或“黄金率”。在初中教学中对黄金分割的了解还不是很深,只是对黄金分割的定义做了简单的说明和简单的练习。随着我们数学能力水平的提升,我们了解到了许多重要的与黄金分割相关联的数学知识,本节主要解决杨辉三角形等数学量与黄金分割的关系,以及与黄金分割有关的一些概念,最后,将进一步阐述黄金分割的实际应用,可见黄金分割用途之广泛,影响之深远。 另外,我真诚的希望通过本节学习,能够让学生更多的了解黄金分割的实质和内涵,对以后的学习有进一步的帮助。 一、黄金分割的起源与发展 1.1 黄金分割的定义 古希腊雅典学派的第三大数学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L 的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。证明方法为: 设有一根长为1的线段AB 在靠近B 端的地方取点C ,)(CB AC >使AC AB CB AC ::= 则点C 为AB 的黄金分割点。 设x AC =,则x BC -=1 代入定义式AC AB CB AC ::= 可得 x x x :1)1(:=- 即 012 =-+x x 解该二次方程:2151--= x 2 152-=x 其中1x 为负值舍掉。 所以 2 15-=AC 约为618.0.

黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数学0.618特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618处。艺术家们认为弦乐器的琴马放在琴弦的0.618处,能使琴声更加柔和甜美。 1.2黄金分割的发展史 据记载黄金分割是在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最宝贵的算法”。这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法。 其实有关“黄金分割”,我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边 形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《帕乔利》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数学家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 其实,黄金分割比在未发现之前,在客观世界中就存在的,只是当人们揭示了这一奥秘之后,才对它有了明确的认识。当人们根据这个法则再来观察自然界时,就惊奇的发现原来在自然界的许多优美的事物中的能看到它,如植物的叶片、花朵,雪花,五角星……许多

浙教版初中数学九年级比例线段及黄金分割(基础) 知识讲解

比例线段及黄金分割(基础) 知识讲解 【学习目标】 1、了解两条线段的比和比例线段的概念并能根据条件写出比例线段; 2、会运用比例线段解决简单的实际问题; 3、掌握黄金分割的定义并能确定一条线段的黄金分割点. 【要点梳理】 要点一、比例线段 【: 394495 图形的相似 预备知识】 1.成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段. 2.比例的性质: (1)基本性质:如果 a c b d =,那么ad bc =. (2)合比性质:如果++==.a c a b c d b d b d ,那么 如果--==.a c a b c d b d b d ,那么 要点诠释: (1)两条线段的长度必须用同一长度单位表示,若单位长度不同,先化成同一单位,再求它们的比; (2)两条线段的比,没有长度单位,它与所采用的长度单位无关; (3)两条线段的长度都是正数,所以两条线段的比值总是正数. 要点二、黄金分割 1.定义: 点C 把线段AB 分割成AC 和CB 两段,如果AC BC AB AC =,那么线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 要点诠释: AC AB =≈叫做黄金分割值). 2.作一条线段的黄金分割点: 图4-7 如图,已知线段AB ,按照如下方法作图: (1)经过点B 作BD ⊥AB ,使BD = 2 1AB . (2)连接AD ,在DA 上截取DE =DB .

(3)在AB 上截取AC =AE .则点C 为线段AB 的黄金分割点. 要点诠释: 一条线段的黄金分割点有两个. 【典型例题】 类型一、比例线段 1. (2016?兰州模拟)若a :b=2:3,则下列各式中正确的式子是( ) A .2a=3b B .3a=2b C . D . 【思路点拨】根据比例的性质,对选项一一分析,选择正确答案. 【答案】B . 【解析】A 、2a=3b ?a :b=3:2,故选项错误; B 、3a=2b ?a :b=2:3,故选项正确; C 、=?b :a=2:3,故选项错误; D 、=?a :b=3:2,故选项错误. 故选B . 【总结升华】考查了比例的性质.在比例里,两个外项的乘积等于两个内项的乘积. 举一反三: 【变式】(2015?崇明县一模)已知=,那么下列等式中,不一定正确的是( ). A .2a=5b B. a b 52= C. a+b=7 D.a b b 72 += 【答案】C . 2. 设432z y x ==,求2222232z xy x z yz x --+-的值. 【思路点拨】由已知条件利用解方程的思想不能求出x ,y ,z 的值,因此用设参数法代入化简. 【答案与解析】设4 32z y x ===k 则x =2k ,y =3k ,z =4k 原式=2222)4(322)2()4(433)2(2k k k k k k k k -??-+??-?=222412k k --=2 1 【总结升华】解此类题学生容易误认为设k 后,未知数越多更不易解出,实际上分子、分母能产生公因式约去. 类型二、黄金分割

中国古代数学体系的形成

中国是世界文明古国之一,地处亚洲东部,濒太平洋西岸。黄河流域和长江流域是中华民族文化的摇篮,大约在公元前2000年,在黄河中下游产生了第一个奴隶制国家──夏朝(前2033-前1562),共经历十三世、十六王。其后又有奴隶制国家商(前562年—1066年,共历十七世三十一王)和西周﹝前1027年—前771年,共历约二百五十七年,传十一世、十二王﹞。随后出现了中国历史上的第一次全国性大分裂形成的时期──春秋(前770年-前476年)战国(前403年-前221年),春秋后期,中国文明进入封建时代,到公元前221年秦王赢政统一全国,出现了中国历史上第一个封建帝制国家──秦朝(前221年—前206年),在以后的时间里,中国封建文明在秦帝国的封建体制的基础不断完善地持续发展,经历了统一强盛的西汉(公元前206年—公元8年)帝国、东汉王朝(公元25年—公元220年)、战乱频仍与分裂的三国时期(公元208年-公元280年)、西晋(公元265年—公元316年)与东晋王朝(公元317年—公元420年)、汉民族以外的少数民族统治的南朝(公元420年—公元589年)与北朝(公元386年—公元518年)。到了公元581年,由隋再次统一了全国,建立了大一统的隋朝(公元581—618年),接着经历了强大富庶文化繁荣的大唐王朝(公元618年—907年)、北方少数民族政权辽(公元916年-公元1125年)、经济和文化发达的北宋(公元960年~公元1127年)与南宋(公元1127年-公元1279年)、蒙古族建立的控制范围扩张至整个西亚地区的疆域最大的元朝(公元1271年-1368年)、元朝灭亡后,汉族人在华夏大地上重新建立起来的封建王朝──明朝(公元1368年-公元1644年),明王朝于17世纪中为少数民族女真族(满族)建立的清朝(公元1616年-公元1911年)所代替。清朝是中国最后一个封建帝制国家。自此之后,中国脱离了帝制而转入了现代民主国家。 中国文明与古代埃及、美索不达米亚、印度文明一样,都是古老的农耕文明,但与其他文明截然不同,它其持续发展两千余年之久,在世界文明史上是绝无仅有的。这种文明十分注重社会事务的管理,强调实际与经验,关心人和自然的和谐与人伦社会的秩序,儒家思想作为调解社会矛盾、维系这一文明持续发展的重要思想基础。 一、中国数学的起源与早期发展 据《易·系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。 用算筹记数,有纵、横两种方式:表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间﹝法则是:一纵十横,百立千僵,千、十相望,万、百相当﹞,并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。 筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。 在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理﹝西方称勾股定理﹞的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。 战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题,例如:「圆,一中同长也」、「平,同高也」等等。墨家还给出有穷和无穷的定义。《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如「至大无外谓之大一,至小无内谓之小一」、「一尺之棰,日取其半,万世不竭」等。这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的

初二数学知识点归纳:黄金分割数1

初二数学知识点归纳:黄金分割数1 初二数学知识点归纳:黄金分割数1 黄金分割数: 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。 黄金分割: 黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1∶0618或1618∶1,即长段为全段的0618。0618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 黄金分割线: 黄金分割线是一种古老的数学方法。黄金分割的创始人是古希腊的毕达哥拉斯,他在当时十分有限的科学条下大胆断言: 一条线段的某一部分与另一部分之比,如果正好等于另一部分同整个线段的比即0618,那么,这样比例会给人一种美感。

后,这一神奇的比例关系被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”。黄金分割线的神奇和魔力,在数学界上还没有明确定论,但它屡屡在实际中发挥着意想不到的作用。 黄金分割线的最基本公式,是将1分割为0.618和0.382,它们有如下一些特点: (1)数列中任一数字都是由前两个数字之和构成。 (2)前一数字与后一数字之比例,趋近于一固定常数,即0.618。(3)后一数字与前一数字之比例,趋近于1.618。 (4)1.618与0.618互为倒数,其乘积则约等于1。 ()任一数字如与前面第二个数字相比,其值趋近于2.618;如与后面第二个数字相比,其值则趋近于0.382。 理顺下,上列奇异数字组合除能反映黄金分割的两个基本比值0.618和0.382以外,尚存在下列两组神秘比值。 即:(1)0.191、0.382、0.、0.618、0.809 (2)1、1.382、1.、1.618、2、2.382、2.618 黄金分割点: 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,用分数表示为(√-1)/2,取其前三位数字的近似值是0618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这个分割点就叫做黄金分割点(gldensetinrati通常用φ表示)这是一个十分有趣的数字,我们以0618近似表示,通过简单的计算就可以发现:(1-0618)/0618=06一条线段

黄金分割中的数学文化

黄金分割中的数学文化 姓名:邱秀林班级:工业工程121 学号:5404312093 摘要:“数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。”数学中蕴涵的文化价值是客观存在的,数学的本质是一种文化,数学不仅闪烁着理性智慧的光芒,更有艺术审美的享受以及厚重的文化意向。“黄金分割”被誉为数学的两大宝藏之一,它来源于实际生活,并在实际生活中得到应用,只要留心,到处都可发现这位美的“使者”的足迹。黄金分割对我们的审美、思维方式、价值观念以及世界观等方面将产生重要的影响。 关键词:文化价值黄金分割数学美思想方法 黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数学0.618特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618处。艺术家们认为弦乐器的琴马放在琴弦的0.618处,能使琴声更加柔和甜美。 一、黄金分割的起源 人们认为,黄金分割作图与正五边形、正十边形和五角星形的作图有关——特别是由五角星形作图的需要引起的。五角星形是一种很耐人寻味的图案,世界许多国家国旗上的“星”都画成五角形。现今有将近40个国家(如中国、美国、朝鲜、土耳其、古巴等等)的国旗上有五角星。为什么是五角而不是其他数目的角?也许是古代留下来的习惯。 五角星形的起源甚早,现在发现最早的五角星形图案是在幼发拉底河下游马鲁克地方(现属伊拉克)发现的一块公元前3200年左右制成的泥板上。 古希腊的毕达哥拉斯学派用五角星形作为他们的徽章或标志,称之为“健康”。可以认为毕达哥拉斯已熟知五角星形的作法,由此可知他已掌握了黄金分

中国古代数学的成就

中国古代数学的成就 摘要:中国古代数学具有悠久的传统。在古代四大文明中,中国数学持续繁荣时期最为长久。从公元前后至公元14世纪,中国古典数学先后经历了三次发展高潮,即两汉时期、魏晋南北朝时期和宋元时期,并在宋元时期达到顶峰。 关键词:中国古代;数学成就 中国古代数学的成就包括圆周率、割圆术、十进位制计数法、算经十书、勾股定理、(测高、远、深的方法)测量太阳高度、祖冲之~祖暅父子、等间距二次内插公式、秦九韶的高次方程数值解法、杨辉三角和剁积术以及珠算 圆周率 古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。十九世纪前,圆周率的计算进展相当缓慢。中国古算书《周髀算经》(约公元前2世纪)中有“径一而周三”的记载,认为圆周率是常数。 我国数学家刘徽在注释《九章算术》(263)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形,得出π≈根号10(约为3.16)。 汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的 南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。他的辉煌成就比欧洲至少早了1000年。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲不知道是祖冲之先知道密率的,将密率错误的称之为安托尼斯率。 割圆术 3世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周长的方法。 中国古代从先秦时期开始,一直是取“周三径一”(即圆周周长与直径的比率为三比一)的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。 十进位制计数法 十进位制记数法在我国原始社会就已经形成,完成于奴隶社会初期的商代,到商代已发展为完整的十进制系统,并且有了“十”、“百”、“千”、“万”等专用的大数名称。1899年从河南安阳发掘出来的象形文字,是大约3000多年前的殷代甲骨文。其中载有许多数字记录,最大的数目字是3万。如有一片甲骨上刻着“八日辛亥允戈伐二千六百五十六人。”(八日辛亥那天的战争中,消灭了敌方2656人)。这段文字说

九年级数学学案: 第4课时 黄金分割

天才是百分之一的天分,再加上百分之 九十九的努力 第4课时黄金分割 学习目标: 1、认识线段的黄金分割,理解黄金分割的概念. 2、会运用黄金分割进行相关计算和证明. 学习重点:比例性质的应用和黄金分割的概念. 学习难点:运用黄金分割解决实际问题. 【预习案】 一、链接 请写出比例的基本性质. 二、导读 阅读课本P95-96,回答下列问题: (1)叫做黄金分割.(2)黄金分割点是如何确定的?一条线段有几个黄金分割点? 叫做线段的黄金分割点,叫做黄金比. 【探究案】 ㈠、黄金分割的定义:

1、动手操作,然后算一算,完成下面的填空: 度量线段AC 、BC 的长度,线段AC= ,BC= , 计算AB AC = 、AC BC = , AB AC 与AC BC 的值 A B C 相等吗? ※在线段AB 上,点C 把线段AB 分成两条线段 和 ,如果 = , 那么称线段AB 被点C ,点C 叫做线段AB 的 ,AC 与AB 的比叫做 。其中AB AC = ≈ ※⑴、黄金分割是一种分割线段的方法,一条线段的黄金分割点有 个。 ⑵、黄金比是两条线段的比,没有单位,它的比值为 ,精确到0.001为 。 2、想一想:点C 是线段AB 的黄金分割点,则AB AC = 。 ㈡、确定黄金分割点: 如图,已知线段AB ,按照如下方法作图: (1)经过点B 作BD ⊥AB ,使BD= 21AB. (2)连接AD ,在DA 上截取DE=DB. (3)在AB 上截取AC=AE.点C 就是线段AB 的黄金分割点。 ㈢、黄金矩形: 宽与长的比是:的矩形叫做黄金矩形。 【训练案】 1、若点C 是线段AB 的黄金分割点,且AC >CB ,则AB :AC= ;BC :AB= . 2、若在四边形ABCD 和四边形A 1B 1C 1D 1中, =11B A AB =11C B BC 1111CD DA C D D A ==58且四边形A 1B 1C 1D 1的周长为80cm ,求四边形ABCD 的周长. 3、已知,如图在 △ABC 中 EC AE DB AD = E D A A B 5?12

初二数学知识点归纳:黄金分割数1

初二数学知识点归纳:黄金分割数1 黄金分割数: 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。 黄金分割: 黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1∶0618或1618∶1,即长段为全段的0618。0618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 黄金分割线: 黄金分割线是一种古老的数学方法。黄金分割的创始人是古希腊的毕达哥拉斯,他在当时十分有限的科学条下大胆断言: 一条线段的某一部分与另一部分之比,如果正好等于另一部分同整个线段的比即0618,那么,这样比例会给人一种美感。 后来,这一神奇的比例关系被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”。黄金分割线的神奇和魔力,

在数学界上还没有明确定论,但它屡屡在实际中发挥着意想不到的作用。 黄金分割线的最基本公式,是将1分割为0.618和0.382,它们有如下一些特点: (1)数列中任一数字都是由前两个数字之和构成。 (2)前一数字与后一数字之比例,趋近于一固定常数,即0.618。 (3)后一数字与前一数字之比例,趋近于1.618。 (4)1.618与0.618互为倒数,其乘积则约等于1。 ()任一数字如与前面第二个数字相比,其值趋近于2.618;如与后面第二个数字相比,其值则趋近于0.382。 理顺下来,上列奇异数字组合除能反映黄金分割的两个基本比值0.618和0.382以外,尚存在下列两组神秘比值。 即:(1)0.191、0.382、0.、0.618、0.809(2)1、1.382、1.、1.618、2、2.382、2.618 黄金分割点: 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,用分数表示为/2,取其前三位数字的近似值是0618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这个分割点就叫做黄金分割点(gldensetinrati通常用φ表示)这是一个十分有趣的数字,我们以0618来近似表示,通过

黄金分割比例

黄金分割比例—— 相信学过数学的同学一定对不陌生,自从我们学习了后,就会发现其实这在我们实际生活中有很多的应用。所谓的是指事物各部分间的一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶或∶1,即长段为全段的。被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 黄金分割是公元前六世纪古希腊数学家毕达哥拉斯所发现,后来古希腊美学家柏拉图将此称为黄金分割。后来成为一种重要的审美法则.世界上着名的金字塔之所以能屹立数千年不倒,与其高度和基座长度的比例有很大关系,这个比例就是5:8,与0.618极其相似。,以严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。为什么人们对这样的比例,会本能地感到美的存在?其实这与人类的演化和人体正常发育密切相关。人体的好多部位的比例如果达到黄金分割就会给人以非常完美的视觉效果。例如最漂亮的脸庞:眉毛到脖子的距离/头顶到脖子的距离=;最完美的人体:肚脐到脚底的距离/头顶到脚底的距离=,等等。 在生活中无处不在。医学与也有着千丝万缕的联系,它可解释人为什么在环境22至24℃时感觉最舒适。因为人的体温为37℃与的乘积为22.8℃,而且这一温度中肌体的新陈代谢、生理节奏和生理功能均处于最佳状态。科学家们还发现,当外界环境温度为人体温度的倍时,人会感到最舒服。高雅的艺术殿堂里,自然也留下了黄金数的足迹。画家们发现,按:1来设计腿长与身高的比例,画出的人体身材最优美,而现今的女性,腰身以下的长度平均只占身高的,因此古希腊 维纳斯女神塑像及太阳神阿波罗的形象都通过故意延长双腿,使之与 身高的比值为,从而创造艺术美。世界上着名的画像蒙娜丽莎之所以 给人留下难以忘怀的印象与其画像给人的美感分不开。

简论中国古代数学中的“黄金分割率”

简论中国古代数学中的“黄金分割率” 黄金分割,被誉为数学上的“黄金”与“宝石”。 古代希腊毕达哥拉斯学派以及大几何学家欧几里德 等都曾深入研究过黄金分割问题。中世纪时,这一 数学命题又与著名的斐波那契数列联系起来,从而 获得许多新的性质。在西方数学传入中国之前,中 国人不曾直接论述黄金分割问题。但是,中国古代 数学中实际上也蕴含着黄金分割问题,只是其表达 方式有所不同。中国古代数学中的黄金分割率不像 欧几里德几何那样演绎得清楚明白,需要我们去发现。我们无法确证中国古代数学家是否明确意识到“黄金分割率”,但仍可以从许多中国古代数学问题 中推导和演绎出“黄金分割率”,这有助于充分认识 中国古代数学的价值。 1 勾股术与黄金分割率 明末清初西方数学传入中国,中国数学家知道 了黄金分割率,开始有人试图论证黄金分割率在中 国是“古已有之”。例如,清代数学家梅文鼎(公元 1633 - 1721 年) 曾在《几何通解》自序中说:“惟理分中末线(即黄金分割率———引者注) 似与勾股异源,. . . . . . 而仍出于勾股。信古九章之义包举无方。”他是这样推导的:假如一直角三角形的股长是 其勾长的二倍,则这个直角三角形的勾弦之和等于 勾弦之差再加上股,其勾弦之和就被勾弦之差和股 分成中末比。他还说:“《几何原本》理分中末线,但 求作之法而莫知所用。今依法求得十二等面体及二 十等面体之体积,因得其各体中棱线及轴心、对角诸线之比例,又两体互相容及两体与立方、立圆诸体相容各比例, 并以理分中末为法, 乃知此线原非徒设。”〔1〕 按照梅文鼎的观点,中西数学虽然形式上有所 不同,理论上是可以会通的;西方的几何学,无非是 中国的勾股术,中末线也可以从勾股术中导出。应 当说,梅文鼎在中西数学比较中看出了两者的异中 之同,以及黄金分割率与勾股术的联系(现在中学教 科书通常用代数法解作图题,其中运用勾股定理) , 但中国古代数学毕竟没有明确作出“中末线”,梅文 鼎还是夸大了中西数学的异中之同,他没有看到欧 几里德给黄金分割率严格而清晰的证明的独特价 值。欧几里德在其《几何原本》卷Ⅱ第11 题中表述: “分已知线段为两部分,使全线段与一小线段构成的

相关文档
最新文档