循环水系统优化运行的研究

循环水系统优化运行的研究
循环水系统优化运行的研究

冷却循环水系统节能优化及应用

冷却循环水系统节能优化及应用 发表时间:2019-05-23T11:41:58.167Z 来源:《防护工程》2019年第3期作者:王鑫 [导读] 随着我国改革开放不断地深入开展,工为发展的速度也在不断地加速,冷却水在工业中的用量不断地加大,其比例达到了解80%以上,已成了举足轻重的、不可忽视的重要部分。 大庆石化公司水气厂水处理车间黑龙江大庆市 163714 摘要:随着我国改革开放不断地深入开展,工为发展的速度也在不断地加速,冷却水在工业中的用量不断地加大,其比例达到了解80%以上,已成了举足轻重的、不可忽视的重要部分。因此,在工业不断发展的过程中,必须首先研究和处理好冷却水循环问题,充分考虑节约能源的现实问题。冷却水是工业生产中不可缺少的重要资源,如果我们能够在节能和循环利用方面做得更加科学,不仅能够对当前不太乐观的资源环境进行很好地保护,同时还能为企业甚至国家与社会节约不少的支出。 关键词:冷却循环水系统;节能优化;应用 近年来,我国经济快速发展,工业化程度越来越高,工业用水消耗量也越来越大,为了提高工业用水的利用率,减少水的消耗,循环水系统应用日益广泛。工业冷却循环水系统的设计对于工业的建设起着非常重要的作用,它不仅直接影响企业的用水效果,而且还与经济效益、环保密切相关。 1冷却循环水系统低效率与高能耗原因剖析 第一,作为批量生产的工业制成品,泵是按一定规格型号系列组织设计制造的,泵的特性曲线只有设定的若干条,而管路特性曲线却是千变万化,对某一特定管路,在泵的设计选型时,就不能保证水力效率高,也不能保证工作点正好落在泵的高效率区间内。 第二,在现实情况下设计者往往凭经验,而不是根据管路特性曲线选泵,常常过于保守,以致严重依赖阀门调节运行,管路与泵匹配存在问题。同时,对已投入运行装置的管路特性曲线,也很少有人对其实施有效检测,管路与泵是否匹配从无评判,对泵的匹配进行有效调整则更少。 第三,循环水系统都存在多种工况运行,泵站一般有数台泵组成,组合形式又有并联、或并联加二级串联等形式。那么,如何做好泵组搭配以保证应各种工况要求所扬送的流量尽可能合理、运行效率都处于高效区,这对设计过程及运行管理过程中都是非常重要课题,但目前对多泵组合泵站的设计普遍缺少节能优化,运行管理过程也缺少必要的节能技术手段,能耗的经济性处于盲目状态。 第四,因设计、改造或运行原因导致系统管网各回路的管路特性曲线差异较大,存在因某局部阻力偏高而导致整体压头升高等现象。 第五,当然引起高能耗的原因还有很多,如冷却塔及系统相关换热设备换热效能低下增加泵送流量,未能按负荷变化(和气候变化)有效调节流量增加水送能耗。 2节能优化技术的基本原理 工业冷却循环水节能优化系统是以水为介质进行工艺流程中能量的互换。通过分析整个系统中能量互换的效率,利用阀门技术对整个循环系统中的单一单位进行系统优化控制,并研究系统的利用效率,判断当前系统的能量利用效率,然后再结合工业生产流程,提出一种能够提升循环水系统中能量的利用效率的方案。 工业冷却循环水系统中的应用技术主要有几下几种:精确采集系统内换热设备、泵站等的运行参数;优化整个管网的换热网络和建立水力数字模型;准确分析管网内的水流、阻力及水泵运行效率;正确使用节能泵、水力调节平衡装置等一系列具有针对性的节能产品。 在工业冷却水循环系统中,操作人员可通过阀门控制水泵的水量。将冷却温度严格控制在规定范围内,智能阀门始终处于常开的位置且能够实现智能化调节,在完成控制的同时还要减小水泵的输出功率,使机组能够最大限度地发挥作用,达到节能的效果。泵阀一体的智能节能技术在实现终端平衡后还可降低管网的阻尼,使管网中泵阀的张开角度满足工艺要求。在此过程中,该技术可将所有信息数据完整地反馈到计算机系统中,操作人员可根据这些数据进行变频操作。在这种互联网阀门技术的控制下,循环水系统数据的实时监测得以实现。 3工业冷却循环水系统节能优化技术的改造 3.1改造内容 通过在工业冷却循环水系统中应用优化技术,使得工业循环水系统的工作效率得到大幅增加,而且还能够更多的应用于工业冷却循环水系统的改造项目当中。节能优化技术在改造项目的实施过程中得到顺利应用,能够从根本上实现节能优化,相比传统的冷却循环水系统,效率可提升至30%~60%,整体效果非常可观。 常见的工业冷却循环水系统有合成氨循环水系统以及高炉鼓风机透平拖动装置冷却系统,其中合成氨循环水系统主要的改造方面为换热网络以及配水管网,解决了纯碱厂和加氯车间的水资源不平衡问题,主要改造设备有调节装置、高效节能泵、循环在线监测以及能源管理系统。高炉鼓风机透平拖动装置冷却系统的改造内容为换热网络以及配水管网,解决供水总管止回阀阻力存在异常的问题,对原泵站的高效节能泵的参数、叶轮水力模型等方面进行优化和设计,主要改造的设备有可编程控制器计量系统、止回阀以及高效节能泵。 3.2改造实施 改造的具体实施根据具体情况进行实施,针对上述的两种常见的冷却循环水系统的改造时,首先要对冷却循环水系统进行检测,获取当前系统在运行状态下的所有参数,进而实现对所有系统进行有效的控制,分析系统存在的缺陷,采取方案进行有效优化。 系统运行参数的获取主要是通过采集系统来实现的,根据采集系统的运行状态、负荷等方面的状态信息进行更有效收集,并能够及时、有效的给予监测并将信息回馈给系统,以便于能够在最佳的状态下获取整个系统的信息。实施改造的基本原理为变频调速对风机和水泵的转速控制,可以更好的减少功率的消耗。 4工业冷却循环水系统节能优化技术的应用 4.1中国石油天然气股份有限公司某石化分公司 中国石油天然气股份有限公司某石化分公司水汽厂处理能力3000m3/h的钢结构大型冷却塔,近年来冷却效果逐年下降,收水器老化变形,使大量的循环水漂出塔外,造成水和药剂大量损失。该厂实施了循环水系统优化技术改造,合理优化生产工艺,采用管式闭路配水取

系统优化最佳方案

WindowsXP终极优化设置(精心整理篇) 声明:以下资料均是从互联网上搜集整理而来,在进行优化设置前,一定要事先做好备份!!! ◆一、系统优化设置 ◆1、系统常规优化 1)关闭系统属性中的特效,这可是简单有效的提速良方。点击开始→控制面板→系统→高级→性能→设置→在视觉效果中,设置为调整为最佳性能→确定即可。 2)“我的电脑”-“属性”-“高级”-“错误报告”-选择“禁用错误汇报”。 3)再点“启动和故障恢复”-“设置”,将“将事件写入系统日志”、“发送管理警报”、“自动重新启动”这三项的勾去掉。再将下面的“写入调试信息”设置为“无”。 4)“我的电脑”-“属性”-“高级”-“性能”-“设置”-“高级”,将虚拟内存值设为物理内存的2.5倍,将初始大小和最大值值设为一样(比如你的内存是256M,你可以设置为640M),并将虚拟内存设置在系统盘外(注意:当移动好后要将原来的文件删除)。 5)将“我的文档”文件夹转到其他分区:右击“我的文档”-“属性“-“移动”,设置 到系统盘以外的分区即可。 6)将IE临时文件夹转到其他分区:打开IE浏览器,选择“工具“-“internet选项”-“常规”-“设置”-“移动文件夹”,设置设置到系统盘以外的分区即可。 ◆2、加速XP的开、关机 1)首先,打开“系统属性”点“高级”选项卡,在“启动和故障恢复”区里打开“设置”,去掉“系统启动”区里的两个√,如果是多系统的用户保留“显示操作系统列表的时间”的√。再点“编辑”确定启动项的附加属性为/fastdetect而不要改为/nodetect,先不要加/noguiboot属性,因为后面还要用到guiboot。 2)接下来这一步很关键,在“系统属性”里打开“硬件”选项卡,打开“设备管理器”,展开“IDE ATA/ATAPI控制器”,双击打开“次要IDE通道”属性,点“高级设置”选 项卡,把设备1和2的传送模式改为“DMA(若可用)”,设备类型如果可以选择“无”就选为“无”,点确定完成设置。同样的方法设置“主要IDE通道”。

工业循环冷却水系统设计规范标准

《》 条文说明 1总则目录 1.01为了控制工业循环冷却水系统由水质引起的结垢、污垢和腐蚀,保证设备的换热效率和使用年限,并使工业循环冷却水处理设计达到技术先进、经济合理,制定本规。 1.02本规适用于新建、扩建、改建工程中间接换热的工业循环冷却水处理设计。 1.03工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1 总则全文 1.0.1本条阐明了编制本规的目的以及为了达到这一目的而执行的技术经济原则。 在工业生产中,影响水冷设备的换热器效率和使用寿命的因素来自两个方面,一是工艺物料引起的沉积和腐蚀;二是循环冷却水引起的沉积和腐蚀。后者是本规所要解决的问题。 因循环冷却水未加处理而造成的危害是很严重的,例如,某化工厂,原来循环水的补充水是未经过处理的深井水,每小时的循环量9560t。由于井水硬度大、碱度高,每运行50h后,有50%的碳酸盐在设备、管道沉积下来,严重影响换热器效率。据统计,空分透平压缩机冷却器,在运转3个月后,结垢厚度达20㎜。打气减少20%。该厂不少设备、在运转3个月后,必须停车酸洗一次,不但影响生产,而且浪费人力、物力。为了防止设备管道产生结垢,该厂在循环水中直接加入六偏磷酸钠、EDTMP和T—801水质稳定剂之后,机器连续3年运行正常。虽然每年需要增加药剂费用2万元,但综合评价经济效益还是合算的。又如某石油化工厂,常减压车间设备腐蚀与结垢现象十分严重,Φ57×3.5面碳钢排管平均使16-20个月后,垢厚达15-40㎜。后经投加聚磷酸盐+膦酸盐+聚合物的复合药剂进行处理,对腐蚀、结垢和菌藻的控制取得了良好的效果。每年可节约停车检修费用约60万元,延长生产周期增产的利润约70万元。减少设备更新费用约4.7万元。现将该厂水质处理前后的冷却设备更新情况列表如下: 某厂冷却设备更新情况统计(单位:台)表1 从上述情况可以看出,循环冷却水采取适当的处理方法,能够控制由水质引起的

彻底根治循环冷却水系统四大难题

彻底根治循环冷却水系统四大难题 一、方案特点 在工业冷却循环水方面,均采用水为能量的传递介质,在循环使用时,水质会浓缩、恶化,产生水垢、污垢、腐蚀、菌藻等,严重影响系统的效率,加大能耗,减少设备使用寿命。 以往通用的化学水处理方式不仅每年需要经费,而且会造成大量含有化学药剂的污水,加大 环境污染,同时会腐蚀管道,甚至造成冷却器穿孔报废。例如,一个保有水量100T的冷冻、冷 却、采暖循环水为例,如果采用传统化学处理方法,一年要用化学药剂10吨、每吨药剂会形成500 立方米的污染水。 针对以上问题,罗德斯尔?循环水水质深度净化方案引进国外先进成熟的变频磁场技术,采用“以水治水、物理吸垢”方式,不仅解决了循环水净化、除垢、杀菌、灭藻、去锈等一系列难题,而且每年保养经费很少,不会产生污染,节电节水,是一种环保节能的新型循环水水质深度净化方案。 循环水优化设备图片 二、罗德斯尔?循环水水质深度净化方案的优势 除垢防垢,使热交换表面始终无垢状态,提高热交换效率 除锈防腐,解决水体红锈问题,延长管道和热交换器使用年限 杀菌灭藻,尤其对军团菌的杀灭,提高安全性能,提高冷却效率 无需停机,提高水资源利用效率和生产连续性 保留原管,即无需改变原有循环水管道 节水环保,大幅减少循环水排放,节省用水,没有污染,保养经费很少 三、设备构成和原理 概述 罗德斯尔?循环水系统优化方案体现的是一种综合性、多功能、环保、节水节能的循环水处理理念和技术,具有补水净化、去垢、灭藻、除锈、杀菌、环保、节能、节水等多重功效,本方案的主要设备为LT系列循环水系统优化设备。 LT系列循环水系统优化设备工作原理 LT 系列循环水系统优化设备是罗德斯尔?循环水系统解决方案的核心设备,该装置由高频发

浅谈电力系统优化运行的意义

浅谈电力系统优化运行的意义 电网经济运行就是一项实用性很强的节能技术。这项技术是在保证技术安全、经济合理的条件下,充分利用现有的设备、元件,不投资或有较少的投资,通过相关技术论证,选取最佳运行方式、调整负荷、提高功率因数、调整或更换变压器、电网改造等,在传输相同电量的基础上,以达到减少系统损耗,从而达到提高经济效益的目的。 一、电力系统优化运行的意义: 电网的经济运行主要包括变压器及其电力线路的经济运行,电力设备中变压器是一种应用十分广泛的电气设备,变压器自身要产生有功功率损耗和无功功率损耗。电力系统中变压器产生的电能损耗占电力系统总损耗比例也很大,因此在电力系统中变压器及其供电系统的经济运行,对降低电力系统、线损,有着重要的意义。由于当前绝大部分的变压器及其供电系统都在自然状态下运行,加上传统观念及习惯性错误做法的影响,导致现有变压器不一定运行在经济区间,因此必须要通过各种技术措施来降低。 二、电网经济运行降损的主要技术措施 1、合理进行电网改造,降低电能损耗 由于各种原因电网送变电容量不足,出现“卡脖子”、供电半径过长等。这些问题不但影响了供电的安全和质量,而且也影响着线损。电力网改造是一次机遇,要抓住城农网改造,认真彻底地改善不合理的布局与设备。要充分利用在现有电网的改造基础上,提高电网供电容量和保证供电质量的前提下,运用优化定量技术降低城乡电网的线损,如老旧变压器淘汰中要劣中汰劣,新型变压器选型中要优中选优,既要根据城网和农网负载分布的特点,调整变压器运行位置与供电线路实现优化组合,又要根据电网中变压器与供电线路的分布状况,优化负载经济分配和电网经济运行方式。总之,由于电力行业是技术密集型行业,在城乡电网改造中应贯彻“科教兴电”的方针,依靠科技进步和推广以计算机应用为主要内容的先进技术,提高电网安全经济供电的管理水平。在城乡电网建设和改造过程中要优化调整城乡电网的电力结构和提高电网结构中的技术含量。把电网建成“安全经济型电网”,为电网安全供电奠定良好的基础。在电网运行中最大限度地降低电网的线损,为缩小与发达国家电网线损的差距做出贡献。 由于电网的线损主要是由变压器损耗与电力线路损耗所组成,所以电网改造的节电降耗,也就是对电网中的所有变压器和电力线路进行择优选择和优化组合,组建成“安全经济型电网”。因此,应重点从以下几方面考虑: (1)调整不合的网络结构。 合理设计、改善电网的布局和结构;避免或减少城农网线路的交错、重叠和迂回供电,减少供电半径太大的现象。 (2)采用子母变压器,合理选用变压器容量。避免“大马拉小车”现象。城农网改造应注意合理分配变压器台数与容载比,一般负荷在65%~75%时效益最高,30%以

循环水系统工艺改造及优化运行

循环水系统工艺改造及优化运行 摘要:仪征化纤股份有限公司水务中心三区循环水(原涤纶三厂)始建于1989年,由于三区循环水东、西站是分期建设,两套系统全部建成后,将系统供回水管网进行连通,安装隔断阀控制,隔断阀长期处于关闭状态,但随着运行时间的增加,两套系统存在互窜的现象,影响系统水质状况;且三区循环水设有两套系统,使系统呈现资源配置分散、利用率低的现状,需要对两套系统进行合并运行、工艺优化。 关键词:循环水处理;系统合并运行;节能降耗 节能降耗是我国经济和社会发展的一项长远战略,近年来各种节能降耗的措施、政策和目标在 不断制定和完善,同时政府也相应投入大量资金用于支持节能降耗项目的开展。循环水泵站作为公用工程的主要耗能设备,节能改造空间较大,因此循环水泵站及其系统的节能降耗工作具有重要的意义。 1循环水系统概况 仪征化纤股份有限公司水务中心三区循环水(原涤纶三厂)始建于1989年,三区循环水由东、西站两套系统组成,由于东、西站循环水是分期建设,待两套系统全部建成后,将供回水管网进行连通,并装有系统隔断阀,隔断阀长期处于关闭状态。西站循环水原设计供水能力为3300m3/h,设有4台循环水泵和4组冷却塔,主要用户为聚酯七、八单元,50~70岗位,短纤中空17~18K和23~26K;东站循环水原设计供水能力为9000m3/h,设有10台循环水泵和6组冷却塔,其中4台B02循环水泵专供聚酯九、十三单元及切片生产、长丝空压站、长丝一装置等用户,6台B01水泵专供冷冻系统。 由于原涤纶三厂完全是分期规划、分期建设,西站循环水原设计只考虑七、八单元建设所需循环水量,对于后期建设项目所需循环水均在东站循环水建设中考虑,因而形成现在的东西两个循环水站,客观上造成整个系统呈现资源配置分散,利用效率降低,且随着运行时间的增加,两套系统存在互窜现象,影响水质状况,对系统稳定运行产生影响,所以可利用目前七单元切片生产停运、长丝转产短纤、聚酯工艺调优、冷冻机改造优化循环水需求量不断下降的机会,对两套系统进行合 并运行,进行系统节能降耗、优化运行工作。 2运行存在问题 2.1系统水泵运行组合方式不合理 由于原一、二、三厂聚酯系统生产规模相差不大,但原三厂需运行四台泵才能满足生产需求,

关于无锡地铁车站环控大系统和水系统运行优化的几点措施

关于无锡地铁车站环控大系统和水系统运行优化的几点措施 发表时间:2018-09-10T16:40:48.390Z 来源:《科技研究》2018年7期作者:曹中华 [导读] 通过对环控大系统和水系统运行状态的运行参数,和存在的问题,提出运行优化的措施。(无锡地铁集团有限公司运营分公司江苏无锡 214000) 摘要:基于地铁地下车站近期运营空调季节处于部分负荷的状态,通过对环控大系统和水系统运行状态的运行参数,和存在的问题,提出运行优化的措施。 关键词:地铁环控大系统水系统节能 0 引言 地铁车站通风空调与空调水系统的设计容量一般按照地铁线路远期运营规模进行选型。在运营初期,列车运行的数量、进出车站的客流以及站内照明和设备容量远未达到远期预测规模,因而车站处于“温度较低,发热量较小”的车站室内热湿环境,在夏季车站空调冷负荷远低于通风空调与冷水机组的设计容量,即车站一般一直处于部分负荷状态。 在地铁运行初期的夏季空调季节,如何通过合理的节能控制措施,在车站处于部分负荷的情况下,在保障通风空调设备及水系统设备正常稳定运行的同时,进一步实现节能运行。 1 项目概况 无锡地铁一号线是无锡首条轨道交通线路,全长29.4km,起于惠山区堰桥站,止于滨湖区长广溪站,全线共设车站24座,其中高架站5座,地下站19座。在空调运行期间,我们选择一号线南禅寺站作为测试站点,该站是第11个车站,为地下二层岛式站台车站,车站有两个出入口。 2 现场测试 车站大系统采用变风量全空气系统,站厅层两端环控机房分别布置1台组合式空调器和1台回排风机,组合式空调箱和回排风机均采用变频控制,另每端布置1台小新风机对车站公告区送新风以满足人员的新风量。冷源采用2台螺杆式冷水机组,冷冻水系统为一次泵变流量系统,冷却水系统为一次泵定流量系统。 主要设备铭牌参数如下:①冷水机组额定制冷量为569kw,额定功率为111.5kw,COP值为5.1,蒸发器出口水温7.0℃,冷凝器进口水温32℃;②冷冻泵流量为108 m3/h,扬程为33m,功率为18.5kW;③冷却泵流量为130 m3/h,扬程为28m,功率为18.5kW;④空调机组风量为60000m3/h,机外静压850Pa,制冷量为669.9kW,电机功率为37kW。 在现场测试期间,冷水机组只运行一台,南禅寺站2#冷机某时刻的运行参数如下: ①冷冻水进出水温度为10.0/6.7℃;②冷却水进出水温度为27.5/29.4℃;③压缩机电流为93.1A 相应时刻,冷冻水和冷却水流量分别为76.5m3/h和157.7m3/h,计算得到冷机的制冷量、COP等性能参数,如下:①制冷量为294.5 kW;②输入功率为54.3 kW;③COP为5.4;④冷却侧散热量为349.6 kW;⑤不平衡率(%)为0.2。 根据水泵进出口压力、输入功率以及流量可以计算得到冷冻、冷却水泵的效率,具体如下:①冷冻水泵入口压力0.34 MPa,泵出口压力为0.48 MPa,流量为86.4 m3/h,输入功率为6.65 kW,扬程为14.3 m,效率为50.5%;②冷却水泵入口压力0.06 MPa,泵出口压力为0.27 MPa,流量为180.4 m3/h;③输入功率为19.23 kW,扬程为21.4 m,效率为54.7%。 根据水泵的铭牌参数,冷冻、冷却水泵的额定效率分别为52.4%和53.6%,实际运行效率与额定效率较为接近;但需要注意的是,水泵的实际扬程要小于额定扬程,使得水泵实际流量偏大,水泵电耗增加,具体对比如下所示,其中冷却水泵的功率已超过额定功率: ①冷冻泵额定流量为75.6m3/h,实际流量为86.4 m3/h,冷却泵的额定流量为130 m3/h,实际流量为180.4 m3/h; ②冷冻泵的额定扬程为16.2m,实际扬程为14.3m,冷却泵的额定扬程为28 m,实际扬程为21.4m; ③冷冻泵输入额定功率为6.35kW,实际输入功率为6.65kW,冷却泵的输入额定功率为18.5kW,输入实际功率19.23kw; ④冷冻泵的额定效率为52.4%,实际效率为50.5%,冷却泵的额定效率为53.6%,实际效率为54.7%。 说明:冷冻水泵实际运行的频率为35Hz,额定流量、扬程和功率已按照实际频率折算。 南禅寺站大系统风机采用变频运行,运行功率如下: ①B端空调机组的功率为10.2kW,风量为4.1m3/h;②B端回排风机的功率为6.3kW,风量为2.3m3/h;③小新风机的功率为0.4kW,风量为1.8m3/h; 说明:空调机组及回排风机的运行频率为35Hz,小新风机为工频运行 3 运行优化措施 地铁车站空调大系统的风机能耗在地铁空调能耗中占很大比例,车站大系统无论是负荷特性还是系统形式都适于采用变频变风量方式运行。实时反馈控制,通过测量车站回风实际温度,与车站设定温度进行比较,并根据差值控制变频器调节风机转速,实现系统变风量运行,保证车站的热环境状态。 在变频变风量调节下,需要对不同频率下系统送回风的风量进行测试匹配,通过送回风风量差来引入所需的新风量。但同时应注意夏季最小新风空调工况下新风量的控制,避免导致车站引入过多的新风,恶化了站内的环境,同时增加了无谓的空调负荷。 对于空调水的系统,冷机的启停条件是由外温和车站负荷决定的。当外温高于临界外温时,启动冷机是经济的。车站发热量越大,临界温度越低,说明车站负荷大时,更应开启冷机。考虑到地铁热环境对相对湿度的要求比较宽松,一般仅靠表冷段除湿就可满足要求。但在室外相对湿度大的情况下,关闭冷机直接通风,可能增大站内相对湿度,对人员舒适性不利。因此冷机的启停条件按干球温度来确定,虽然能耗会稍大,但对于室内环境是有利的。 空调水系统的水泵虽然装机容量不大,但是由于运行时间长,在运行总电耗中占有相当的比例。在运行方面的典型问题是水路的各类不当旁通问题。对于停止的冷机,应同时关闭其冷冻水、冷却水回路的水阀,停止这些水路中水的流动。在杜绝了各类不必要的水路旁通的基础上,对冷冻水泵实行变频控制,才能在部分负荷时减少循环流量,获得有效的节能效果。

工业循环冷却水处理系统

工业循环冷却水处理系统 一、概述 循环冷却水在使用之後,水中的Ca2+、Mg2+、Cl-、SO42-等离子,溶解固体和悬浮物相应增加,空气中污染物如灰尘、杂物、可溶性气体以及换热器物料泄露等,均可进入循环冷却水,使循环冷却水系统中的设备和管道腐蚀、结垢,造成换热器传热效率降低,过水断面减少,甚至使设备管道腐蚀穿孔。 循环冷却水系统中结垢、腐蚀和微生物繁殖是相互关联的,污垢和微生物粘泥可以引起垢下腐蚀,而腐蚀产品又形成污垢,要解决循环冷却水系统中的这些问题,必须进行综合治理。 采用水质稳定技术,用物理与化学处理相结合的办法控制和改善水质,使循环冷却水系统中的腐蚀、结垢、生物污垢得到有效的解决,从而取得节水、节能的良好效益。臭氧产品已在国内电子、电力、饮料、制药行业广泛应用,质量达到国外同行业90年代水平。投入产出比的可比效益为:1:2-1:10以上,节约能源,提高设备使用效率,延长设备的使用寿命和运行的安全性,减少环境污染。 臭氧可以作为唯一的处理药剂来替代其它的处理冷却水处理剂,它能阻垢、缓蚀、杀菌、能使冷却水系统在高浓缩倍数甚至在零排污下运行,从而节水节能,保护水资源;同时,臭氧冷却水处理不存在任何环境污染。国外应用臭氧进行循环水处理已经取得了成功,而我国在这个领域却是空白。 二、系统工艺 循环水冷却通常分为密闭式循环水冷却系统和敞开式循环水冷却系统。密闭式循环水冷却系统中,水是密闭循环的,水的冷却不与空气直接接触。敞开式循环水冷却系统,水的冷却需要与空气直接接触,根据水与空气接触方式的不同,可分为水面冷却、喷水冷却池冷却和冷却塔冷却等。 敞开式循环水冷却系统可分为以下3类: 1.压力回流式循环冷却系统 此种循环水系统一般水质不受污染,仅补充在循环使用过程中损失的少量水量。补充水可流入冷水池,也可流入冷却构筑物下部。冷水池也可设在冷却塔下面,与集水池合并。 补充水→ 冷水池→ 循环泵房→生产车间或冷却设备→冷却塔 压力回流式循环冷却系统

工业循环冷却水系统处理的重要性

工业循环冷却水系统处理的重要性 循环水的使用及水处理的重要性 用水来冷却工艺介质的系统,我们称作冷却水系统,通常可分为以下两种类型:直流冷却水系统和循环冷却水系统。其中,循环冷却水系统目前已被广泛地应用于各行各业之中,比如,石油化工、电力、冶金、医药、纺织、机械、电子等等传统工业企业中的工艺用循环冷却水系统,及各楼宇的中央空调用循环冷却水系统。 最早使用的是直流冷却水系统,冷却水仅仅通过换热设备一次,用过后水就被排放掉。这种系统虽然投资少、操作简便,但它的用水量却很大,冷却水的操作费用也大,不符合节约使用水资源的要求,目前基本都改成了循环冷却水系统(除了海水中还在使用的直流冷却水系统),即冷却水用过后不立即排放掉,而是收回循环再用。从直流水系统到循环水系统,水资源的节约非常可观,例如:一个年产30万吨的合成氨工厂,如采用直流水系统,每小时用水量约25000T,而改成循环水系统,并以3倍的浓缩倍数运行,则每小时耗水量只需约550T。 冷却水循环后遇到什么问题? 腐蚀:冷却水在循环使用中,水在冷却塔内和空气充分接触,使水中的溶解氧得到补充,所以循环水中溶解氧总是饱和的,水中溶解氧是造成金属电化学腐蚀的主要原因,这是冷却水循 环后易带来的问题之一。 结垢:水在运行中蒸发(尤其是在冷却塔的环境中),使循环水中含盐量逐渐增加,加上水中二氧化碳在塔中解析逸散,使水中碳酸钙或其它盐类在传热面上结垢析出的倾向增加,这是问题之二。 生物污垢:冷却水和空气接触,吸收了空气中大量的灰尘、泥沙、微生物及其孢子,使系统的污泥增加;冷却塔内的光照、适宜的温度、充足的氧和养分都有利于细菌和藻类的生长,从而使系统粘泥增加,在换热器内沉积下来,造成了粘泥的危害,这是水循环使用后易带来的问题之三。 冷却水循环后,冷却水补充水量可大幅度降低,节约了用水,这是我们所希望的。但水循环后突出的腐蚀、结垢和生物污垢等问题如不解决,生产装置的长周期、满负荷、安全稳定运行是难以保证的,那么采用循环水后所期望的经济、技术效益不仅不能充分发挥,而且将给企业带来许多危害——严重的沉积物的附着、设备腐蚀和微生物的大量滋生,由此形成的黏泥污垢堵塞管道或各种材料及设备严重受损等问题,会威胁和破坏工厂的安全生产;而由于各种沉积物使换热设备的水流阻力加大,水泵及相关设备的能耗大幅增加,传热效率降低,从而降低产品品质或生产效率,这一切都可能造成极大的经济损失,例如:电厂出现此类问题,必然使凝汽器凝结水的温度升高、真空度下降,严重影响汽轮机的出力和电厂的发电量,并且大幅增加能耗(有一个经验数值:发电机组真空度每下降1%,多耗燃料原油0.8%)。 所以,必须要选择一种科学合理、全面有效且经济实用的循环冷却水处理方案,使上述问题得到妥善解决或改善,水处理就是通过水质处理的办法来解决以上问题。如能真正做好水处理,不但能保证保质保量、安全生产,而且还能通过大幅降低能耗、节约材料、节约用水来降低生产成本,直接创造可观的经济效益,例如在电厂,就可以提高汽轮机凝汽器的真空度,一般可提高7~8%,提高汽轮机的功率,提高电负荷5~6%,增加发电能力;如应用在低压锅炉炉内处理,不但可将水处理运行费用从仅使用炉外处理方式时的0.5元/吨降到0.3元/吨左右,而且据统计,可使每台2t?h-1的锅炉节煤约5%;现代工业一般水冷换热器在未进行水处理时的寿命为2年左右,经水处理后的寿命可达7~8年,检修费和检修工作量可降低90%,一个小型化工厂由此节约的检修费即可达50万元。 科学合理且全面完整的化学水处理方案

系统优化方法

1.系统启动项太多,影响开机启动速度,方法:开始——运行——msconfig——启动——在启动项里,你只保留ctfmon.exe输入法和杀毒软件即可,其他的将对勾去掉,按应用并确定即可。 2、关闭系统属性中的特效,这可是简单有效的提速良方。右键我的电脑—属性--高级--性能--设置--在视觉效果中,设置为调整为最佳性能--确定即可。 3、右键桌面—属性—桌面—背景—选择无;颜色—选择黑色;桌面背景对开机速度影响最大;应该去掉。 4、屏幕保护程序—选择无。 5、外观—窗口和按钮—选择经典样式—色彩方案—选择Windows经典。 6、最多保留十个左右;对一些不常用的图标应该从桌面删除。 7、对一些不常用你又不想删除的,可以集中放在一个文件夹,方法:右键桌面—排列图标—运行桌面清理向导,你只要按照提示清理就OK了。 8、如果你的系统杀毒软件开机时随机启动的话,杀毒软件就要扫描检查图标链接是否有毒,这需要一定时间,就出现图标显示慢的情况,这是正常的,并不是电脑有问题。这方面网上很多,你可以去搜索搜索。 9、开始--运行--输入regedit 回车。打开注册表编辑器,找到 HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlSession ManagerMemory ManagementPrefetchParameters,在右边找到EnablePrefetcher主键,把它的默认值3改为1,这样滚动条滚动的时间就会减少。 10、在“我的电脑”上点右键-属性-硬件-设备管理器-点击“IDE ATA/ATAPI”选项-双击“次要IDE通道”-高级设置-设备类型,将“自动检测”改为“无”,主要要IDE通道也做相同的设置,这样你电脑滚动条最多跑三圈,启动速度将提高三倍以上。 11、在“开始→运行”中输入gpedit.msc,打开组策略编辑器。找到“计算机配置→管理模板→网络→QoS数据包调度程序”,选择右边的“限制可保留带宽”,选择“属性”打开限制可保留带宽属性对话框,选择“禁用”即可。这样就释放了保留的带宽。 12、建议经常清理系统垃圾(如系统垃圾文件、系统注册表垃圾)并推荐你一个清理系统垃圾的一个小程序(见最后附件)。 13、建议将你电脑中的IE临时文件和虚拟内存设置在非系统盘中。 14、在平时不要同时打开太多的应用程序软件,将杀毒软件或其它优化软件的监控功能关闭,因为杀毒软件或其它优化软件的监控功能特别占据系统资源。 15、重启电脑,启动到桌面后,会弹出一个窗口,在小方格中添加勾选,点“确定”(因为改动了系统配置实用程序)。 另外,还要注意经常清理系统垃圾,按时整理磁盘碎片。这方面网上也挺多,你自己注意多搜索。 最后建议你下载安装Windows优化大师,对你的系统进行全面清理和优化.经过该软件的清理优化,你的系统运行速度和性能肯定会有明显提高。 附件: 在电脑屏幕的左下角按“开始→程序→附件→记事本”,把下面的文字复制进去(黑色部分),点“另存为”,路径选“桌面”,保存类型为“所有文件”,文件名为“清除系统LJ.bat”,就完成了。记住后缀名一定要是.bat,ok!你的垃圾清除器就这样制作成功了! 双击它就能很快地清理垃圾文件,大约一分钟不到。

中储式制粉系统教学内容

中储式制粉系统

球磨机出力低的原因有: (1)给煤机出力不足,煤质坚硬,可磨性差。 (2)磨煤机内钢球装载量不足或过多。钢球质量差,小钢球未及时清理,波浪瓦磨损严重未及时更换。(3)磨煤机内通风量不足,干燥出力低,或原煤水分增高。如排粉机出力不足,系统风门故障,磨煤机入口积煤或漏风等。(4)回粉量过大,煤粉过细。 提高制粉系统出力的措施有:(1)保持给煤量均匀,防止断煤。在保持磨煤机出口温度不变的情况下,尽量提高磨煤机入口风温。(2)定期添加钢球,保持磨煤机内一定的钢球装载量,并定期清理不合格的钢球及铁件杂物。(3)保持磨煤机内适当的通风量,磨煤机入口负压越小越好,以不漏粉为准。(4)消除制粉系统的漏风,加强粗细粉分离器的维护,保持各锁气器动作灵活。(5)保持合格的煤粉细度,适当调整粗粉分离器折向门,煤粉不应过细。 预防煤粉仓温度高的措施:(l)保持磨煤机出口温度不超过规定值。 (2)按规定进行降粉。(3)经常检查和消除制粉系统及粉仓漏风。 (4)建造和检修粉仓时要保证合理角度。四壁光滑,不应有积粉。煤粉仓温度高应作如下处理: (1)停止制粉系统,进行彻底降粉。(2)关闭吸潮管阀门及绞龙下粉插板。(3)温度超过规定值时可用二氧化碳灭火。(4)待温度正常后,启动制粉系统。(5)消除各处漏风。

影响煤粉粗的原因:(1)制粉系统通风量过大。(2)磨煤机内不合格的钢球太多,使磨碎效率降低。(3)粗粉分离器内锥体磨透,致使煤粉短路或粗粉分离器折向门开得过大。(4)回粉管堵塞或停止回粉,而失去粗粉分离作用。(5)原煤优劣混合不均匀,变化太大。(6)煤质过硬或原煤粒度过大等。 磨煤机空转危害:按规程规定,球磨机空转时间不得大于10min,因为空转时间长了,一方面钢球与钢球之间,钢球与波浪瓦之间的金属磨损增加。磨煤机正常运行和空转时所产生的磨损比是1:50。另一方面磨煤机空转时,钢球与钢球之间,钢球与波浪瓦之间的撞击容易产生火花,产生火花又是制粉系统爆炸的原因之一。起、停注意事项:(1)启动时严格控制磨煤机出口气粉混合物的温度不超过规定值。因为磨煤机在启动过程中,属于变工况运行,此时出口温度若控制不当,很容易使温度超过极限,而导致煤粉爆炸。(2)磨煤机在启动时进行必要的暖管。因中间储仓式制粉系统设备较多。管道较长,启动时煤粉空气混合物中的水蒸气很容易在旋风分离器等管壁上结露,使之增加流动阻力,造成煤粉结块,甚至引起分离器堵塞。(3)磨煤机停运时,必须抽尽余粉,防止自燃和爆炸。为下次启动创造良好的条件。 钢球磨内煤量过多时为什么出力反而会降低?磨煤机内的煤量过多时,使磨煤机内的煤位过高,钢球落差减小,冲击能力也相应减小(从磨煤机电流减小可以看出)。另一方面煤位过高,使钢球之间的煤层加厚,钢球的一部分动能消耗在使煤层的变形上,另一部分

城市供水系统优化及运行管理

龙源期刊网 https://www.360docs.net/doc/e71610914.html, 城市供水系统优化及运行管理 作者:刘小武 来源:《山东工业技术》2017年第09期 摘要:在当前城市建设过程中,城市供水系统属于十分重要的组成部分,在城市人们生 活中占据十分重要的地位,发挥中十分重要的作用。在当前城市供水系统实际应用过程中,为能够使其作用得以更好发挥,十分重要的一个方面就是应当对供水系统进行优化,并且对其运行进行管理,在基础上保证供水系统能够更好服务于城市人们生活。 关键词:城市供水系统;优化;运行管理 DOI:10.16640/https://www.360docs.net/doc/e71610914.html,ki.37-1222/t.2017.09.084 随着现代社会不断发展,城市建设也得到较快发展,城市建设规模及建设速度也在不断加快。作为城市建设中的重要组成内容,城市供水系统发挥十分重要的作用,可为城市人们生活及工作提供必需水资源,因此必须要保证城市供水系统的科学合理应用。在城市供水系统实际应用及运行过程中,作为城市供水系统管理人员应当通过有效措施对供水系统进行优化,并且应当选择有效途径进行运行管理。 1 城市供水系统优化有效措施 1.1 供水系统中供水泵站的优化 在城市供水系统中,供水泵站属于十分重要的组成部分,对供水系统作用的发挥具有直接影响,因此对供水泵站进行优化也就十分必要,通过对供水泵站进行优化,可使供水系统的供水效率得以提升,并且能够实现能源节约。具体而言,在对供水泵站进行优化过程中,对于能耗比较高的一些机电设备,应当将其及时更换,对于各种不合理因素而导致的系统运行效率比较低,应当全面进行检测,并且应当进行更换,比如在对水泵进行改造过程中,可将叶轮车割或者多级泵叶轮撤减。另外,在供水泵站实际工作过程中,若出现泵站效率较低情况,应当及时将水泵更换,选择功率比较大的水泵,从而使水泵效率能够得以有效提升,同时也能够使节能效果得以有效提升,从而使供水泵站优化能够得以较好实现。 1.2 输配水官网的优化 在当前城市供水系统中,除供水泵站之外,输配水管网也是十分重要的组成部分,通过对输配水管网进行合理优化,可使管网水头损失得以减少,使泵站扬程减少,使管网压力及漏损率能够得以降低,从而使供水系统效率得以提升,并且可实现能源节约。所以,在对供水管网进行设计过程中,应当注意对地形进行合理利用,从而在城市供水过程中能够提升地形作用,系统中给水主干引导应当与地势较高之处及用户较多的区域相靠近,从而保证在消耗最少水能情况下使尽可能多地用户需求得到满足。对于山区城市而言,应当选择配置加压泵及分区给水

炉水循环泵电机冷却水系统优化措施

炉水循环泵电机冷却水系统优化措施 本文主要介绍电厂锅炉炉水循环泵驱动电机冷却水的清洁度对炉水循环泵的危害,并针对炉水循环泵驱动电机冷却水系统清洁度的要求,炉水循环泵各系统安装过程中的控制措施、调试过程中的工艺控制及炉水循环泵增加外置循环滤网的优点等几个方面进行阐述;通过这些措施,达到提高炉水循环泵驱动电机冷却水系統清洁度的目标,极大提高了炉水循环泵的安全运行保障。 标签:炉水循环泵;清洁度;滤网改进措施 1、目的 炉水循环泵可以比作控制循环锅炉的起搏心脏,离开了炉水循环泵锅炉就影响运行。应充分认识该泵的性能和特点,尤其要注意冷却水系统对炉水循环泵安全运行的重要性。为有效控制发电厂锅炉炉水循环泵驱动电机冷却水清洁度的状况,降低炉水循环泵在运行过程发生设备损坏、冷却水管道堵塞、冷却水清洁度差的概率,特在锅炉炉水循环泵驱动电机冷却水系统内部清洁度常规控制、检查措施的基础上,通过现场进行革新增加外置滤网,改良安装过程等方法来提高炉水循环泵驱动电机冷却水内部清洁度目标。 2、影响炉水循环泵驱动电机冷却水清洁度原因分析 造成电厂炉水循环泵驱动电机冷却水清洁度差的过程主要有两个因素,一个因素是材料在生产、存放和运输过程中形成的;一个因素是在管道系统施工过程中形成的;经过对以上两个因素的细化分析,造成循环泵驱动电机冷却水清洁度差的主要原因有一下几点: (1)锅炉启动冲洗运行过程炉水中的杂质; (2)冷却水管道管子内部的杂质等; (3)炉水循环泵运行过程中产生的铁离子等杂质。 3、电机冷却水清洁度差对炉水循环泵造成的危害 炉水循环泵冷却水系统是用来消除由于电机在运行时绕组的发热、转动件的摩擦生热,以及从高温的泵壳侧传过来的热量而造成电机升温的不安全影响。高压冷却水从炉水泵电机的底部进入,经电机下端的推力轴承带动辅助叶轮,以建立循环的流动。温度升高的电机冷却水再经电机热交换器将热量传给低压冷却水,然后,被冷却过的高压冷却水再返回进入电机,形成闭路循环流动。锅炉炉水循环泵在运行过程中,锅炉水中的杂物会随着锅炉循环泵驱动电机冷却循环水的流动进入驱动电机中,加之循环泵本身采用内置于电机内过滤器,过流面积小,极易堵塞循环水路,造成冷却循环水流量减小,另外在这些杂物中含有铁质颗粒,

(完整版)win7系统优化方法(超级牛逼)

Win7优化 1、通过关闭特效,有效提高windows7的运行速度右键单击我的电脑-->属性-->高级系统设置-->性能-->设置-->视觉效果,留下五项"平滑屏幕字体边缘"、"启用透明玻璃"、"启用桌面组合"、"在窗口和按钮启用视觉样式"、"在桌面上为图标标签使用阴影",其余的把勾全拿了,可以马上感觉到速度快了不少,而视觉上几乎感觉不到变化。另外还可以勾选上“显示缩略图,而不是显示图标” 2、据说可提高文件打开速度10倍的设置控制面板-->硬件和声音-->显示【显示或缩小文本及其他项目】-->设置自定义文本大小(DPI)去掉“使用Windows XP 风格DPI 缩放比例”的勾选,确定。【按照提示,注销计算机】 3、轻松访问控制面板-->轻松访问-->轻松访问中心-->使计算机易于查看-->勾选“关闭所有不必要的动画(如果可能)” 4、更改“Windows资源管理器”的默认打开的文件夹启动参数的命令格式为:%SystemRoot%explorer.exe /e,〈对象〉/root, 〈对象〉/select, 〈对象〉开始-->所有程序-->附件-->Windows资源管理器-->右击-->属性-->“快捷方式”选项卡-->目标修改为“%windir%\explorer.exe /e, D:\Downloads”,确定。然后右击“Windows资源管理器”-->锁定到任务栏 5、修改“我的文档”、“桌面”、“收藏夹”、“我的音乐”、“我的视频”、“我的图片”、“下载”等文件夹的默认位置方法一:CMD-->regedit,修改

“[HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVers ion\Explorer\User Shell Folders]”方法二:系统盘-->用户-->“当前用户名”,分别右击上述文件夹-->属性-->位置-->移动 6、更改临时文件夹位置(%USERPROFILE%\AppData\Local\Temp) 右击“计算机”-->属性-->高级系统设置-->“高级”选项卡-->“环境变量”按钮-->X用户环境变量 7、更改“IE临时文件夹”位置IE-->Internet选项-->“常规”选项卡-->“设置”按钮-->“移动文件夹”按钮-->选择 8、系统自动登录cmd-->“control userpasswords2”-->去掉“要使用本机,用户必须输入用户名和密码”复选勾 9、关闭系统休眠 cmd-->“powercfg -h off” 10、去除历史纪录cmd-->“gpedit.msc”-->打开“本地组策略编辑器” (1)计算机配置-管理模板-系统-关机选项-关闭会阻止或取消关机(启动) (2)用户配置-->管理模板-->"开始"菜单和任务栏-->不保留最近打开的历史(启用) (3)用户配置-->管理模板-->"开始"菜单和任务栏-->退出系统时清除最近打开的文档的历史(启用) (4)用户配置→管理模板→Windows组件→Windows资源管理器→在Windows资源管理器搜索框中关闭最近搜索条目的显示(启用) 11、在任务栏同时显示“星期几”控制面板→时钟、语言和区域→区域和语言→更改日期、时间或数字格式,点击弹出窗口中的“更改

中储式制粉系统试验及优化调整 李海明

中储式制粉系统试验及优化调整李海明 发表时间:2019-07-08T12:33:01.993Z 来源:《电力设备》2019年第4期作者:李海明 [导读] 摘要:中储式制粉系统是锅炉系统的重要形式之一,通过其试验的开展以及调整过程的优化,则能够实现系统的更好应用,促使锅炉使用质量的提升。 (大唐双鸭山热电有限公司黑龙江双鸭山 155100) 摘要:中储式制粉系统是锅炉系统的重要形式之一,通过其试验的开展以及调整过程的优化,则能够实现系统的更好应用,促使锅炉使用质量的提升。本文就某热电部的锅炉进行系统分析,并探索更好的优化调整策略。 关键词:中储式制粉系统;试验;优化调整 1、设备概况 黑龙江某热电公司1#、2#锅炉为武汉锅炉股份有限责任公司生产的WGZ670/13.7—19型超高压力、自然循环、倒U形布置、单汽包、单炉膛、一次中间再热、直流燃烧器四角切圆燃烧、配钢球磨中储式制粉系统、尾部竖井为双烟道、挡板调温、管式空气预热器、平衡通风、固态排渣、紧身封闭、全悬吊、高强螺栓连接的全钢构架。 现阶段,两台磨煤机制粉出力处于比较低迷状态之中,设计阶段其出力是37t/h,磨煤机制粉的应用出力则与之不同,1#磨煤机制粉出力是25.4t/h,2#磨煤机制粉出力只有19.7t/h。制粉工作开展过程中,电能的消耗处于偏高状态,1#磨煤机制粉系统耗电是30.66kWh/t,2#磨煤机制粉系统耗电是32.08kWh/t。1#磨煤机制粉系统煤粉细度R90是22.8%,2#磨煤机制粉系统煤粉细度R90是8.8%;1#磨煤机制粉系统煤粉细度R200是5.2%,2#磨煤机制粉系统煤粉细度R200是0.4%,由此可以得出,1#磨煤机制粉系统煤粉细度R200处于比较高的状态之中,而2#磨煤机制粉系统煤粉细度R90则处于比较低迷状态之中。 2、中储式制粉系统试验 2.1最佳通风量试验 现阶段,为了避免中储式制粉系统出现积粉闪爆情况,需要调整一次风压与再循环风门至比较较好状态之中,这样能够提高排粉机电流,避免出现排粉机电流较低情况。这就需要最佳通风量试验的开展,对不同的风压与再循环风门开度进行查找,这样能够保证锅炉运行处于安全状态之中,与此同时还能够对制粉电能消耗的最佳通风量起到一定的减少作用。 2.2煤粉细度调整试验 通过试验了解到当前1#磨制粉系统成粉的R200仅仅是5.2%,所生产出来的煤粉比较粗糙,会对煤粉的燃尽率产生一定影响,进而降低整个锅炉的使用效率;2#磨制粉系统成粉的R90只有8.8%,所生产出来的煤粉比较细腻,致使粗细分离器的分离效率明显超出相关标准,分离出许多质量合格的煤粉,并将分离处的合格煤粉输送至回粉管,致使循环倍率处于偏高状态之中,显著降低制粉出力。所以,利用上述相关试验,我们发现:在变频电机转速不同的情况下,制粉系统的阻力会出现相应变化,并且会影响制粉出力与煤粉细度,促使其产生一定变化,进而在保障锅炉处于安全工作状态的同时,又能对制粉系统耗电的最佳煤粉细度起到一定降低作用。当1#磨制粉系统风量为93609m3/h,2#磨制粉系统风量为86403m3/h时,调整粗粉分离器,所作出的调整,包括以下两点: 第一,调整制粉系统两侧粗粉分离器静叶挡板开度,将其由原来的90度调整为60度; 第二,调整2#磨粗粉分离器动叶转动速度,将其由原来的800r/min调整至400r/min。 通过开展上述调整工作,煤粉细度出现了一定变化:对于1#磨而言,其制粉系统成粉的R90由27.8%变为22.8%,制粉系统成粉的 R200由5.2%变为0.84%;对于2#磨而言,其制粉系统成粉的R90由8.8%%变为24.6%,制粉系统成粉的R200由0.1%变为0.48%。 2.3钢球最佳装载量优化试验 对于磨煤机出力与钢球装载量而言,二者不是处于同比例增加状态之中,在对钢球装载量加大的过程中,到达一定数量之后,如果继续对钢球装载量增加,所增加的磨煤机出力就会比较低。然而,磨煤机磨煤单位电能消耗不再处于稳定情况,会出现一定变化,会处于增加状态之中,最佳装载量就是此时的钢球装载量。倘若磨煤机钢球量处于偏高状态之中,就会增加制粉系统电能消耗;如果磨煤机钢球量处于偏高状态之中,就会对制粉系统的出力情况造成影响。除了磨煤机钢球装载量会对制粉出力造成影响之外,煤粉细度还会受到磨煤机大、小钢球装载比例的影响。由此可见,通过进行有关试验,对磨煤机的最佳钢球装载量和大、小钢球装载比例进行明确,具有非常重要的作用。当1#磨制粉系统风量为93609m3/h,2#磨制粉系统风量为86403m3/h时,确保粗粉分离器静叶挡风板角度、动叶变频电机转速与磨煤机出口温度处于固定状态,钢球装载量每加大2t,对制粉出力与制粉电耗进行测量,并在此基础上,将最终制粉电耗计算出来,最佳钢球装载量就是,当制粉电耗处于最低状态时的钢球装载量。 1#磨煤机原来出力为26t/h,2#磨煤机原来出力为19t/h,在增加钢球量的过程中,就会加大制粉出力,此时的1#磨煤机出力调整为36t/h,2#磨煤机出力调整为33t/h,其效果会出现显著变化。1#磨煤机原来制粉电耗为29.01kWh/t,2#磨煤机原来制粉电耗为 34.56kWh/t,伴随着供求量的不断增多,制粉电耗也会出现降低情况,此时的1#磨煤机制粉电耗调整为22.58kWh/t,2#磨煤机出力调整为22.81kWh/t,这样便能够达到良好的节能作用。 2.4调节粗粉分离器挡板 利用相关试验,对粗粉分离器挡板,开展相关的内外开度标定工作,对粗粉分离器内部挡板做出相关调整,使其处于平整状态之中,这样能够确保挡板开度保持一致状态,进而使粗粉分离器内部气流平稳,回粉量比较低,并且确保煤粉细度度的均匀度。倘若粗粉分离器挡板开度处于不一致的情况下,其内部气流就会出现紊乱情况,回粉量就会明显加大,很难使煤粉细度的均匀性得到保障。 3、试验结果分析 通过相关优化调整试验工作的开展,1#炉的1#磨制粉系统与2#磨制粉系统都产生了一系列变化,具体情况如下: 3.1相比较于有关优化试验工作开展之前,二者的制粉出力都得到了明显改善,并且显著减少了制粉电耗。与此同时,也有助于两炉三磨运行工作的顺利开展。除此之外,制粉降耗效果也比较突出,在进行相关优化工作试验前,1#磨制粉电耗为30.661kWh/t,2#磨制粉电耗为32.08kWh/t,经过优化试验都产生了相应改变,出现了明显增加情况,1#磨制粉电耗调整为22.58kWh/t,2#磨制粉出力调整为 22.81kWh/t。 3.2关于煤粉细度方面,针对1#磨制粉系统与2#磨制粉系统的静叶挡板开度作出相关调整,将其由原来的90度调整至60度,当动叶转

相关文档
最新文档