1.1.2集合间的基本关系(习题课)
1.1.21 集合间的基本关系真子集和空集

A B,求实数m的值.
m=0或 1 或-1
2
例3 已知集合 A{x| 2x11} , 3
B{x|x2a0},若A B,求实数a
的取值范围.
a 1
例4 已知集合 A{x,1},B{y,1,2},其
中 x,y { 1 ,2, ,9 },设集合 M {(x, y)| AB}
试确定集合M中共有多少个元素.
ቤተ መጻሕፍቲ ባይዱ
14个
作业:
P7练习: P12习题1.1A组:
2. 5(2),(3).
思考题:已知集合A={xR|x2ax10},
B={x|x<0},若A B,求实数a 的取值范围.
结束语
若有不当之处,请指正,谢谢!
如果 A B ,但存在元素 x B且x A ,则
称集合A是集合B的真子集.
思考4:如果集合A是集合B的真子集,我们怎 样用符号表示?
AB或B A
思考5:若集合A是集合B的子集,则集合A一 定是集合B的真子集吗?若集合A是集合B的 真子集,则集合A一定是集合B的子集吗?
知识探究(二)
考察下列集合: (1){x|x是边长相等的直角三角形}; (2){xR|x210}; (3){xR||x|20}.
思考1:上述三个集合有何共同特点? 集合中没有元素
思考2:上述三个集合我们称之为空集,那么 什么叫做空集?用什么符号表示?
不含任何元素的集合叫做空集,记为
思考3:对于集合A={1,2},空集是集合A的 子集吗?
规定:空集是任何集合的子集
思考4:空集与集合{0}相等吗?二者之间是
什么关系? {0}
知识探究(一)
人教版高中数学必修1(A版) 1.1.2集合间的基本关系 PPT课件

回到目录
三、教师点拨
1.集合的相等
回到目录
三、教师点拨
2.真子集定义
一般地,若集合A中的元素都是集合B的元素, B中至少有一个元素不属于A。我们称集合A是 集合B的真子集。记作:
AÞ B
回到目录
三、教师点拨
2.真子集定义
回到目录
三、教师点拨
3.子集定义 如果集合A的任何一个元素都是集合B的元素, 那么,集合A就叫做集合B的一个子集.记作:
A B
说明:(1)子集包含相等与真子集两种情况, 任何一个集合都是它自身的子集; (2)空集是任何集合的子集,包括它本身;
回到目录
பைடு நூலகம்
三、教师点拨
3.子集的定义
回到目录
四、课堂小结
(1)集合相等定义 (2)真子集的定义 (3)子集的定义 (4)体会类比发现新结论与数形结合的思想
回到目录
自主探究 时间15分钟 (完成所有探究与练习) 集中全部精力!提升自学能力!
回到目录
三、教师点拨
1.集合的相等
一般地,如果集合A的每一个元素都是集合B的元素, 反过来集合B的每一个元素也都是集合A的元素,我们 就说集合A等于集合B。记作:
AB
这里的符号“=”是借用了数学中的等号,它表示两 个集合中的元素完全相同 ( 即两个集合中的元素个数 相等且相应的元素都相同).
标题
§1.1.2集合间的基本关系
§1.1.2集合间的基本关系
一、问题情景 二、自主学习 三、教师点拨 四、课堂小结
本课结束
一、问题情景 山东人组成的集合为A,中国人组成的集 合为B, 某人说:“我是一个山东人”,
那我们马上能反应出这个人也是一个中 国人,集合A与集合B有什么关系呢?
1.2 集合间的基本关系(基础知识+基本题型)(含解析)

1.2 集合间的基本关系(基础知识+基本题型) 知识点一 子集1.子集定义 一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”) 图示或 结论 (1)任何一个集合是它本身的子集,即A A ⊆;(2)对于集合A ,B ,C ,若A B ⊆,且B C ⊆,则A C ⊆.2.V enn 图用平面上封闭曲线的内部代表集合,这种图称为Venn 图.表示集合的Venn 图的边界是封闭曲线,它可以是圆、矩形、椭圆,也可以是其他封闭曲线.提示:(1)注意符号“∈”与“⊆”的区别. “⊆”只用于集合与集合之间,如{0}N ⊆,而不能写成0N ⊆;“∈”只能用于元素与元素之间,如0N ∈,而不能写成{0}N ∈.(2)“A 是B 的子集”:集合A 中的任何一个元素都是集合B 中的元素,即由任意x A ∈能推出x B ∈.(3)当A 不是B 的子集时,我们记作“A B ”(或“B A ”),读作“A 不含于B ”(或“B 不包含A ”),此时A 中至少存在一个元素不是B 中的元素,用图形语言表示如图1.1-2所示.例如,集合{,,}A a b c =不是集合{,,,,}B b c d e f =的子集,因为集合A 中的元素a 不是集合B 中的元素.知识点二 集合相等如果集合A 是集合B 的子集()A B ⊆,且集合B 是集合A 的子集()B A ⊆,此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作A B =.拓展:(1)若A B ⊆,且B A ⊆,则A B =;反之,若A B =,则A B ⊆,且B A ⊆,这就给出了证明两个集合相等的方法,即欲证A B =,只需要证A B ⊆与B A ⊆均成立即可.(2)若两个集合相等,则这两个集合中所含的元素完全相同,与元素的排列顺序无关.(3) 要判断两个集合是否相等,对于元素较少的有限集,可用列举法将元素列举出来,看两个集合中的元素是否完全相同;对于元素较多的有限集或无限集,应从“互为子集”入手进行判断.()A B B A A A AB B B 1.12-图知识点三 真子集定义 如果集合A B ⊆,但存在元素x B ∈,且x A ∈/,我们称集合A 是集合B 的真子集,记作A B (或B A )图示结论(1)若A B ⊆,且A B ≠,则AB ; (2)若AB ,且BC ,则A C . 提示(1)在证明AB ,时,应先证明A B ⊆,再证明B 中至少存在一个元素a ,使得a A ∉即可. (2) A B 对任意x A ∈都有x B ∈,但存在0x B ∈,且0x A ∉.(3)注意符号“⊆”与“”的区别. A B ⊆⇒A B =或A B ,例如,若集合{}1,2A =,{}1,2,3B =,则A 是B 的子集,也是真子集,用A B ⊆与A B 均可,但用AB 更准确. 知识点四 空集我们把不含任何元素的集合叫做空集,记为φ,并规定:空集是任何集合的子集.在这个规定的基础上,结合子集和真子集的有关概念。
1.1.2集合之间的基本关系

观察下面几个例子,你能发现两个集合之间 的关系吗?
(1) A={1, 2, 3} , B={1, 2, 3, 4 ,5};
(2)A={棠外高一13班女生}, B={棠外高一13班学生}.
(3) 设C={x|x是至少有两条边相等的 三角形},D={x|x是等腰三角形}.
2.子集:对于两个集合A和B,如果集合A中任意 一个元素都是B中的元素,就说这两个集合有包含 关系,称集合A为集合B的子集,记作:A⊆B(或 B⊇A)读作:“A包含于B”(或B包含A)
2
2
则A,B之间的关系为( B)
A.A B; B.B A; C.A=B D. 以上都不对。
(2)M {x | x m 1 , m Z}, N {x | x n 1 , n Z},
6
23
P {x | x p 1 , p Z},则M, N, P的关系为_M____N_=_P_. 26
复习回顾
1.集合的几种表示方法:
2.元素与集合的关系: ( or )
3.常见的数集:
引入:
(1)我们学过哪些数的运算? 加、减、乘、除、乘方、开方、取倒数等等
(2)生活中的运算:
一.集合间的关系
一个特殊而又重要的集合: 1、空集---不含有任何元素的集合,记作:
再如:{x | 2 x 1}
符号语言: 若对任意x∊A,有x ∊B,则 A⊆B
图形语言:
A
韦 恩
B
图
若A不是B的子集,则记作:A⊈B(或B ⊉A)
3、集合相等:
用子集概念描述:如果集合A 是集合B的子集( A⊆B) 且集合B也是集合A的子集( B⊆A),因此集合A和集 合B中的元素是一样的,就说A与B相等,记A=B。
1.1.2集合间的基本关系

课堂练习
设集合A={x|1≤x≤3} B={x|xA={x|1≤x≤3}, 1 设集合A={x|1≤x≤3},B={x|x-a≥0} 的真子集,求实数a的取值范围。 若A是B的真子集,求实数a的取值范围。 A={1,2},B={x|x⊆A}, 2 设A={1,2},B={x|x⊆A},问A与B有什 么关系?并用列举法写出B 么关系?并用列举法写出B?
3.已知A = { x | −2 ≤ x ≤ 5}, B = { x | a + 1 ≤ x ≤ 2a − 1}, B ⊆ A, 求实数a的取值范围.
∵ 解: ∅ ⊆ A, 当B = ∅,有a + 1 > 2a − 1, 即a < 2 ∴ 2 a − 1 ≥ a + 1 当B ≠ ∅时,有a + 1 ≥ -2 2 a − 1 ≤ 5 ∴2 ≤ a ≤ 3 综上所述,a的取值范围a ≤ 3.
例3、写出集合{a, b}的所有子集,并指出哪些是它 的真子集.
5.反馈演练 5.反馈演练
1、下列命题: 空集没有子集; 任何集合至少有两个 (1) (2) 子休; 空集是任何集合的真子集; 若∅ ⊂ A,则A ≠ (3) (4) ∅.其中正确的有( A.0个 ) D.3个 B.1个 C.2个
y-3 2.设x, y ∈ R,A = {(x, y) | y - 3 = x - 2}, B = {(x, y) | = 1}, x-2 则A,B的关系是______.
⑴ A={1,2,3} , B={1,2,3,4,5}; ⑵设A为新华中学高一 班女生的全体组成的集合 为新华中学高一(2)班女生的全体组成的集合 为新华中学高一 班女生的全体组成的集合, B为这个班学生的全体组成的集合 为这个班学生的全体组成的集合; 为这个班学生的全体组成的集合 是两条边相等的三角形}, ⑶ 设C={x|x是两条边相等的三角形 ,D={x|x是 = 是两条边相等的三角形 是 等腰三角形}. 等腰三角形
1-1-2集合间的基本关系青一平5

总结评述:要特别注意a能否取到1,若把 其它条件不变,分别只改以下条件时,结 论如何: ①M={x|x≥1};②N={x|x≥a};③M⊆N;④ M⊇N;⑤M N.
已知A={x|x<3},B={x|x<a} (1)若B⊆A,则a的取值范围是________; (2)若A⊆B,则a的取值范围是________; (3)若AB,则a的取值范围是________; (4)若A=B,则a的值是________. [答案] (1)a≤3 (2)a≥3 (3)a>3 (4)3 [解析] (1)若B⊆A应满足a≤3; (2)若A⊆B应满足a≥3; (3)AB应满足a>3; (4)若A=B则a=3.
2. 若集合 A={x||x-a|=1}, B={x|3x+1=0}, B 若 A, 则 a 的值为 ( 2 A.- 3 4 C.± 3
[答案] D
)
4 B.+1,a-1},B={-3},
1 1 ∵B A,∴a+1=- 或 a-1=- , 3 3 4 2 ∴a=-3或3.
• 1.1.2 集合间的基本关系
[例3] 已知M={x|x>1},N={x|x>a},且 M N,则 ( ) A.a≤1 B.a<1 C.a≥1 D.a>1 [分析] 为了形象直观地表示集合的关 系.可借助数轴,让a在x轴上运动,通过 观察归纳M与N的关系,进而得出1与a的 关系.
• [解析] 随着a在x轴上运动,集合N也在变 化,满足MN的情况如图,显见a<1,故 选B.
一、选择题 1.下列四个命题:①空集没有子集;②空 集是任何集合的真子集;③任何集合至少 有两个子集;④若∅ A,则A≠∅,其中 正确的个数是( ) A.1个 B.2个 C.3个 D.4个 [答案] A [解析] 空集是本身的子集,但不是本身的 真子集,它只有本身这一个子集,故①② ③错,只有④正确.
1.1.2 集合间的基本关系
16
…
…
…
n个元素
2n
返回
思维训练:集合A={1,2,3,4,5,6,7,8,9,10},将 集合A的子集中的所有元素相加所得的和是 多少?
试一试
2.已知A {x | 2 x 5},B {x | a 1 x 2a 1}, B A,求实数a的取值范围.
例3 设A={x,x2,xy}, B={1,x,y},且 A=B,求实数x,y的值.
数学语言表示形式: 若对任意x∊A,有x ∊B,则 A⊆B。
若A不是B的子集,则记作:A⊈B(或B ⊉A) 例:A={2,4},B={3,5,7} ; 则A⊈B。
A⊆B的图形语言
A B
用平面上封闭 的曲线的内部 表示集合这图
叫轴直观表示:
如:{x| x>3}表示为
做一做
例4:已知A{x|x=8m+14n,m,n ∈Z} , B ={x|x=2k,k ∈Z}。
(1)数2和集合A的关系如何? (2)集合A与集合B的关系如何
课堂小结:
• 今天你学到了什么知识? • 你能用自己的话说说吗?
A⊊B, B⊊C ⇒ A⊊C。
• 例1、 判 断 下 列 关 系 式 : ① {0}; ② {0}; ③ {0}; ④0 {0}; ⑤{a} {a, b}; ⑥ {}; ⑦ {}; ⑧ {}; ⑨{a} { x | x {a, b}},⑩{(0,0)}={0}
其 中 正 确 的 是③⑥⑦⑨ 。
02345
x
集合相等
• 用子集概念描述:如果集合A 是集合B的子集( A⊆B) 且集合B也是集合A的子集( B⊆A)就说A与B相等, 记A=B。即 A⊆B, B⊆A⇔A=B。
类似于a≥b,b≥a则a=b
1.1.2_集合间的基本关系_课件(人教A版必修1)
③从集合之间的关系看,Ø⊆{Ø},Ø {Ø}. (2)分别写出集合{a},{a,b}和{a,b,c}的所有子集, 通过子集个数你能得出一个规律吗?
提示:集合{a}的所有子集是Ø,{a},共有2个子集; 集合{a,b}的所有子集是Ø,{a},{b},{a,b},共 有4个,即22个子集; 集合{a,b,c}的所有子集可以分成四类:即Ø;含 一个元素的子集:{a},{b},{c};含两个元素的子集{a, b},{a,c},{b,c};含三个元素的子集{a,b,c}.共有 8个,即23个子集. 规律:集合{a1,a2,a3,…,an}的子集有2n个;真 子集有(2n-1)个;非空真子集有(2n-2)个.
图6 当a<1时,B=Ф,此时B⊆A成立. 综述,当a≤2时,B⊆A.
• 类型三 集合相等及应用 • [例4] 已知集合A={a,a+b,a+2b},B={a,ac,ac2}, 若A=B,求c的值.
[解]
a+b=ac ①若 2 a+2b=ac
,消去b得a+ac2-2ac
=0,即a(c2-2c+1)=0, 当a=0时,集合B中的三个元素相同,不满足集 合中元素的互异性, 故a≠0,c2-2c+1=0,即c=1. 当c=1时,集合B中的三个元素也相同, ∴c=1舍去,即此时无解.
[例3]
已知集合A={x|-2≤x≤5},B={x|m+
1≤x≤2m-1},若B⊆A,求实数m的取值范围.
-2≤m+1 2m-1≤5
[错解] 欲使B⊆A,只需
⇒-
3≤m≤3. ∴m的取值范围是-3≤m≤3.
[错因] 空集是一个特殊的集合,是任何集合 的子集,因此需要对B=Ø与B≠Ø两种情况分别确 定m的取值范围.
3.对于A B可以分为两类去讨论: (1)A=Ø,(2)A≠Ø,特别注意不要遗漏A=Ø的 情况。在解决子集的有关问题时,常常需要数形结 合,借助于数轴,通过图示找到相应的关系式,从而 使问题获得解决.
1.1.2集合间的基本关系
常见题型二:求字母参数值或取值范围 (例3)设集合A {x | x 3}, B {x | x - a 0} (1)当A B时,则实数a的取值范围是___
(2)当A B时,则实数a的取值范围是___
方法:数形结合 (结合数轴)
第22页,共27页。
练自习学:检测3:(8分钟) 1.A {x1 x 2},B {x x a}, 若A B,
5.设集合A = {x | x2 + 4x = 0},
B = {x | x2 + 2(a + 1)x + a2 - 1 = 0,a R}, 若B A,求实数a的值.
解:∵A = {0,- 4},B A,于是可分类处理. (1)当A = B时,B = {0,- 4}. 由此知:0,- 4是方程x2 + 2(a + 1)x + a2 - 1 = 0的两根, 所以将0,- 4代入方程得: a2 - 8a + 7 = 0 a2 - 1 = 0
第27页,共27页。
2
-
1x
x
a
2m0},
若若BBAA,(求1)a求 的取 m的值取范值围范。围
(2.2A)当{xx-1 Nx, 求 6A}的,子B注集意{的 x空m个-集1数!。x 2m 1}
若B A(1)求m的取值范围 第23页,共27页。
4.已知集合A={x|-2≤x≤5}, ={x|m+1≤x≤2m-1},若B⊆A, 数m的取值范围.
③Ø 是不含任何元素的集合; ④{Ø }是指以Ø 为元素的集合.
第15页,共27页。
自学检测:(8分钟)
1.下列关系式中错误的个数有( )
①1∈{(1,2)}; ②{1}∈{0,1,2,3};
高一数学人教A版必修1学案1.1.2集合间的基本关系
第一章集合与函数概念1.1 集合1.1.2 集合间的基本关系学习目标①理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力;②在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.合作学习一、设计问题,创设情境问题1:实数有相等、大小的关系,如5=5,5<7,5>3等,类比实数之间的关系,你能想到集合之间有什么关系吗?二、自主探索,尝试解决问题2:观察下面几个例子,你能发现两个集合间有什么关系吗?(1)A={1,2,3},B={1,2,3,4,5};(2)设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;(3)设A={x|x是两条边相等的三角形},B={x|x是等腰三角形};(4)A={2,4,6},B={6,4,2}.三、信息交流,揭示规律集合间的基本关系:①一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为B的子集.记作:读作:如果A?B,但存在x∈B,且x?A,我们就说这两个集合有真包含关系,称集合A是集合B的真子集,记作A?B(或B?A).②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.问题3:与实数中的结论“若a≥b,且b≥a,则a=b”相类比,在集合中,你能得出什么结论?问题4:与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你又能得出什么结论?为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn(1)和(4)的Venn图.问题5:(1)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?(2)一座房子内没有任何东西,我们称这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?四、运用规律,解决问题【例1】图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系,则A、B、C、D、E分别代表的图形的集合为.?【例2】写出集合{a,b}的所有子集,并指出哪些是它的真子集.【例3】已知集合A={-1,3,2m-1},集合B={3,m2}.若B?A,则实数m=.?五、变式演练,深化提高1.已知集合M={x|2-x<0},集合N={x|ax=1},若N?M,求实数a的取值范围.2.(1)分别写出下列集合的子集及其个数:?,{a},{a,b},{a,b,c}.(2)由(1)你发现集合M中含有n个元素,则集合M有多少个子集?3.已知集合A?{2,3,7},且A中至多有一个奇数,则这样的集合A有()A.3个B.4个C.5个D.6个六、反思小结,观点提炼请同学们互相交流一下你在本节课学习中的收获.七、作业精选,巩固提高课本P11习题1.1 A组第5题.参考答案三、信息交流,揭示规律①A?B(或B?A)A含于B(或B包含A)问题3:结论:若A?B,且B?A,则A=B.问题4:类比子集,得出子集有传递性,若A?B,B?C,则A?C;若A?B,B?C,则A?C.问题5:(1)2+1=0没有实数解.(2)一个集合没有任何元素,?,并规定:空集是任何集合的子集,即??A;空集是任何非空集合的真子集,即??A(A≠?).四、运用规律,解决问题【例1】解析:由四边形的概念可得下列关系:由集合的子集概念可知,集合A={四边形},集合B={梯形},集合C={平行四边形},集合D={菱形},集合E={正方形}.答案:A={四边形},B={梯形},C={平行四边形},D={菱形};E={正方形}【例2】解:集合{a,b}的所有子集为?,{a},{b},{a,b}.真子集为?,{a},{b}.【例3】解析:∵B?A,∴3∈A,m2∈A.∴m2=-1(舍去)或m2=2m-1.解得m=1.∴m=1.答案:1点评:本题主要考查集合和子集的概念,2=3,,再代入验证.讨论两集合之间的关系时,通常依据相关的定义,观察这两个集合元素的关系,转化为解方程或解不等式.五、变式演练,深化提高1.分析:集合N是关于x的方程ax=1的解集,集合M={x|x>2}≠?,由于N?M,则N=?或N≠?,要对集合N是否为空集分类讨论.解:由题意得M={x|x>2}≠?,则N=?或N≠?.当N=?时,关于x的方程ax=1中无解,则有a=0;当N≠?时,关于x的方程ax=1中有解,则a≠0,此时x=,又∵N?M,∴∈M.∴>2.∴0<a<.综上所得,实数a的取值范围是a=0或0<a<,即实数a的取值范围是{a|0≤a<}2.解:(1)?的子集有:?,即?有1个子集;{a}的子集有:?,{a},即{a}有2个子集;{a,b}的子集有:?,{a},{b},{a,b},即{a,b}有4个子集;{a,b,c}的子集有:?,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c},即{a,b,c}有8个子集.(2)由(1)可得:当n=0时,有1=20个子集;当n=1时,集合M有2=21个子集;当n=2时,集合M有4=22个子集;当n=3时,集合M有8=23个子集;因此含有n个元素的集合M有2n个子集.3.分析:对集合A所含元素的个数分类讨论解析:A=?或{2}或{3}或{7}或{2,3}或{2,7},共有6个.答案:D点评:,按子集中元素的个数来写不易发生重复和遗漏现象.。