集合间的基本关系习题

合集下载

集合的包含关系练习题

集合的包含关系练习题

集合的包含关系练习题集合的包含关系练习题在数学中,集合是一种基本的概念,它用来描述一组具有共同特征的对象。

而集合的包含关系则是研究集合之间的相互关系的重要内容之一。

在这篇文章中,我们将通过一些练习题来加深对集合包含关系的理解。

1. 练习题一:集合的相等给定两个集合A和B,如果A中的每个元素都属于B,且B中的每个元素都属于A,则称A和B相等。

现在考虑以下情况,请判断集合A和集合B是否相等:- A = {1, 2, 3},B = {1, 2, 3, 4}- A = {a, b, c},B = {c, b, a}- A = {1, 2, 3},B = {3, 2, 1}解答:- A和B不相等,因为B中有一个元素4不属于A。

- A和B相等,因为它们的元素相同,只是顺序不同。

- A和B相等,因为它们的元素相同,只是顺序不同。

2. 练习题二:真子集和超集给定两个集合A和B,如果A中的每个元素都属于B,但B中存在一个元素不属于A,则称A是B的真子集,B是A的超集。

现在考虑以下情况,请判断集合A和集合B的关系:- A = {1, 2, 3},B = {1, 2, 3, 4}- A = {a, b, c},B = {c, b, a}- A = {1, 2, 3},B = {3, 2, 1}解答:- A是B的真子集,B是A的超集,因为A中的每个元素都属于B,但B中有一个元素4不属于A。

- A是B的真子集,B是A的超集,因为A和B的元素相同,只是顺序不同。

- A是B的真子集,B是A的超集,因为A和B的元素相同,只是顺序不同。

3. 练习题三:交集和并集给定两个集合A和B,A与B的交集是由同时属于A和B的元素组成,A与B 的并集是由属于A或B的元素组成。

现在考虑以下情况,请计算集合A和集合B的交集和并集:- A = {1, 2, 3},B = {2, 3, 4}- A = {a, b, c},B = {c, d, e}- A = {1, 2, 3},B = {4, 5, 6}解答:- A与B的交集为{2, 3},并集为{1, 2, 3, 4}。

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};【答案解析】:{x |x=2k, k=1, 2, 3, 4, 5}.(2)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数;【答案解析】:{1, 2, 3, 12, 21, 13, 31, 23, 32, 123, 132, 213, 231, 312, 321}.(3) {x∈N|3<x<7};【答案解析】:{4, 5, 6}.(4)中国古代四大发明.【答案解析】:{指南针,活字印刷,造纸术,火药}.4.用适当的方法表示下列集合:(1)二次函数y=x²-4的函数值组成的集合;【答案解析】: {y | y≥-4}.(2)反比例函数y=2/x的自变量组成的集合;【答案解析】:{x | x≠0}.(3)不等式3x≥4- 2x的解集.【答案解析】:{x |x≥4/5}.三、拓广探索5.集合论是德国数学家康托尔于19 世纪末创立的.当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念.关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”.请你查阅相关资料,用简短的报告阐述你对这些评价的认识.【答案解析】:略.1.2 集合间的基本关系练习1.写出集合{a, b,c}的所有子集.【答案解析】由0个元素构成的子集: ∅;由1个元素构成的子集: {a}, {b}, {c};由2个元素构成的子集: {a, b}, {a,c}, {b, c};由3个元素构成的子集: {a, b, c};综上,可得集合{a,b, c}的所有子集有: 0, {a}, {b}, {c}, {a, b}, {a,c}, {b, c}, {a, b, c}.2.用适当的符号填空:(1) a__ {a,b,c}; (2) 0__ {x|x²=0};(3) B___ {x∈R|x²+1=0}; (4) {0,1}___N(5) {0}___ {x|x²=x}; (6) {2, 1}___{x|x²-3x+2=0}.【答案解析】:(1)∈;(2)=;(3)=;(4)⊆;(5)⊆;(6)=.3.判断下列两个集合之间的关系:(1) A={x|x<0}, B={x|x<l};(2) A={x|x=3k,k∈N},B={x|x=6z,z∈N};(3) A={x∈N₋|x是4与10的公倍数},B={x|x=20m, m∈N₊}.【答案解析】:⫋A B B A A=B习题1.2一、复习巩固1.选用适当的符号填空:(1)若集合A={x|2x-3<3x}, B={x|x≥2},则-4___B,-3___ A, {2}___B,B___ A;【答案解析】:∵集合A= {x|2x-3< 3x}= {x|x>-3},B = {x|x≥2},则∴-4∉B,-3∉A,{2}B,B A.故答案为:∉,∉,,。

集合训练题

集合训练题

第一节集合知识回顾1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法A B或B A集合的并集集合的交集集合的补集A∪B=A∩B=∁A=(1)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.(2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.(3)补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅.(4)∁U(∁U A)=A;∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B).课前检测1.已知数集A ={0,1,x +2},那么x 的取值集合为 ( )A .{x |x ≠-2}B .{x |x ≠-1}C .{x |x ≠-2且x ≠-1}D .x ∈R2.下列判断正确的命题个数为( )①a ∈{a };②{a }∈{a ,b };③{a ,b }⊆{b ,a };④∅⊆{0}.A .1个B .2个C .3个D .4个 3.集合A ={1,2,3}的非空真子集的个数为( )A .3个B .6个C .7个D .8个4.已知{1,2}⊆A ⊆{1,2,3,4,5},则集合A 的个数为 ____________ .5.设全集U =R ,A ={x |1≤x ≤3},B ={x |2<x <4},则A ∩B = ____________;A ∪B =____________;A ∪∁U B =____________.课中讲解考点一. 集合的基本概念例1. 若a ,b ∈R ,集合{1,a +b ,a }={0,ba,b },求b -a 的值.变式1.设集合A ={1,a ,b },B ={a ,a 2,ab },且A =B ,求实数a ,b .例2.若集合A ={x ∈R|ax 2-3x +2=0}中只有一个元素,则a =( ) A.92 B.98 C .0D .0或98变式2.已知集合A ={x ∈N|1<x <log 2k },若集合A 中至少有3个元素,则k 的取值范围为( ) A .(8,+∞) B .[8,+∞) C .(16,+∞)D .[16,+∞)考点二. 集合间的关系例1.设P ={y |y =-x 2+1,x ∈R},Q ={y |y =2x ,x ∈R},则( ) A .P ⊆Q B .Q ⊆P C .∁R P ⊆QD .Q ⊆∁R P变式1.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.例2 设集合M ={x |x =5-4a +a 2,a ∈R },N ={y |y =4b 2+4b +2,b ∈R },则M 与N 之间有什么关系?变式2 设集合P ={m |-1<m <0},Q ={m |mx 2+4mx -4<0对任意实数x 恒成立,且m ∈R },则集合P 与Q 之间的关系为________.变式3.已知集合A ={x |x 2+4x =0},B ={x |x 2+ax +a =0},是否存在这样的实数a ,使得B ⊆A ?若存在这样的实数a ,求出a 的取值范围;若不存在,说明理由.考点三 集合的运算例1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =() A .–4 B .–2 C .2D .4变式1.【2020年高考全国Ⅰ卷理数】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()UA B =A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}例2.【2020年高考全国Ⅰ卷理数】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为 A .2 B .3 C .4D .6变式2.(2020·全国新课标Ⅰ理科试卷)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B中元素的个数为( ) A .2B .3C .4D .6例3.(多选)已知集合A ={x |-1<x ≤3},集合B ={x ||x |≤2},则下列关系式正确的是( ) A .A ∩B =∅B .A ∪B ={x |-2≤x ≤3}C .A ∪∁R B ={x |x ≤-1或x >2}D .A ∩∁R B ={x |2<x ≤3}变式3.(多选)已知集合A ={x |x 2-3x +2≤0},B ={x |2<2x ≤8},则下列判断不正确的是( ) A .A ∪B =B B .(∁R B )∪A =R C .A ∩B ={x |1<x ≤2} D .(∁R B )∪(∁R A )=R考点四.集合的新定义问题例1.如图所示的Venn 图中,A ,B 是两个非空集合,定义集合A ⊗B 为阴影部分表示的集合.若x ,y ∈R ,A ={x |y =2x -x 2},B ={y |y =3x ,x >0},则A ⊗B 为( )A .{x |0<x <2}B .{x |1<x ≤2}C .{x |0≤x ≤1或x ≥2}D .{x |0≤x ≤1或x >2} 变式1.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合; ②集合A ={n |n =3k ,k ∈Z}为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合. 其中正确结论的序号是________.例2.定义集合的商集运算为A B =⎩⎨⎧⎭⎬⎫x ⎪⎪x =m n ,m ∈A ,n ∈B ,已知集合A ={2,4,6},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 2-1,k ∈A ,则集合BA∪B 中的元素个数为( )A .6B .7C .8D .9变式2.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |log 2x <1},Q ={x ||x -2|<1},那么P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}课后习题一 单选1.(2020·河北衡水中学高三月考)已知集合{}2|20A x x x =-≤,{}|1381xB x =<<,{}|2,C x x n n N ==∈,则()A B C ⋃⋂=( )A .{}2B .{}0,2C .{}0,2,4D .{}2,42.(2020·山东济宁·高三其他模拟)已知集合{}|21x A x =>,{}2|560B x x x =+-<,则AB =( )A .()1,0-B .()0,6C .()0,1D .()6,1-3.(2020·阳江市第一中学高三其他模拟)已知全集为实数集R ,集合{}36A x x =-<<,{}29140B x x x =-+<,则()U A B ⋂=( )A .()2,6B .()2,7C .(]3,2-D .()3,2-4.(2020·云南高三其他模拟(理))设集合{}2*20,A x x x x N =--<∈,集合{B x y ==,则集合A B 等于( )A .1B .[)1,2C .{}1D .{}1x x ≥5.【2020年新高考全国Ⅰ卷】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}6.【2020年高考浙江】已知集合P ={|14}x x <<,Q={|23}x x <<,则P ∩Q =A .{|12}x x <≤B .{|23}x x <<C .{|34}x x ≤<D .{|14}x x <<7. 已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为( ) A .15 B .16 C .20 D .218.已知全集U ={x ∈Z|0<x <8},集合M ={2,3,5},N ={x |x 2-8x +12=0},则集合{1,4,7}为( )A .M ∩(∁U N )B .∁U (M ∩N )C .∁U (M ∪N )D .(∁U M )∩N9.已知集合M =⎩⎨⎧⎭⎬⎫x | x 216+y 29=1,N =⎩⎨⎧⎭⎬⎫y |x 4+y 3=1,则M ∩N =( ) A .∅ B .{(4,0),(3,0)} C .[-3,3]D .[-4,4]10.在实数集R 上定义运算*:x *y =x ·(1-y ).若关于x 的不等式x *(x -a )>0的解集是集合{x |-1≤x ≤1}的子集,则实数a 的取值范围是( )A .[0,2]B .[-2,-1)∪(-1,0]C .[0,1)∪(1,2]D .[-2,0]11.非空数集A 满足:(1)0∉A ;(2)若∀x ∈A ,有1x∈A ,则称A 是“互倒集”.给出以下数集:①{x ∈R|x 2+ax +1=0}; ②{x |x 2-4x +1<0};③⎩⎨⎧⎭⎬⎫y ⎪⎪y =ln xx ,x ∈⎣⎡⎭⎫1e ,1∪1,e];④⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪⎪y =⎩⎨⎧ 2x +25,x ∈[0,1,x +1x ,x ∈[1,2]. 其中“互倒集”的个数是( ) A .4 B .3 C .2 D .1二.多选12. (多选)设P 是一个数集,且至少含有两个数,若对任意a ,b ∈P ,都有a +b ,a -b ,ab ,ab ∈P (除数b ≠0),则称P 是一个数域,例如有理数集Q 是数域,下列命题中正确的是( ) A .数域必含有0,1两个数 B .整数集是数域C .若有理数集Q ⊆M ,则数集M 必为数域D .数域必为无限集13.(多选)设S 为复数集C 的非空子集.若对任意x ,y ∈S ,都有x +y ,x -y ,xy ∈S ,则称S 为封闭集.下列命题中是真命题的有( )A .集合S ={a +b i|a ,b 为整数,i 为虚数单位}为封闭集B .若S 为封闭集,则一定有0∈SC .封闭集一定是无限集D .若S 为封闭集,则满足S ⊆T ⊆C 的任意集合T 也是封闭集 三.填空14. 对于集合M ,定义函数f M (x )=⎩⎪⎨⎪⎧-1,x ∈M ,1,x ∉M .对于两个集合A ,B ,定义集合A △B ={x |f A (x )·f B (x )=-1}.已知A ={2,4,6,8,10},B ={1,2,4,8,12},则用列举法写出集合A △B 的结果为________.15.当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”.对于集合M ={x |ax 2-1=0,a >0},N =⎩⎨⎧⎭⎬⎫-12,12,1,若M 与N “相交”,则a =________.四.解答题16.已知集合A ={x |3≤3x ≤27},B ={x |log 2x >1}.(1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围.参考答案1.已知数集A ={0,1,x +2},那么x 的取值集合为 ( )A .{x |x ≠-2}B .{x |x ≠-1}C .{x |x ≠-2且x ≠-1}D .x ∈R答案:C解析:因为集合的元素满足互异性,所以x +2≠0且x +2≠1,得x ≠-2且x ≠-1,故选C . 2.下列判断正确的命题个数为( ) ①a ∈{a };②{a }∈{a ,b };③{a ,b }⊆{b ,a };④∅⊆{0}. A .1个 B .2个 C .3个D .4个答案:C解析:①元素与集合的关系的表示方法,正确; ②两个集合之间的关系,不正确; ③正确; ④∅是任何集合的子集,正确,故选C .3.集合A ={1,2,3}的非空真子集的个数为( ) A .3个 B .6个 C .7个D .8个 答案:B解析:若一个集合的元素个数为n ,则其子集个数为2n , 真子集的个数为2n -1,非空子集的个数为2n -1, 则非空真子集的个数为2n -2,故选B.4.已知{1,2}⊆A ⊆{1,2,3,4,5},则集合A 的个数为 ____________ . 答案:8解析:问题可转化为求集合{3,4,5}的子集个数,即集合A 的个数为8.5.设全集U =R ,A ={x |1≤x ≤3},B ={x |2<x <4},则A ∩B = ____________;A ∪B =____________;A ∪∁U B =____________.答案:{x |2<x ≤3} {x |1≤x <4} {x |x ≤3或x ≥4}解析:在数轴上分别表示出集合A ,B ,∁U B ,即得∁U B ={x |x ≤2或x ≥4}. 课中讲解考点一. 集合的基本概念例1. 若a ,b ∈R ,集合{1,a +b ,a }={0,ba,b },求b -a 的值.解题导引 解决该类问题的基本方法为:利用集合中元素的特点,列出方程组求解,但解出后应注意检验,看所得结果是否符合元素的互异性.解 由{1,a +b ,a }={0,ba ,b }可知a ≠0,则只能a +b =0,则有以下对应法则:⎩⎪⎨⎪⎧a +b =0,ba =a ,b =1① 或⎩⎪⎨⎪⎧a +b =0,b =a ,b a =1.②由①得⎩⎪⎨⎪⎧a =-1,b =1,符合题意;②无解.∴b -a =2.变式1.设集合A ={1,a ,b },B ={a ,a 2,ab },且A =B ,求实数a ,b . 解 由元素的互异性知,a ≠1,b ≠1,a ≠0,又由A =B ,得⎩⎪⎨⎪⎧ a 2=1,ab =b ,或⎩⎪⎨⎪⎧a 2=b ,ab =1,解得a =-1,b =0. 例2.若集合A ={x ∈R|ax 2-3x +2=0}中只有一个元素,则a =( )A.92B.98 C .0D .0或98解析:选D 当a =0时,显然成立;当a ≠0时,Δ=(-3)2-8a =0,即a =98.变式2.已知集合A ={x ∈N|1<x <log 2k },若集合A 中至少有3个元素,则k 的取值范围为( ) A .(8,+∞) B .[8,+∞) C .(16,+∞)D .[16,+∞)解析:选C 因为集合A 中至少有3个元素,所以log 2k >4,所以k >24=16,故选C. 考点二. 集合间的关系例1.设P ={y |y =-x 2+1,x ∈R},Q ={y |y =2x ,x ∈R},则( ) A .P ⊆Q B .Q ⊆P C .∁R P ⊆QD .Q ⊆∁R P变式1.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________. [解析] 例1.因为P ={y |y =-x 2+1,x ∈R}={y |y ≤1},Q ={y |y =2x ,x ∈R}={y |y >0},所以∁R P ={y |y >1},所以∁R P ⊆Q ,故选C.变式1.∵B ⊆A ,∴①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5,解得2≤m ≤3.由①②可得,符合题意的实数m 的取值范围为(-∞,3]. [答案] (1)C (2)(-∞,3]例2 设集合M ={x |x =5-4a +a 2,a ∈R },N ={y |y =4b 2+4b +2,b ∈R },则M 与N 之间有什么关系? 解题导引 一般地,对于较为复杂的两个或两个以上的集合,要判断它们之间的关系,应先确定集合中元素的形式是数还是点或其他,属性如何.然后将所给集合化简整理,弄清每个集合中的元素个数或范围,再判断它们之间的关系.解 集合M ={x |x =5-4a +a 2,a ∈R }={x |x =(a -2)2+1,a ∈R }={x |x ≥1}, N ={y |y =4b 2+4b +2,b ∈R }={y |y =(2b +1)2+1,b ∈R }={y |y ≥1}.∴M =N .变式2 设集合P ={m |-1<m <0},Q ={m |mx 2+4mx -4<0对任意实数x 恒成立,且m ∈R },则集合P 与Q 之间的关系为________. 答案 P ⊆Q解析 P ={m |-1<m <0},Q :⎩⎪⎨⎪⎧m <0,Δ=16m 2+16m <0,或m =0.∴-1<m ≤0.∴Q ={m |-1<m ≤0}.∴P ⊆Q变式3.已知集合A ={x |x 2+4x =0},B ={x |x 2+ax +a =0},是否存在这样的实数a ,使得B ⊆A ?若存在这样的实数a ,求出a 的取值范围;若不存在,说明理由.【思路点拨】判断集合与集合的关系,基本方法是归纳为判断元素与集合的关系.对于用描述法表示的集合,要紧紧抓住代表元素及它的属性,可将元素列举出来直接观察或通过元素特征,求同存异,定性分析.解:A ={0,-4}.若B ⊆A ,则B =∅,{0},{-4},{0,-4}.当B =∅时,则x 2+ax +a =0无解,所以a 2-4a <0,解得0<a <4; 当B ={0}时,则x 2+ax +a =0有两个相等的根0,所以a =0;当B ={-4}时,则x 2+ax +a =0有两个相等的根-4,所以a 2-4a =0且14-4a +a =0,无解; 当B ={0.-4}时,则x 2+ax +a =0有两个根0和-4,无解.综上,存在实数 a 满足 0≤a <4,使得B ⊆A .【点评】在解决两个数集关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行讨论.分类时要遵循“不重不漏”的分类原则,然后对于每一类情况都要给出问题的解答.分类讨论的一般步骤:①确定标准;②恰当分类;③逐类讨论;④归纳结论.空集是任意集合的子集,解题时不能忽视! 考点三 集合的运算例1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =() A .–4 B .–2 C .2 D .4【答案】B 【解析】 【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 【详解】求解二次不等式240x -≤可得{}2|2A x x -=≤≤, 求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故12a-=, 解得2a =-.故选B .【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力. 变式1.【2020年高考全国Ⅰ卷理数】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()UA B =A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A 【解析】 【分析】首先进行并集运算,然后计算补集即可. 【详解】由题意可得{}1,0,1,2A B ⋃=-,则(){}U2,3A B =-.故选A【点睛】本题主要考查并集、补集的定义与应用,属于基础题.例2.【2020年高考全国Ⅰ卷理数】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为 A .2 B .3 C .4D .6【答案】C 【解析】 【分析】采用列举法列举出A B 中元素的即可.【详解】由题意,AB 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y ∈N ,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选C .【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题..变式2.(2020·全国新课标Ⅰ理科试卷)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A .2B .3C .4D .6【答案】C【详解】由题意,A B 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.例3.(多选)已知集合A ={x |-1<x ≤3},集合B ={x ||x |≤2},则下列关系式正确的是( )A .A ∩B =∅B .A ∪B ={x |-2≤x ≤3}C .A ∪∁R B ={x |x ≤-1或x >2}D .A ∩∁R B ={x |2<x ≤3}答案 BD解析 ∵A ={x |-1<x ≤3},B ={x ||x |≤2}={x |-2≤x ≤2},∴A ∩B ={x |-1<x ≤3}∩{x |-2≤x ≤2}={x |-1<x ≤2},A 不正确;A ∪B ={x |-1<x ≤3}∪{x |-2≤x ≤2}={x |-2≤x ≤3},B 正确;∵∁R B ={x |x <-2或x >2},∴A ∪∁R B ={x |-1<x ≤3}∪{x |x <-2或x >2}={x |x <-2或x >-1},C 不正确;A ∩∁RB ={x |-1<x ≤3}∩{x |x <-2或x >2}={x |2<x ≤3},D 正确.变式3.(多选)已知集合A ={x |x 2-3x +2≤0},B ={x |2<2x ≤8},则下列判断不正确的是() A .A ∪B =B B .(∁R B )∪A =RC .A ∩B ={x |1<x ≤2}D .(∁R B )∪(∁R A )=R答案 ABD解析 因为x 2-3x +2≤0,所以1≤x ≤2,所以A ={x |1≤x ≤2};因为2<2x ≤8,所以1<x ≤3,所以B ={x |1<x ≤3}.所以A ∪B ={x |1≤x ≤3},A ∩B ={x |1<x ≤2}.(∁R B )∪A ={x |x ≤2或x >3},(∁R B )∪(∁R A )={x |x ≤1或x >2}.考点四.集合的新定义问题例1.如图所示的Venn 图中,A ,B 是两个非空集合,定义集合A ⊗B 为阴影部分表示的集合.若x ,y ∈R ,A ={x |y =2x -x 2},B ={y |y =3x ,x >0},则A ⊗B 为( )A .{x |0<x <2}B .{x |1<x ≤2}C .{x |0≤x ≤1或x ≥2}D .{x |0≤x ≤1或x >2}变式1.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合;②集合A ={n |n =3k ,k ∈Z}为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合.其中正确结论的序号是________.[解析] 例1.因为A ={x |0≤x ≤2},B ={y |y >1},A ∪B ={x |x ≥0},A ∩B ={x |1<x ≤2},所以A ⊗B =∁A ∪B (A ∩B )={x |0≤x ≤1或x >2}.(2)①中,-4+(-2)=-6∉A ,所以①不正确;②中,设n 1,n 2∈A ,n 1=3k 1,n 2=3k 2,k 1,k 2∈Z ,则n 1+n 2∈A ,n 1-n 2∈A ,所以②正确;③中,令A 1={n |n =3k ,k ∈Z},A 2={n |n =2k ,k ∈Z},则A 1,A 2为闭集合,但3k +2k ∉(A 1∪A 2),故A 1∪A 2不是闭集合,所以③不正确.[答案] (1)D (2)②例2.定义集合的商集运算为A B =⎩⎨⎧⎭⎬⎫x ⎪⎪x =m n ,m ∈A ,n ∈B ,已知集合A ={2,4,6},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 2-1,k ∈A ,则集合B A∪B 中的元素个数为( ) A .6B .7C .8D .9解析:选B 由题意知,B ={0,1,2},B A =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13, 则B A ∪B =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,2, 共有7个元素,故选B.变式2.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |log 2x <1},Q ={x ||x -2|<1},那么P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3} 解析:选B 由log 2x <1,得0<x <2,所以P ={x |0<x <2}.由|x -2|<1,得1<x <3,所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}.课后习题一 单选1.(2020·河北衡水中学高三月考)已知集合{}2|20A x x x =-≤,{}|1381x B x =<<,{}|2,C x x n n N ==∈,则()A B C ⋃⋂=( )A .{}2B .{}0,2C .{}0,2,4D .{}2,4 【答案】B【详解】∵集合{}2|20A x x x =-≤∴{}02A x x =≤≤∵集合{}|1381x B x =<<∴{}04A x x =<< ∴{}04A B x x ⋃=≤<∵集合{}|2,C x x n n N ==∈∴{}()0,2A B C ⋃⋂=故选B.2.(2020·山东济宁·高三其他模拟)已知集合{}|21x A x =>,{}2|560B x x x =+-<,则A B =( )A .()1,0-B .()0,6C .()0,1D .()6,1-【答案】C 【详解】{}{}{}0|21|22=|0x x A x x x x =>=>>, {}{}{}2|560|(6)(10|61B x x x x x x x x =+-<=+-<=-<<),∴A B =()0,1.故选:C.3.(2020·阳江市第一中学高三其他模拟)已知全集为实数集R ,集合{}36A x x =-<<,{}29140B x x x =-+<,则()U A B ⋂=( )A .()2,6B .()2,7C .(]3,2-D .()3,2- 【答案】C 【详解】{}{}2914027B x x x x x =-+<=<<, {2U B x x ∴=≤或}7x ≥,{}(]()323,2U A B x x ∴⋂=-<≤=-.故选:C.4.(2020·云南高三其他模拟(理))设集合{}2*20,A x x x x N=--<∈,集合{B x y ==,则集合A B 等于( ) A .1B .[)1,2C .{}1D .{}1x x ≥ 【答案】C 【详解】由题得{}{}{}2**20,12,1A x x x x x x x =--<∈=-<<∈=N N , {{}{}{}222log 0log log 11B x y x x x x x x ===≥=≥=≥,{}1A B ∴⋂=.故选: C. 5.【2020年新高考全国Ⅰ卷】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4} 【答案】C【解析】【分析】根据集合并集概念求解.【详解】[1,3](2,4)[1,4)AB ==. 故选C【点睛】本题考查集合并集,考查基本分析求解能力,属基础题.6.【2020年高考浙江】已知集合P ={|14}x x <<,Q={|23}x x <<,则PQ = A .{|12}x x <≤B .{|23}x x <<C .{|34}x x ≤<D .{|14}x x << 【答案】B【解析】【分析】根据集合交集定义求解【详解】(1,4)(2,3)(2,3)P Q ==.故选B.【点睛】本题考查交集概念,考查基本分析求解能力,属基础题.7. 已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为( )A .15B .16C .20D .21答案 D解析 由x 2-2x -3≤0,得(x +1)(x -3)≤0,得A ={0,1,2,3}.因为A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },所以A *B 中的元素有:0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,所以A *B ={1,2,3,4,5,6},所以A *B 中的所有元素数字之和为21.8.已知全集U ={x ∈Z|0<x <8},集合M ={2,3,5},N ={x |x 2-8x +12=0},则集合{1,4,7}为( )A .M ∩(∁U N )B .∁U (M ∩N )C .∁U (M ∪N )D .(∁U M )∩N解析:选C 由已知得U ={1,2,3,4,5,6,7},N ={2,6},M ∩(∁U N )={2,3,5}∩{1,3,4,5,7}={3,5},M ∩N ={2},∁U (M ∩N )={1,3,4,5,6,7},M ∪N ={2,3,5,6},∁U (M ∪N )={1,4,7},(∁U M )∩N ={1,4,6,7}∩{2,6}={6},故选C.9.已知集合M =⎩⎨⎧⎭⎬⎫x | x 216+y 29=1,N =⎩⎨⎧⎭⎬⎫y |x 4+y 3=1,则M ∩N =( ) A .∅B .{(4,0),(3,0)}C .[-3,3]D .[-4,4]解析:选D 由题意可得M ={x |-4≤x ≤4},N ={y |y ∈R},所以M ∩N =[-4,4].故选D.10.在实数集R 上定义运算*:x *y =x ·(1-y ).若关于x 的不等式x *(x -a )>0的解集是集合{x |-1≤x ≤1}的子集,则实数a 的取值范围是( )A .[0,2]B .[-2,-1)∪(-1,0]C .[0,1)∪(1,2]D .[-2,0]解析:选D 依题意可得x (1-x +a )>0.因为其解集为{x |-1≤x ≤1}的子集,所以当a ≠-1时,0<1+a ≤1或-1≤1+a <0,即-1<a ≤0或-2≤a <-1.当a =-1时,x (1-x +a )>0的解集为空集,符合题意.所以-2≤a ≤0.11.非空数集A 满足:(1)0∉A ;(2)若∀x ∈A ,有1x∈A ,则称A 是“互倒集”.给出以下数集: ①{x ∈R|x 2+ax +1=0};②{x |x 2-4x +1<0};③⎩⎨⎧⎭⎬⎫y ⎪⎪y =ln x x ,x ∈⎣⎡⎭⎫1e ,1∪1,e];④⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪⎪ y =⎩⎨⎧ 2x +25,x ∈[0,1,x +1x ,x ∈[1,2]. 其中“互倒集”的个数是( )A .4B .3C .2D .1解析:选C 对于①,当-2<a <2时为空集,所以①不是“互倒集”;对于②,{x |x 2-4x +1<0}={x |2-3<x <2+3},所以12+3<1x <12-3,即2-3<1x <2+3,所以②是“互倒集”;对于③,y ′=1-ln x x 2≥0,故函数y =ln x x是增函数,当x ∈⎣⎡⎭⎫1e ,1时,y ∈[-e,0),当x ∈(1,e]时,y ∈⎝⎛⎦⎤0,1e ,所以③不是“互倒集”;对于④,y ∈⎣⎡⎭⎫25,125∪⎣⎡⎦⎤2,52=⎣⎡⎦⎤25,52且1y ∈⎣⎡⎦⎤25,52,所以④是“互倒集”.故选C.二.多选12. (多选)设P 是一个数集,且至少含有两个数,若对任意a ,b ∈P ,都有a +b ,a -b ,ab ,a b∈P (除数b ≠0),则称P 是一个数域,例如有理数集Q 是数域,下列命题中正确的是( )A .数域必含有0,1两个数B .整数集是数域C .若有理数集Q ⊆M ,则数集M 必为数域D .数域必为无限集答案 AD解析 当a =b 时,a -b =0,a b=1∈P ,故可知A 正确. 当a =1,b =2时,12∉Z 不满足条件,故可知B 不正确. 当M 比Q 多一个元素i 时,则会出现1+i ∉M ,所以它也不是一个数域,故可知C 不正确.根据数域的性质易得数域有无限多个元素,必为无限集,故可知D 正确.13.(多选)设S 为复数集C 的非空子集.若对任意x ,y ∈S ,都有x +y ,x -y ,xy ∈S ,则称S 为封闭集.下列命题中是真命题的有( )A .集合S ={a +b i|a ,b 为整数,i 为虚数单位}为封闭集B .若S 为封闭集,则一定有0∈SC .封闭集一定是无限集D .若S 为封闭集,则满足S ⊆T ⊆C 的任意集合T 也是封闭集答案 AB解析 两个复数的和、差、积仍是复数,且运算后的实部、虚部仍为整数,所以集合S ={a +b i|a ,b 为整数,i 为虚数单位}为封闭集,A 正确.当S 为封闭集时,因为x -y ∈S ,取x =y ,得0∈S ,B 正确.对于集合S ={0},显然满足所有条件,但S 是有限集,C 错误.取S ={0},T ={0,1},满足S ⊆T ⊆C ,但由于0-1=-1不属于T ,故T 不是封闭集,D 错误.三.填空14. 对于集合M ,定义函数f M (x )=⎩⎪⎨⎪⎧-1,x ∈M ,1,x ∉M .对于两个集合A ,B ,定义集合A △B ={x |f A (x )·f B (x )=-1}.已知A ={2,4,6,8,10},B ={1,2,4,8,12},则用列举法写出集合A △B 的结果为________.答案 {1,6,10,12}解析 要使f A (x )·f B (x )=-1,必有x ∈{x |x ∈A 且x ∉B }∪{x |x ∈B 且x ∉A }={1,6,10,12},所以A △B ={1,6,10,12}.15.当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”.对于集合M ={x |ax 2-1=0,a >0},N =⎩⎨⎧⎭⎬⎫-12,12,1,若M 与N “相交”,则a =________. 答案 1解析 M =⎩⎨⎧⎭⎬⎫-1a ,1a ,由1a =12,得a =4,由1a=1,得a =1. 当a =4时,M =⎩⎨⎧⎭⎬⎫-12,12,此时M ⊆N ,不合题意; 当a =1时,M ={-1,1},满足题意.四.解答题16.已知集合A ={x |3≤3x ≤27},B ={x |log 2x >1}.(1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围.解:(1)∵3≤3x ≤27,即31≤3x ≤33,∴1≤x ≤3,∴A ={x |1≤x ≤3}.∵log 2x >1,即log 2x >log 22,∴x >2,∴B ={x |x >2}.∴A ∩B ={x |2<x ≤3}.∴∁R B ={x |x ≤2},∴(∁R B )∪A ={x |x ≤3}.(2)由(1)知A ={x |1≤x ≤3},C ⊆A .当C 为空集时,满足C ⊆A ,a ≤1;当C 为非空集合时,可得1<a ≤3.综上所述,实数a的取值范围是(-∞,3].。

子集、真子集、相等

子集、真子集、相等

11.已知A={x | 1 ≤ x ≤ 2 }, B={x | 1≤ x ≤ a},
(1)若A≠ ⊂B, 求实数a的值; (2)若B⊆A, 求实数a的值; (3)若A=B, 求实数a的值.
解:(1)a > 2 (2)a ≤ 2
(3)a = 2
3.已知A={x| -4 x5}, B={x|a-1 x 2a+1}, BA,求实数a的取值范围.
若B⊆A, 求实数a的值.
{ { 8. 已知集合A = x 1 < x < 2 } ,B = x 0 < x < 1 }
判断 A、B 的关系;
9. 设集合A={x|1≤x≤3},B={x|x-a≥0},若A是B
的真子集,实数a的取值范围( a≤1 ).
a1
3
10. 已知集合 A={ x|a<x<5}, B= {x|x≥ 2} ,且 满足 A ⊆B ,求 实数a的取值范围。
习题选集
集合的基本关系
1. 下列说法:①空集没有子集;②任何集合至少有两
个子集;③空集是任何集合的真子集;④若Ø A,
则A≠Ø. 其中正确的有( A ) A.0个 B.1个 C.2个 D.3个
2. 在下列各式中错误的个数是( A )
①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};
5.满足{1,2}⊂ ≠M⊆{1,2,3,4,5} 的集合M有( 7 )个.
6.已A 知 = {x a 2 + x 集 2 x + a = 0 ,a 合 ∈ R } ,
若集合A有且仅有2个子集,则由a的取值组成的ቤተ መጻሕፍቲ ባይዱ
集合为({0,1,-1}
).
7. 已知A={x | x2-2x-3=0}, B={x | ax-1=0},

集合的基本运算交集并集练习题

集合的基本运算交集并集练习题

集合的基本运算交集并集练习题1.1. 集合间的基本运算考察下列集合,说出集合C与集合A,B之间的关系: A?{1,3,5},B?{2,4,6},C??1,2,3,4,5,6?;A?{xx是有理数},B?{xx是无理数},用Venn图分别表示上面各组中的3组集合。

思考:上述每组集合中,A,B,C之间均有怎样的关系?1、交集定义:一般地,由所有属于集合A且属于集合B的元素组成的集合,叫作集合A、B的交集。

记作:A∩B 读作:“A交B” 。

即:A∩B={x|x∈A,且x∈B}用Venn图表示:常见的3种交集的情况:说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集讨论:A∩B与A、B、B∩A的关系?A∩A=A∩?=A∩BB∩AA∩B=A ? A∩B=B?:1、A={3,5,6,8},B={4,5,7,8},则A∩B=;2、A={等腰三角形},B={直角三角形},则A∩B=3、A={x|x>3},B={x|x 2、并集定义:一般地,由所有属于集合A或者属于集合B的元素组成的集合,称为集合A与集合B 的并集,记作A∪B,读作:“A 并B”即A∪B={x|x∈A或x∈B}。

用Venn图表示:说明:定义中要注意“所有”和“或者”这两个条件。

讨论:A∪B与集合A、B有什么特殊的关系?A∪A=, A∪Ф=, A∪B∪AA∪B=A? , A∪B=B?:1、A={3,5,6,8},B={4,5,7,8},则A∪B=2、设A ={锐角三角形},B={钝角三角形},则A∪B=;3、A={x|x>3},B={x|x 3、一些特殊结论⑴若A?B,则A∩B=A;⑵若B?A,则A∪B=A;⑶若A,B两集合中,B=?,,则A∩?=?, A∪?=A。

1求A∪B。

2、设A={x|x>-2},B={x|x3、已知集合A={y|y=x2-2x-3,x∈R},B={y|y=-x2+2x+13,x∈R}。

集合间的基本关系练习题含答案

集合间的基本关系练习题含答案

集合间的基本关系练习题(1)1. 如图,已知全集U=Z,集合A={−2, −1, 0, 1, 2},B={1, 2, 3, 4},则图中阴影部分所表示的集合是()A.{3, 4}B.{−2, −1, 0}C.{1, 2}D.{2, 3, 4}2. 已知集合A={−1, 0, 1},则含有元素0的A的子集的个数为()A.2B.4C.6D.83. 设集合A={−1, 1, 2},集合B={x|x∈A 且2−x∉A},则B=()A.{−1}B.{2}C.{−1, 2}D.{1, 2}4. 已知A={−2, 2011, x2−1},B={0, 2011, x2+3x},且A=B,则x的值为()A.1或−1B.0C.−2D.−15. 定义:设A,B是非空的数集,a∈A,b∈B,若a是b的函数且b也是a的函数,则称a与b是“和谐关系”.如等式b=a2,a∈[0, +∞)中a与b是“和谐关系”,则下列等中a与b是“和谐关系”的是()A.b=sin aa ,a∈(0,π2) B.b=a3+52a2+2a+1,a∈(−2,−23)C.(a−2)2+b2=1,a∈[1, 2]D.|a|+|b|=1,a∈[−1, 1]6. 已知集合:①{0};②{⌀};③{x|3m<x<m};④{x|a+2<x<a};⑤{x|x2+ 2x+5=0, x∈R}.其中,一定表示空集的是________(填序号).7. 当a满足________时,集合A={x|3x−a<0, x∈N+}表示集合{1}.8. 已知集合M={1, 2, 3, ..., n}(n>1, n∈N∗),则M的所有非空子集的元素和为________(只需写出数学表达式)=a+2},B={(x,y)|(a2−4)x+(a−2)y=7},若A∩9. 已知集合A={(x,y)|y−2x−1B=⌀,则实数a=________.10. 集合A={1, 2}共有________子集.11. 已知集合A={1,2,3,4}.(1)若M⊆A,且M中至少有一个偶数,则这样的集合M有多少个?(2)若B={x|ax−3=0},且B⊆A,求实数a的取值集合.12. 已知集合A={x|2m−10<x<m−1},B={x|2<x<6}.(1)若m=4,求A∩B;(2)若A⊆B,求m的取值范围.参考答案与试题解析集合间的基本关系练习题(1)一、选择题(本题共计 5 小题,每题 5 分,共计25分)1.【答案】A【考点】Venn图表达集合的关系及运算【解析】由阴影部分可知对应的集合为B∩∁U A,即可得到结论.【解答】解:阴影部分可知对应的集合为B∩(∁U A),∵全集U=Z,集合A={−2, −1, 0, 1, 2},B={1, 2, 3, 4},∴B∩(∁U A)={3, 4},故选A.2.【答案】B【考点】元素与集合关系的判断【解析】由集合子集的定义找出集合A的所有子集可得答案,【解答】已知集合A={−1, 0, 3},则由集合的子集定义可得A集合的所有子集为:⌀,{−1},{1},8},1},1},4,1},则含有元素0的A的子集为{6},{−1,{0,{−2,0,个数为4个,3.【答案】C【考点】集合的包含关系判断及应用【解析】本题的关键是认清集合B的研究对象,利用列举法写出集合B的元素即可.【解答】解:∵集合A={−1, 1, 2},集合B={x|x∈A 且2−x∉A},−1∈A,且2−(−1)=3∉A,故1∈B;1∈A,但2−1=1∈A,不满足题意;2∈A,且2−2=0∉A,故2∈B;故B={−1, 2}.故选C.4.【答案】D【考点】集合的相等【解析】直接应用集合相等则集合中的元素完全相同来解决问题.【解答】解:∵A=B,即A和B中的元素完全相同,∴有{x2−1=0x2+3x=−2,解得:x=−1.故选D.5.【答案】A【考点】元素与集合关系的判断【解析】只要判断所给出的函数单调即可.【解答】解:A.∵a∈(0,π2),则a>sin a,∴b′=a cos a−sin aa2=cos a(a−sin a)a2>0,因此函数b在a∈(0,π2)上单调递增,正确;B.∵a∈(−2,−23),b′=3a2+5a+2=(3a+2)(a+1),∴a∈(−2, −1)时单调递增;a∈(−1, −23)时单调递减,因此不符合题意;C.∵(a−2)2+b2=1,a∈[1, 2],∴b=±√1−(a−2)2,b不是a的函数,舍去;D.∵|a|+|b|=1,a∈[−1, 1],∴b=±(1−|a|),b不是a的函数,舍去.故选:A.二、填空题(本题共计 5 小题,每题 5 分,共计25分)6.【答案】④⑤【考点】空集的定义、性质及运算【解析】利用单元素集、空集的定义直接求解.【解答】①{0}是单元素集;②{⌀}是单元素集;③当m<0时,{x|8m<x<m}不是空集;④{x|a+2<x<a}是空集;⑤{x|x2+7x+5=0, x∈R}是空集.∴一定表示空集的是④⑤.7.【答案】【考点】集合的含义与表示【解析】先解不等式3x−a<0,得,根据已知条件需限制a为:1<≤2,解不等式即得a满足的条件.【解答】解3x−a<0得.根据已知条件知:x=1,∴1<.解得3<a≤6.8.【答案】(n2+n)⋅2n−2【考点】子集与真子集【解析】由题意可知,集合中的元素出现的次数都是相等的,从而确定每个元素出现的次数,从而利用等差数列求和公式求和.【解答】若M={1, 2, 3, ...n},则集合M的所有非空子集中,集合M中的任何一个元素出现的次数都是相等的;考查1出现的次数,可看成集合{2, 3, 4, ...n}的子集个数,故共有2n−1个1,故M的所有非空子集的元素和为2n−1(1+2+3+4+...+n)=(n2+n)⋅2n−29.【答案】【考点】集合关系中的参数取值问题【解析】此题暂无解析【解答】此题暂无解答10.【答案】4【考点】子集与真子集【解析】对于有限集合,我们有以下结论:若一个集合中有n个元素,则它有2n个子集.【解答】解:集合A有2个元素,故有22=4个子集.故答案为:4.三、 解答题 (本题共计 2 小题 ,每题 5 分 ,共计10分 )11.【答案】解:(1)由M ⊆A ,且M 中至少有一个偶数,得满足条件的集合M 为:{2},{1,2},{2,3},{1,2,3},{4},{1,4},{3,4},{1,3,4},{2,4},{1,2,4},{2,3,4},{1,2,3,4},共12个.(2)因为B ⊆A ,所以集合B 有两种可能:B =⌀,B ≠⌀.当B =⌀时,显然a =0,当B ≠⌀时,则a ≠0,得x =3a ,则有3a =1或3a =2或3a =3或3a =4, 解得a =3或a =32或a =1或a =34.综上,实数a 的取值集合是{0,34,1,32,3}.【考点】集合的包含关系判断及应用【解析】此题暂无解析【解答】解:(1)由M ⊆A ,且M 中至少有一个偶数,得满足条件的集合M 为:{2},{1,2},{2,3},{1,2,3},{4},{1,4},{3,4},{1,3,4},{2,4},{1,2,4},{2,3,4},{1,2,3,4},共12个.12.【答案】解:(1)当m =4时,A ={x|2×4−10<x <4−1}={x|−2<x <3},B ={x|2<x <6},则A ∩B ={x|2<x <3}.(2)∵ A ⊆B ,当A ≠⌀时,{2m −10<m −12m −10≥2m −1≤6;解得,6≤m ≤7;当A =⌀时,由2m −10≥m −1得,m ≥9;故m 的取值范围为{m|m ≥9或6≤m ≤7}.【考点】交集及其运算集合的包含关系判断及应用【解析】(1)当m =3时,化简A ={x 2−3x −10≤0}=[−2, 5],B =(2, 7);从而求交集.(2)讨论当B ≠⌀时,{m −1<2m +1m −1≥−22m +1≤5;当B =⌀时,m −1≥2m +1,从而解得.【解答】解:(1)当m =4时,A ={x|2×4−10<x <4−1}={x|−2<x <3},B ={x|2<x <6},则A ∩B ={x|2<x <3}.(2)∵ A ⊆B ,当A ≠⌀时,{2m −10<m −12m −10≥2m −1≤6;解得,6≤m ≤7;当A =⌀时,由2m −10≥m −1得,m ≥9;故m 的取值范围为{m|m ≥9或6≤m ≤7}.。

集合间的基本关系练习题及答案

集合间的基本关系练习题及答案

1.集合{a,b}的子集有( )A.1个 B.2个C.3个 D.4个【解析】集合{a,b}的子集有Ø,{a},{b},{a,b}共4个,故选D.【答案】D2.下列各式中,正确的是( )A.23∈{x|x≤3} B.23∉{x|x≤3}C.23⊆{x|x≤3} D.{23}{x|x≤3}【解析】23表示一个元素,{x|x≤3}表示一个集合,但23不在集合中,故23∉{x|x≤3},A、C不正确,又集合{23}⃘{x|x≤3},故D不正确.【答案】B3.集合B={a,b,c},C={a,b,d},集合A满足A⊆B,A⊆C.则集合A的个数是________.【解析】若A=Ø,则满足A⊆B,A⊆C;若A≠Ø,由A⊆B,A⊆C知A是由属于B 且属于C的元素构成,此时集合A可能为{a},{b},{a,b}.【答案】44.已知集合A={x|1≤x<4},B={x|x<a},若A⊆B,求实数a的取值集合.【解析】将数集A表示在数轴上(如图所示),要满足A⊆B,表示数a的点必须在表示4的点处或在表示4的点的右边,所以所求a的集合为{a|a≥4}.一、选择题(每小题5分,共20分)1.集合A={x|0≤x<3且x∈Z}的真子集的个数是( )A.5 B.6C.7 D.8【解析】由题意知A={0,1,2},其真子集的个数为23-1=7个,故选C.【答案】C2.在下列各式中错误的个数是( )①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2}; ④{0,1,2}={2,0,1}A .1B .2C .3D .4【解析】 ①正确;②错.因为集合与集合之间是包含关系而非属于关系;③正确;④正确.两个集合的元素完全一样.故选A.【答案】 A 3.已知集合A ={x|-1<x<2},B ={x|0<x<1},则( )A .A>B B .A BC .B AD .A ⊆B【解析】 如图所示,,由图可知,B A.故选C.【答案】 C4.下列说法:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若ØA ,则A≠Ø.其中正确的有( )A .0个B .1个C .2个D .3个【解析】 ①空集是它自身的子集;②当集合为空集时说法错误;③空集不是它自身的真子集;④空集是任何非空集合的真子集.因此,①②③错,④正确.故选B.【答案】 B二、填空题(每小题5分,共10分)5.已知Ø{x|x 2-x +a =0},则实数a 的取值范围是________.【解析】 ∵Ø{x|x 2-x +a =0},∴方程x 2-x +a =0有实根,∴Δ=(-1)2-4a≥0,a≤14. 【答案】 a≤146.已知集合A ={-1,3,2m -1},集合B ={3,m 2},若B ⊆A ,则实数m =________.【解析】 ∵B ⊆A ,∴m 2=2m -1,即(m -1)2=0∴m=1,当m =1时,A ={-1,3,1},B ={3,1}满足B ⊆A.【答案】 1三、解答题(每小题10分,共20分)7.设集合A ={x ,y},B ={0,x 2},若A =B ,求实数x ,y.【解析】 从集合相等的概念入手,寻找元素的关系,必须注意集合中元素的互异性.因为A =B ,则x =0或y =0.(1)当x =0时,x 2=0,则B ={0,0},不满足集合中元素的互异性,故舍去.(2)当y =0时,x =x 2,解得x =0或x =1.由(1)知x =0应舍去.综上知:x =1,y =0.8.若集合M ={x|x 2+x -6=0},N ={x|(x -2)(x -a)=0},且N ⊆M ,求实数a 的值.【解析】 由x 2+x -6=0,得x =2或x =-3.因此,M ={2,-3}.若a =2,则N ={2},此时N M ;若a =-3,则N ={2,-3},此时N =M ;若a ≠2且a≠-3,则N ={2,a},此时N 不是M 的子集,故所求实数a 的值为2或-3.9.(10分)已知集合M ={x|x =m +16,m∈Z },N ={x|x =n 2-13,n∈Z },P ={x|x =p 2+16,p∈Z },请探求集合M 、N 、P 之间的关系. 【解析】 M ={x|x =m +16,m∈Z } ={x|x =6m +16,m∈Z }. N ={x|x =n 2-13,n∈Z } =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x =3n -26,n∈Z P ={x|x =p 2+16,p∈Z }={x|x =3p +16,p∈Z }. ∵3n-2=3(n -1)+1,n∈Z .∴3n-2,3p +1都是3的整数倍加1, 从而N =P.而6m +1=3×2m+1是3的偶数倍加1, ∴M N =P.。

集合与集合间的基本关系习题

集合与集合间的基本关系习题

1.集合M=(x,y)|x+y<0,xy>0},P={(x,y)|x<0,y<0}那么( )A. P⊆MB. M⊇P C . M=P D. M⫋P2.若集合A={1,3,x},B={x²,1}且B⊆A,则满足条件的实数x的个数是()A.1B.2C.3D.43.若集合M={a,b,c},M中元素是△ABC的三边长,则△ABC一定不是()4. 锐角三角形B.直角三角形C .钝角三角形D.等腰三角形5. 已知集合A={x|ax2+2x+a=0,a⫋R},若集合A有且仅有2个子集,则a的取值是()A . 1B . -1C . 0 , 1D . -1 , 0 , 16. 设A={x|1<x<2},B={x|x<a},若A⫋B,则实数a的取值范围( )A. {a|a≥2}B. {a|a>2}C. {a|a≥1}D. {a|a≤1}8. 集合P={x|x=2k,k∈Z},M={x|x=2k+1,k∈Z},S={x|x=4k+1,k∈Z},a∈P,b∈M,设c=a+b,则有()A.c∈P B.c∈M C.c∈S D.以上都不对9.用适当的符号填空(∈,∉,⊆,⊇,=)a____{(a,b)}; {a,b,c}___{a,b};{2,4}___{2,3,4}; ∅___{a}.10.集合B={a,b,c},C={a,b,d},集合A满足A⊆B,A⊆C.则集合A的个数是________.11.已知集合A={-1,3,2m-1},集合B={3,m2},若B⊆A,则实数m=________.12.集合{x|x²-2x+m=0}含有两个元素,则实数m满足的条件为_.13.已知集合A=x|ax2-3x+2=0a∈R若集合A中只有一个元素则实数a取值为___.14.已知⫋{x|x2-x+a=0},则实数a的取值范围是___.15.已知集合A={-1,3,2m-1},集合B={3,m2}.若B∈A,则16.已知∅⊊{x|x2-x+a=0},则实数a的取值范围是___.17.下面的Venn图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系,问集合A,B,C,D,E分别是哪种图形的集合?18.已知A={x∈R|5<x<-1},B={x∈R|a≤x<a+4},若B⫋A,求实数a的取值范围.19.已知A={x|2<x<-1},B={x|4x+a<0},当B⊆A时,求实数a的取值范围.20.已知集合A={x|1≤x<4},B={x|x<a},若A⊆B,求实数a的取值集合.21.设集合A={x,y},B={0,x²},若A=B,求实数x.y22.若集合M={x|x²+x-6=0},N={x|(x-2)(x-a)=0},且N⊆M,求实数a的值.23.设集合A={x|x²-5x+6=0},B={x|x²-(2a+1)x+a²+a=0},若B⊆A,求a的值.24.已知集合P={x|4<x<-1},Q={x|a+1≤x≤2a-1}.若Q⫋P,求a的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《集合间的基本关系》习题
一、选择题
1.下列说法:
①空集没有子集;
②任何集合至少有两个子集;
③空集是任何集合的真子集;
④若∅⊂≠A ,则A≠∅,
其中正确的个数是( )
A .0
B .1
C .2
D .3
2.已知集合A ={x|ax 2+2x +a =0,a ∈R},若集合A 有且仅有2个子集,则a 的取值 是( )
A .1
B .-1
C .0,1
D .-1,0,1
3.设B ={1,2},A ={x|x ⊆B},则A 与B 的关系是( )
A .A ⊆
B B .B ⊆A
C .A ∈B
D .B ∈A
4.下列五个写法:①{0}∈{0,1};②∅⊂≠{0};③{0,-1,1}{-1,0,1};④0∈∅;⑤ {(0,0)}={0},其中写法错误的个数是( )
A .2
B .3
C .4
D .5
5.}0352|{2
=--=x x x M ,}1|{==mx x N ,若M N ≠⊂,则m 的取值集合为( ) A.{2}-
B.13⎧⎫⎨⎬⎩⎭
C.12,3⎧⎫-⎨⎬⎩⎭
D.12,0,3⎧
⎫-⎨⎬⎩⎭
6. 满足{1,2,3}{1,2,3,4,5,6}M ⊂⊂≠≠的集合的个数为( )
A.5
B.6
C.7
D.8
二、填空题
7.满足{1}A{1,2,3}的集合A 的个数
是________.
8.已知集合A={x|x=a+1
6,a∈Z},B={x|x=
b
2-
1
3,b∈Z},C={x|x=
c
2+
1
6,c∈Z},
则A、B、C之间的关系是________.
9.已知集合A={-1,3,2m-1},集合B={3,m2},若B⊆A,则实数m=________. 三、解答题
10.下面的Venn图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系,问集合A,B,C,D,分别是哪种图形的集合?
11.已知集合A={x|x2-3x-10≤0},
(1)若B⊆A,B={x|m+1≤x≤2m-1},求实数m的取值范围;
(2)若A⊆B,B={x|m-6≤x≤2m-1},求实数m的取值范围;
(3)若A=B,B={x|m-6≤x≤2m-1},求实数m的取值范围.
12设集合A={x|x2-5x+6=0},B={x|x2-(2a+1)x+a2+a=0},若B⊆A,求a的值
答案
一、选择题
1.B 解析:空集只有一个子集,就是它本身,空集是任何非空集合的真子集,故仅④是正确的.
2.D 解析:因为集合A 有且仅有2个子集,所以A 仅有一个元素,即方程ax 2+2x +a =0(a ∈)仅有一个根或两个相等的根.
(1)当a =0时,方程为2x =0,此时A ={0},符合题意.
(2)当a≠0时,由Δ=22-4·a·a =0,即a 2=1,
∴a =±1.
此时A ={-1}或A ={1},符合题意.
∴a =0或a =±1.
3. D 解析:∵B 的子集为{1},{2},{1,2},,
∴A ={x|x ⊆B}={{1},{2},{1,2},},∴B ∈A.
4. B 解析:只有②③正确.
5. D 解析: 1{,3},2
M =- (1)0,N m =∅⇒=(2)1{}2,2N m =-⇒=-(3)1{3},3
N m =⇒= ∴ 的取值集合为12,0,.3⎧⎫-⎨⎬⎩
⎭ 6. B 解析:集合M 真包含集合}3,2,1{,M 中一定有元素1,2,3且除此之外至少还有一个元素. 又集合M 真包含于集合}6,5,4,3,2,1{,所以M 中最少有4个元素,最多有5个元素,集合M 的个数等于集合}6,5,4{非空真子集的个数,即6223=-.
二、填空题
7. 3 解析:A 中一定有元素1,所以A 可以为{1,2},{1,3},{1,2,3}. 8. A B =C 解析:用列举法寻找规律.
9. 1 解析:∵BA ,∴m 2=2m -1,即(m -1)2=0,∴ m =1.
当m =1时,A ={-1,3,1},B ={3,1},满足BA.
三、解答题
10.解:观察Venn 图,得B 、C 、D 、E 均是A 的子集,且有E
D ,D C.
梯形、平行四边形、菱形、正方形都是四边形,
故A ={四边形};
梯形不是平行四边形,而菱形、正方形是平行四边形,
故B ={梯形},C ={平行四边形};
正方形是菱形,故D ={菱形},E ={正方形}.
11.解:由A ={x|x 2-3x -10≤0},得A ={x|-2≤x≤5},
(1)∵B ⊆A ,∴①若B =,则m +1>2m -1,即m<2,此时满足B ⊆A.
②若B≠,则⎩⎪⎨⎪⎧ m +1≤2m -1,-2≤m +1,
2m -1≤5.解得2≤m≤3.
由①②得,m 的取值范围是(-∞,3].
(2)若A ⊆B ,则依题意应有⎩⎪⎨⎪⎧ 2m -1>m -6,m -6≤-2,
2m -1≥5.
解得⎩⎪⎨⎪⎧ m>-5,m≤4,m≥3.故3≤m≤4, ∴m 的取值范围是[3,4].
(3)若A =B ,则必有⎩⎪⎨⎪⎧
m -6=-2,2m -1=5,解得m ∈,即不存在m 值使得A =B. 12.解:(方法一) A ={x|x 2-5x +6=0}={2,3},
由B ⊆A ,得B =,或B ={2},或B ={3},或B ={2,3}.
因为Δ=(2a +1)2-4a 2-4a =1>0,
所以B 必有两个元素.
则B ={2,3},需2a +1=5和a 2+a =6同时成立,所以a =2. 综上所述:a =2.
(方法二) A ={x|x 2-5x +6=0}={2,3},
B ={x|x 2-(2a +1)x +a 2+a =0}={x|(x -a)(x -a -1)=0}={a ,a +1}, 因为a≠a +1,所以当B ⊆A 时,只有a =2且a +1=3.
所以a =2。

相关文档
最新文档