高中数学专题——概率统计专题

合集下载

高中数学概率统计题型归纳13 超几何分布

高中数学概率统计题型归纳13 超几何分布

专题13 超几何分布例1.有N 件产品,其中有M 件次品,从中不放回地抽n 件产品,抽到的次品数的数学期望值是( ) A .nB .(1)M n N- C .M n ND .(1)M n N+ 【解析】解:设抽到的次品数为X ,则有N 件产品,其中有M 件次品,从中不放回地抽n 件产品,抽到的次品数X 服从超几何分布即~(X H n ,M ,)N ,∴抽到的次品数的数学期望值nMEX N=故选:C .例2.有6个大小相同的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10,现从中任取4个球,有如下几种变量:①X 表示取出的最大号码;②Y 表示取出的最小号码;③取出一个黑球记2分,取出一个白球记1分,ξ表示取出的4个球的总得分;④η表示取出的黑球个数,这四种变量中服从超几何分布的是( ) A .①②B .③④C .①②④D .①②③④【解析】解:超几何分布取出某个对象的结果数不定,也就是说超几何分布的随机变量为实验次数,即指某事件发生n 次的试验次数,由此可知③④服从超几何分布. 故选:B .例3.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,则(4)P X ==140429.(用数字表示) 【解析】解:由题意467810157658714032121(4)151413121142954321C C P X C ⨯⨯⨯⨯⨯⨯⨯⨯====⨯⨯⨯⨯⨯⨯⨯⨯ 故答案为:140429例4.有一批产品,其中有6件正品和4件次品,从中任取3件,至少有2件次品的概率为13. 【解析】解:从10件产品任取3件的取法共有310C ,其中所取的三件中“至少有2件次品”包括2件次品、3件次品,取法分别为2146C C ,34C .因此所求的概率21346431013C C C P C +==.故答案为13.例5.设袋中有8个红球,2个白球,若从袋中任取4个球,则其中恰有3个红球的概率为815. 【解析】解:从袋中10个球中任取4个球,共有410C 种取法,则其中恰有3个红球的取法为3182C C .∴从袋中任取4个球,则其中恰有3个红球的概率3182410815C C P C ==. 故答案为815. 例6.在10件产品中有2件次品,任意抽取3件,则抽到次品个数的数学期望的值是 35. 【解析】解:设抽到次品个数为ξ,则~(3H ξ,2,10) 323105nM E N ξ⨯∴=== 故答案为:35例7.在箱子中有10个小球,其中有3个红球,3个白球,4个黑球.从这10个球中任取3个.求: (1)取出的3个球中红球的个数X 的分布列; (2)取出的3个球中红球个数多于白球个数的概率.【解析】解:(1)由题意知,随机变量X 的所有可能取值为0,1,2,3, 且X 服从参数为10N =,3M =,3n =的超几何分布,因此337310()(0,1,2,3)k kC C P X k k C -===;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分) 所以0337310357(0)12024C C P X C ====,12373106321(1)12040C C P X C ====,2137310217(2)12040C C P X C ====,30373101(3)120C C P X C ===;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(4分) 所以X 的分布列为:⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(6分)(2)设“取出的3个球中红球个数多于白球个数”为事件A ,“恰好取出1个红球和2个黑球” 为事件1A ,“恰好取出2个红球”为事件2A ,“恰好取出3个红球”为事件3A ,⋯⋯⋯⋯⋯(7分) 由于事件1A ,2A ,3A 彼此互斥,且123A A A A =++,而123413103()20C C P A C ==,27()(2)40P A P X ===, 31()(3)120P A P X ===,⋯⋯⋯⋯(10分) 所以取出的3个球中红球个数多于白球个数的概率为: 1233711()()()()20401203P A P A P A P A =++=++=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(11分) 答:取出的3个球中红球个数多于白球个数的概率为13.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(12分)例8.某班组织知识竞赛,已知题目共有10道,随机抽取3道让某人回答,规定至少要答对其中2道才能通过初试,他只能答对其中6道,试求: (1)抽到他能答对题目数的分布列; (2)他能通过初试的概率.【解析】解:(1)设随机抽出的三道题目某人能答对的道数为X ,且0X =、1、2、3,X 服从超几何分布, 分布列如下:即(2)要答对其中2道才能通过初试,则可以通过初试包括两种情况,这两种情况是互斥的,根据上一问的计算可以得到 112(2)(2)(3)263P X P X P X ==+==+= 例9.某校高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X 表示其中男生的人数,(1)请列出X 的分布列;(2)根据你所列的分布列求选出的4人中至少有3名男生的概率. 【解析】解:(1)依题意得,随机变量X 服从超几何分布, 随机变量X 表示其中男生的人数,X 可能取的值为0,1,2,3,4.464410(),0,1,2,3,4k kC C P X k k C -===. ∴所以X 的分布列为:(2)由分布列可知至少选3名男生, 即8119(3)(3)(4)211442P X P X P X ==+==+=. 例10.某批产品共10件,已知从该批产品中任取1件,则取到的是次品的概率为0.2P =.若从该批产品中任意抽取3件,(1)求取出的3件产品中恰好有一件次品的概率;(2)求取出的3件产品中次品的件数X 的概率分布列与期望.【解析】解:设该批产品中次品有x 件,由已知0.210x=, 2x ∴=⋯(2分)(1)设取出的3件产品中次品的件数为X ,3件产品中恰好有一件次品的概率为12283107(1)15C C P X C ===⋯(4分)(2)X 可能为0,1,2∴383107(0)15C P X C ===7(1)15P X ==21283101(2)15C C P X C ===⋯(10分)X ∴的分布为:则77130121515155EX =⨯+⨯+⨯=⋯(13分) 例11.生产方提供50箱的一批产品,其中有2箱不合格产品.采购方接收该批产品的准则是:从该批产品中任取5箱产品进行检测,若至多有1箱不合格产品,便接收该批产品.问:该批产品被接收的概率是多少?【解析】解:以50箱为一批产品,从中随机抽取5箱,用X 表示“5箱中不合格产品的箱数”,则X 服从超几何分布(5H ,2,50).这批产品被接收的条件是5箱中没有不合格的箱或只有1箱不合格,所以被接收的概率为(1)P X ,即051455_2_48_2_48243(1)_50_50245C C C C P X C C =+=. 答:该批产品被接收的概率是243245. 例12.甲与乙两人掷硬币,甲用一枚硬币掷3次,记下国徽面朝上的次数为m ;乙用一枚硬币掷2次,记下国徽面朝上的次数为n . (1)算国徽面朝上不同次数的概率并填入下表:(2)现规定:若m n >,则甲胜;若n m ,则乙胜.你认为这种规定合理吗?为什么? 【解析】解:(1)根据相互独立事件概率乘法公式得:(2)这种规定是合理的.这是因为甲获胜,则m n>当3m=时,2n=,1,0,其概率为11111 () 84248⨯++=当2m=时,1n=,0,其概率为3119() 82432⨯+=;当1m=时,0n=,其概率为313 8432⨯=;∴甲获胜的概率为1931 832322 ++=若乙获胜,则m n当2n=时,2m=,1,0,其概率为13317() 488832⨯++=;当1n=时,1m=,0,其概率为1318() 28832⨯+=;当0n=时,0m=,其概率为111 4832⨯=;∴乙获胜的概率为7811 3232322 ++=甲和乙获胜的概率相等,即获胜机会相等,所以这种规定是合理的.例13.某热水瓶胆生产的6件产品中,有4件正品,2件次品,正品和次品在外观上没有区别,从这6件产品中任意抽检2件,计算(1)2件都是正品的概率(2)至少有一件次品的概率.【解析】解:从6件产品中,抽取2件的概率有266515 21C⨯==⨯种(1)其中两件都是正品的基本事件有:246C=种故2件都是正品的概率62155 P==(2)由于“抽检的2件产品中有次品”与“2件都是正品”为对立事件故抽检的2件产品中至少有一件次品的概率23155P =-= 即至少有一件次品的概率35.例14.已知10件不同的产品中共有3件次品,现对它们进行一一测试,直到找出所有3件次品为止. (1)求恰好在第5次测试时3件次品全部被测出的概率;(2)记恰好在第k 次测试时3件次品全部被测出的概率为()f k ,求()f k 的最大值和最小值.【解析】解:(1)若恰好在第5次测试时3件次品全部被测出,则第5次取出第3件次品,前4次中有2次是次品,2次是正品;则有124374A C A 种情况,从10件产品中顺序取出5件,有510A 种情况,则第5次测试时3件次品全部被测出的概率124374510120A C A P A ==, (2)根据题意,分析可得k 的范围是39k ,当36k 时,若恰好在第k 次测试时3件次品全部被测出,则第k 次取出第3件次品,前1k -次中有2次是次品,3k -次是正品;而从10件产品中顺序取出k 件,有10kA 种情况,则1312371101()(32)240k k k kA C A f k k k A ---==-+, 则f (3)1120=,f (4)140=,f (5)120=,f (6)112=; 当7k =时,即恰好在第7次测试时3件次品全部被测出,有两种情况,一是第7次取出第3件次品,前6次中有2次是次品,4次是正品;二是前7次没有取出次品,此时也可以测出三件次品,则146737677102(7)15A C A A f A +==; 当8k =时,即恰好在第8次测试时3件次品全部被测出,有两种情况,一是第8次取出第3件次品,前7次中有2次是次品,5次是正品;二是前7次恰有一次次品,第8次取出为合格品,则1571173777378107(8)30A C A A C A f A +==; 当9k =时,即恰好在第9次测试时3件次品全部被测出,此时f (9)1f =-(3)f -(4)f -(5)f -(6)f -(7)f -(8)715= 故1()(3)120min f k f ==,7()(9)15max f k f ==.例15.在袋子中装有10个大小相同的小球,其中黑球有3个,白球有(25,3)n n n ≠个,其余的球为红球.(Ⅰ)若5n =,从袋中任取1个球,记下颜色后放回,连续取三次,求三次取出的球中恰有2个红球的概率;(Ⅱ)从袋里任意取出2个球,如果这两个球的颜色相同的概率是415,求红球的个数; (Ⅲ)在(Ⅱ)的条件下,从袋里任意取出2个球.若取出1个白球记1分,取出1个黑球记2分,取出1个红球记3分.用ξ表示取出的2个球所得分数的和,写出ξ的分布列,并求ξ的数学期望E ξ. 【解析】解:(Ⅰ)设“从袋中任取1个球是红球”为事件A ,则1()5P A =. 所以,22331412(2)()55125P C ==. 答:三次取球中恰有2个红球的概率为12125.⋯(4分) (Ⅱ)设“从袋里任意取出2个球,球的颜色相同”为事件B ,则222372106(1)(7)(6)4()9015n n C C C n n n n P B C -+++-+--===, 整理得:27120n n -+=,解得3n =(舍)或4n =. 所以,红球的个数为3个.⋯(8分)(Ⅲ)ξ的取值为2,3,4,5,6,且242102(2)15C P C ξ===,11432104(3)15C C P C ξ===,1123432101(4)3C C C P C ξ+===,11332101(5)5C C P C ξ===,232101(6)15C P C ξ===.所以ξ的分布列为所以,241111923456151535155E ξ=⨯+⨯+⨯+⨯+⨯=.⋯(13分)。

高中数学统计与概率知识点归纳

高中数学统计与概率知识点归纳

高中数学统计与概率知识点归纳高中数学中的统计与概率是两个非常重要的知识点,它们在日常生活和工作中也具有广泛的应用价值。

本文将对这些知识点进行归纳和总结,以便读者更好地理解和掌握。

首先,让我们来看看统计。

统计是研究如何从数据中获取有用信息的学科。

在高中数学中,统计的主要内容包括以下三个方面:1、概率分布:这是统计的基础知识,它描述了各种可能结果出现的概率。

例如,投掷一枚硬币,正面朝上的概率为0.5,反面朝上的概率为0.5。

2、参数估计:参数估计是通过样本数据来估计总体参数的方法。

例如,通过样本的平均值来估计总体的平均值。

3、假设检验:假设检验是用来检验一个假设是否成立的统计学方法。

例如,我们想要检验某种新药的疗效是否优于安慰剂,可以通过比较实验组和对照组的数据来进行假设检验。

接下来,让我们来看看概率。

概率是描述事件发生可能性大小的数学工具。

在高中数学中,概率的主要内容包括以下三个方面:1、事件的关系和运算:事件的关系包括互斥、独立、不独立等,事件之间的运算包括并、交、差等。

2、概率的性质和计算:概率的性质包括加法定理、乘法定理、全概率公式等,概率的计算方法包括直接计算、利用公式计算等。

3、概率分布:概率分布描述了随机变量的取值概率,例如伯努利分布、二项分布、正态分布等。

在应用方面,统计与概率的知识点可以应用于很多领域,例如金融、医学、工业、农业等。

例如,在金融领域,可以通过统计方法来分析股票数据的规律和趋势;在医学领域,可以通过概率方法来预测疾病的发病率和死亡率。

总之,统计与概率是高中数学中非常重要的知识点,它们在日常生活和工作中也具有广泛的应用价值。

通过对这些知识点的归纳和总结,我们可以更好地理解和掌握它们,从而更好地应用于实际问题的解决中。

高中数学概率与统计知识点总结高中数学:概率与统计知识点总结一、前言在现实生活中,我们经常需要处理各种与概率和统计相关的问题。

例如,在掷骰子时计算点数、在班级中选取学生、或者在评估天气预报的准确性。

高中数学概率统计练习题

高中数学概率统计练习题

y 2015年12月31日期末复习题(二)一.选择题(共12小题)1.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,则此样本的容量为()A.40B.80C.160D.3202.某县教育局为了解本县今年参加一次大联考的学生的成绩,从5000名参加今年大联考的学生中抽取了250名学生的成绩进行统计,在这个问题中,下列表述正确的是()A.5000名学生是总体B.250名学生是总体的一个样本C.样本容量是250D.每一名学生是个体3.(2015?抚顺模拟)某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法.抽取4个班进行调查,若抽到的最小编号为3,则抽取最大编号为()A.15B.18C.21D.224.一个频率分布表(样本容量为30)不小心倍损坏了一部分,只记得样本中数据在[20,60)上的频率为0.8,则估计样本在[40,50),[50,60)内的数据个数共为()A.15B.16C.17D.195.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为()A.11B.11.5C.12D.12.56.某公司在2014年上半年的收入x(单位:万元)与月支出(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系7.下列事件是随机事件的是()(1)连续两次掷一枚硬币,两次都出现正面向上.(2)异性电荷相互吸引(3)在标准大气压下,水在1℃时结冰(4)任意掷一枚骰子朝上的点数是偶数.A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)8.从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么对立的两个事件是()A.至少有1个白球,至少有1个红球B.至少有1个白球,都是红球C.恰有1个白球,恰有2个白球D.至少有1个白球,都是白球9.抛掷一枚质地均匀的硬币,如果连续抛掷2011次,那么第2010次出现正面朝上的概率是()A.B.C.D.10.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是()A.0.42B.0.28C.0.3D.0.711.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4B.0.6C.0.8D.112.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.二.填空题(共4小题)13.在棱长为2的正方体内随机取一点,取到的点到正方体中心的距离大于1的概率.14.从甲、乙、丙、丁四人中任选两名代表,甲被选中的概率为。

高中数学概率与统计题型解答方法

高中数学概率与统计题型解答方法

高中数学概率与统计题型解答方法概率与统计是高中数学中的重要内容,也是学生们普遍感觉较为困难的部分。

在这篇文章中,我将为大家介绍一些解答概率与统计题型的方法和技巧,希望能够帮助大家更好地理解和应对这一部分的考试内容。

一、概率题型解答方法概率题型主要涉及到事件的发生可能性以及事件之间的关系。

在解答概率题型时,我们可以按照以下步骤进行:1. 确定样本空间:首先要明确问题中所涉及的所有可能结果,这些结果构成了样本空间。

例如,如果问题是抛一枚硬币,我们可以得到样本空间为{正面,反面}。

2. 确定事件:根据问题的要求,确定我们关注的事件。

例如,如果问题是抛一枚硬币,要求出现正面的概率,那么我们可以将事件定义为“出现正面”。

3. 计算概率:根据事件发生的可能性和样本空间的大小,计算事件发生的概率。

例如,对于抛一枚硬币出现正面的问题,由于样本空间中只有两个结果,所以事件发生的概率为1/2。

除了基本的概率计算,还有一些特殊的概率题型,例如条件概率、独立事件等。

对于这些题型,我们需要根据具体情况使用相应的公式和方法进行计算。

二、统计题型解答方法统计题型主要涉及到数据的收集、整理和分析。

在解答统计题型时,我们可以按照以下步骤进行:1. 收集数据:首先要明确问题中所要求的数据类型和范围,然后进行数据的收集。

例如,如果问题是调查学生的身高,我们可以通过测量学生的身高来收集数据。

2. 整理数据:将收集到的数据进行整理和分类,以便后续的分析。

例如,可以将学生的身高按照一定的范围进行分组,并制作成频数表或直方图。

3. 分析数据:根据问题的要求,对数据进行分析和计算。

例如,可以计算出数据的平均值、中位数、众数等统计量,以及数据的方差和标准差等。

除了基本的数据分析,还有一些特殊的统计题型,例如假设检验、相关性分析等。

对于这些题型,我们需要根据具体情况使用相应的统计方法和检验标准进行分析。

三、举一反三在解答概率与统计题型时,我们可以通过举一反三的方法拓展思路,将相似的题目进行比较和联系,从而更好地理解和解答题目。

高中数学概率统计(含详细答案)

高中数学概率统计(含详细答案)

1.某初级中学共有学生2000名,各年级男、女生人数如下表:已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1)求x 的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (3)已知y ≥245,z ≥245,求初三年级中女生比男生多的概率. 解:(1)0.192000x= ∴ 380x =(2)初三年级人数为y +z =2000-(373+377+380+370)=500, 现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:48500122000⨯= 名 (3)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为(y ,z ); 由(2)知 500y z += ,且 ,y z N ∈, 基本事件空间包含的基本事件有:(245,255)、(246,254)、(247,253)、……(255,245)共11个事件A 包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245) 共5个∴ 5()11P A =2.为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查.6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体. (Ⅰ)求该总体的平均数;(Ⅱ)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. 解:(Ⅰ)总体平均数为1(5678910)7.56+++++=. (Ⅱ)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”. 从总体中抽取2个个体全部可能的基本结果有:(56),,(57),,(58),,(59),,(510),,(67),,(68),,(69),,(610),,(78),,(79),,(710),,(89),,(810),,(910),.共15个基本结果.事件A 包括的基本结果有:(59),,(510),,(68),,(69),,(610),,(78),,(79),.共有7个基本结果. 所以所求的概率为7()15P A =.3.现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,,132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,, 231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,, 322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,,122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成, 因而61()183P M ==. (Ⅱ)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件,由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=.4.某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.(I )求全班人数及分数在[)90,80之间的频数;(II )估计该班的平均分数,并计算频率分布直方图中[)90,80间的矩形的高; (III )若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.解:(I )由茎叶图知,分数在[)60,50之间的频数为2,频率为,08.010008.0=⨯ 全班人数为.2508.02= …………3分所以分数在[)90,80之间的频数为42107225=---- …………5分(II )分数在[)60,50之间的总分为56+58=114;分数在[)70,60之间的总分为60×7+2+3+3+5+6+8+9=456;(III )将[)90,80之间的4个分数编号为1,2,3,4,[90,100]之间的2个分数编号为5,6,在[80,100]之间的试卷中任取两份的基本事件为: (1,2),(1,3),(1,4),(1,5),(1,6) (2,3),(2,4),(2,5),(2,6), (3,4),(3,5),(3,6) (4,5),(4,6) (5,6)共15个, …………12分 其中,至少有一个在[90,100]之间的基本事件有9个, …………14分故至少有一份分数在[90,1000]之间的频率是6.0159= …………15分5.袋子中装有编号为b a ,的2个黑球和编号为e d c ,,的3个红球,从中任意摸出2个球。

高中数学规范答题示范课——概率与统计解答题

高中数学规范答题示范课——概率与统计解答题

P(Y=1)=CC14C58 44=114,P(Y=2)=CC24C58 43=37,P(Y=3)=CC34C58 42=73,P(Y=4)=CC44C58 41=114.
∴Y的分布列为
Y
1
2
3
4
P
1 14
3
3
7
7
1 14
∴数学期望 E(Y)=1×114+2×73+3×73+4×114=52.
本节内容结束
法一 考虑 6 只小白鼠的排列顺序,若 A1 发生,则需从 2 只患病小白鼠中选择 1 只排在第一位,其他位置可随意排,故符合条件的排列顺序共有 C12A55种.
若 A1 与 X=3 同时发生,则 2 只患病小白鼠一定排在第一、第三两个位置,其他 位置可随意排不患病的小白鼠,对应的排列顺序共有 A22A44种.
根据条件概率的定义及古典概型可知, P(X=3|A1)=PP((AA1A1)3)=AC2212AA4455=51. 法二 根据题意可知,在 A1 发生的条件下,X=3 发生的充要条件是:第二次验
血的小白鼠不患病,且第三次验血的小白鼠患病, 故 P(X=3|A1)=P(A-2|A1)P(A3|A1A-2)=54×41=15.
②解 由①得 p8=p8-p7+p7-p6+…+p1-p0+p0
=(p8-p7)+(p7-p6)+…+(p1-p0)+p0=48-3 1p1. 由于 p8=1,故 p1=48-3 1,
9分 10 分
所以 p4=(p4-p3)+(p3-p2)+(p2-p1)+(p1-p0)+p0 =44-3 1p1=2517.
(5)确定随机变量取值并求其对应的概率,写出分布列后再求均值、方差; (6)会套用求b^,K2 的公式,再作进一步求值与分析.

高中概率专题研究报告

高中概率专题研究报告高中概率专题研究报告概率是数学中的一个重要分支,广泛应用于各个领域。

本文主要探讨高中概率专题,包括概率的基本概念、概率的计算方法以及概率在现实生活中的应用。

概率的基本概念包括随机事件、样本空间、事件的概率。

随机事件是在一定条件下可能出现也可能不出现的事件,例如掷骰子、抽卡等。

样本空间是所有可能结果组成的集合,例如掷一个骰子的样本空间就是{1,2,3,4,5,6}。

事件的概率用一个数值表示,表明事件发生的可能性大小,介于0和1之间。

概率的计算方法主要包括频率法、几何概率法和古典概率法。

频率法是通过大量实验得到频率,将频率作为概率的估计值。

例如,通过多次抛掷一枚硬币,统计正面朝上的次数,正面朝上的频率就是正面出现的概率估计值。

几何概率法是通过几何分析得到概率,例如掷一个骰子,正面朝上的概率为1/6。

古典概率法适用于实验次数不确定的情况下,通过样本空间和事件的可能性分析得到概率。

例如掷一个非均匀骰子,掷出1的概率可能是1/4。

概率在现实生活中有着广泛的应用。

例如,在生活中经常会遇到购买彩票的情况。

购买彩票就是一种随机事件,中奖的概率可以通过几何概率法或者频率法进行估算。

又如,在体育比赛中,预测比赛结果也是一个涉及概率的问题。

通过分析参赛队伍的实力、历史表现等因素,可以估算每支队伍获胜的概率。

概率还可以应用于金融领域,例如投资分析中的风险评估,通过概率模型对不同投资方案的风险进行比较和评价。

总结起来,高中概率专题研究了概率的基本概念、计算方法以及在现实生活中的应用。

掌握概率的基本知识和方法,对于提高数学分析和判断能力、促进科学决策具有重要意义。

希望本文对读者对概率这一重要数学概念有所启发,深入了解概率的理论和应用。

高中数学概率与统计的常见题型解析

高中数学概率与统计的常见题型解析概率与统计是高中数学中的一门重要课程,也是学生们普遍感觉较难的一部分内容。

在考试中,概率与统计题型占比较大,因此对于这部分知识的掌握至关重要。

本文将结合常见的概率与统计题型,进行解析和说明,帮助高中学生和他们的父母更好地理解和应对这些题目。

一、事件概率计算题事件概率计算题是概率与统计中的基础题型,也是最常见的题型之一。

这类题目要求计算某个事件发生的概率。

例如:【例题】已知一副扑克牌中有52张牌,其中红心牌有13张。

从中随机抽取一张牌,求抽到红心牌的概率。

解析:这是一个典型的事件概率计算题。

根据题目所给的信息,我们知道红心牌有13张,总共有52张牌,因此红心牌的概率为13/52,即1/4。

这类题目的考点在于理解概率的定义,并且能够根据题目给出的条件计算出事件发生的概率。

在解题过程中,可以通过简化分数、约分等方法,使计算更加简便。

二、排列组合题排列组合题是概率与统计中的另一类常见题型,也是较为复杂的题目之一。

这类题目要求计算事件的排列或组合方式。

例如:【例题】某班有10个学生,要从中选出3个学生组成一支篮球队,求不考虑位置的情况下,有多少种不同的组合方式。

解析:这是一个排列组合题。

我们需要从10个学生中选出3个学生,不考虑位置的情况下,即选出的学生是无序的。

根据组合的定义,我们可以使用组合公式C(n,m) = n!/(m!(n-m)!)进行计算。

代入题目的数据,即C(10,3) = 10!/(3!(10-3)!)=120种不同的组合方式。

这类题目的考点在于理解排列和组合的概念,并且能够根据题目给出的条件进行计算。

在解题过程中,可以使用排列组合公式简化计算,同时注意分子和分母的阶乘运算。

三、事件独立性题事件独立性题是概率与统计中的另一个重要题型,也是较为复杂的题目之一。

这类题目要求判断多个事件之间是否独立。

例如:【例题】甲、乙、丙三个人独立地进行一项考试,他们的及格率分别为0.8、0.9和0.7。

高中数学经典概率与统计(解析版)

概率与统计统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】1 .抽样方法是统计学的基础,在复习时要抓住各种抽样方法的概念以及它们之间的区别与联系.茎叶图也成为高考的热点内容,应重点掌握.明确变量间的相关关系,体会最小二乘法和线性回归方法是解决两个变量线性相关的基本方法,就能适应高考的要求.2.求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因.(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.3.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题1.(2020·上海闵行区·高三二模)某县共有300个村,现采用系统抽样方法,抽取15个村作为样本,调查农民的生活和生产状况,将300个村编上1到300的号码,求得间隔数3002015k==,即每20个村抽取一个村,在1到20中随机抽取一个数,如果抽到的是7,则从41到60这20个数中应取的号码数是( ) A .45B .46C .47D .48 【答案】C【分析】根据系统抽样的定义和性质即可得到结论.【详解】解:根据题意,样本间隔数3002015k ==,在1到20中抽到的是7, 则41到60为第3组,此时对应的数为7+2×20=47.故选:C.【点睛】本题主要考查系统抽样的应用,样本间距是解决本题的关键,比较基础.2.(2020·上海松江区·高三其他模拟)已知6260126(1)x a a x a x a x +=+++⋯+,在0,a 1,a 2,a ,⋅⋅⋅6a 这7个数中,从中任取两数,则所取的两数之和为偶数的概率为( )A .12B .37C .47D .821【答案】B【分析】根据6260126(1)x a a x a x a x +=+++⋯+,将0,a 1,a 2,a ,⋅⋅⋅6a 计算出来,分清几个奇数,几个偶数, 得到从中任取两数的种数;所取的两数之和为偶数的种数,代入古典概型的概率公式求解.【详解】因为6260126(1)x a a x a x a x +=+++⋯+,0,a 1,a 2,a ,⋅⋅⋅6a 这7个数分别为:061,C =166,C =2615,C =3620,C =4615,C =566,C =661,C =. 4个奇数,3个偶数;从中任取两数共有:2721C =种;所取的两数之和为偶数的有:22439C C +=;∴所取的两数之和为偶数的概率为:93217=. 故选:B.【点睛】本题主要考查二项式系数和古典概型的概率,还考查了运算求解的能力,属于基础题.3.(2019·上海杨浦区·高三一模)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为( )A .310B .35C .25D .23【答案】B【分析】直接利用概率公式计算得到答案.【详解】11322563105C C P C ⨯=== ,故选:B 【点睛】本题考查了概率的计算,属于简单题.4.(2019·上海黄浦区·高三二模)在某段时间内,甲地不下雨的概率为1P (101P <<),乙地不下雨的概率为2P (201P <<),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为( ) A .12PPB .121PP -C .12(1)P P -D .12(1)(1)P P -- 【答案】D【分析】根据相互独立事件的概率,可直接写出结果.【详解】因为甲地不下雨的概率为1P ,乙地不下雨的概率为2P ,且在这段时间内两地下雨相互独立, 所以这段时间内两地都下雨的概率为()()1211P P P =--.故选D【点睛】本题主要考查相互独立事件的概率,熟记概念即可,属于基础题型.二、填空题5.(2020·上海奉贤区·高三一模)某工厂生产A 、B 两种型号的不同产品,产品数量之比为2:3.用分层抽样的方法抽出一个样本容量为n 的样本,则其中A 种型号的产品有14件.现从样本中抽出两件产品,此时含有A 型号产品的概率为__________. 【答案】1117【分析】先由分层抽样抽样比求B 种型号抽取件数,以及n ,再根据古典概型公式求概率. 【详解】设B 种型号抽取m 件,所以1423m =,解得:21m =,142135n =+=, 从样本中抽取2件,含有A 型号产品的概率2111414212351117C C C P C +==.故答案为:11176.(2019·上海市建平中学高三月考)一个总体分为A ,B 两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本.已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数为 _____ . 【答案】40【解析】设B 层中的个体数为n ,则211828nn C =⇒=,则总体中的个体数为8540.⨯=7.(2020·上海黄浦区·高三二模)某社区利用分层抽样的方法从140户高收入家庭、280户中等收入家庭、80户低收入家庭中选出100户调查社会购买力的某项指标,则中等收入家庭应选________户.【答案】56【分析】由分层抽样的计算方法有,中等收入家庭的户数占总户数的比例再乘以要抽取的户数,即可得到答案.【详解】该社区共有14028080500++=户.利用分层抽样的方法, 中等收入家庭应选28010056500⨯=户,故答案为:56 【点睛】本题考查分层抽样,注意抽取比例是解决问题的关键,属于基础题.8.(2020·上海高三其他模拟)某校三个年级中,高一年级有学生400人,高二年级有学生360人,高三年级有学生340人,现采用分层抽样的方法从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为________.【答案】17【分析】由于分层抽样是按比例抽取,若设高三年级的学生抽取了x 人,则有40034020x=,求出x 的值即可【详解】解:设高三年级的学生抽取了x 人,则由题意得 40034020x=,解得17x =,故答案为:17 【点睛】此题考查分层抽样,属于基础题.9.(2016·上海杨浦区·复旦附中高三月考)如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为________.【答案】9【分析】根据频率分布直方图计算出日销售量不少于150个的频率,然后乘以30即可.【详解】根据频率分布直方图可知,一个月内日销售量不少于150个的频率为()0.0040.002500.3+⨯=, 因此,这家面包店一个月内日销售量不少于150个的天数为300.39⨯=.故答案为9.【点睛】本题考查频率分布直方图的应用,解题时要明确频数、频率和样本容量三者之间的关系,考查计算能力,属于基础题.10.(2020·上海高三专题练习)中位数为1010的一组数构成等差数列,其末项为 2015,则该数列的首项为__________.【答案】5.【解析】设数列的首项为1a ,则12015210102020a+=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5.【考点定位】等差中项.11.(2020·上海浦东新区·高三一模)在7(2)x +的二项展开式中任取一项,则该项系数为有理数的概率为_________.(用数字作答)【答案】12【分析】根据二项展开式的通项,确定有理项所对应的r 的值,从而确定其概率. 【详解】7(2)x +展开式的通项为()77217722rr rr rr r T C x C x --+==,07,r r N ≤≤∈, 当且仅当r 为偶数时,该项系数为有理数,故有0,2,4,6r =满足题意,故所求概率4182P ==.【点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.12.(2020·上海松江区·高三一模)从包含学生甲的1200名学生中随机抽取一个容量为80的样本,则学生甲被抽到的概率___.【答案】115【分析】基本事件总数801200n C =,学生甲被抽到包含的基本事件个数79112001m C C =,由此能求出学生甲被抽到的概率.【详解】解:从包含学生甲的1200名学生中随机抽取一个容量为80的样本,基本事件总数801200n C =, 学生甲被抽到包含的基本事件个数79112001m C C =,∴学生甲被抽到的概率79111991801200115C C m P n C ===. 故答案为:115. 【点睛】方法点睛:求概率常用的方法是:先定性(六种概率:古典概型的概率、几何概型的概率、独立事件的概率、互斥事件的概率、条件概率和独立重复试验的概率),再定量.13.(2019·上海市建平中学高三月考)已知方程221x y a b+=表示的曲线为C ,任取a 、{}1,2,3,4,5b ∈,则曲线C 表示焦距等于2的椭圆的概率等于________. 【答案】825【分析】计算出基本事件的总数,并列举出事件“曲线C 表示焦距等于2的椭圆”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】所有可能的(),a b 的组数为:5525⨯=,又因为焦距22c =,所以1c =,所以1a b -=±, 则满足条件的有:()1,2、()2,3、()3,4、()4,5、()5,4、()4,3、()3,2、()2,1,共8组, 所以概率为:825P =.故答案为:825. 【点睛】方法点睛:计算古典概型概率的方法如下:(1)列举法;(2)数状图法;(3)列表法;(4)排列、组合数的应用.14.(2020·上海徐汇区·高三一模)小王同学有4本不同的数学书,3本不同的物理书和3本不同的化学书,从中任取2本,则这2本书属于不同学科的概率为______________(结果用分数表示). 【答案】1115【分析】利用古典概型公式计算概率.【详解】共43310++=本不同的数,任取2本包含21045C =种方法,若从中任取两本,这2本书属于不同学科的情况有11111143433333C C C C C C ⋅+⋅+⋅=,所以这2本书属于不同学科的概率33114515P ==. 故答案为:111515.(2020·上海高三一模)近年来,人们的支付方式发生了巨大转变,使用移动支付购买商品已成为一部分人的消费习惯.某企业为了解该企业员工A 、B 两种移动支付方式的使用情况,从全体员工中随机抽取了100人,统计了他们在某个月的消费支出情况.发现样本中A ,B 两种支付方式都没有使用过的有5人;使用了A 、B 两种方式支付的员工,支付金额和相应人数分布如下:依据以上数据估算:若从该公司随机抽取1名员工,则该员工在该月A 、B 两种支付方式都使用过的概率为______.【答案】310【分析】根据题意,计算出两种支付方式都使用过的人数,即可得到该员工在该月A 、B 两种支付方式都使用过的概率.【详解】解:依题意,使用过A 种支付方式的人数为:18292370++=,使用过B 种支付方式的人数为:10242155++=,又两种支付方式都没用过的有5人,所以两种支付方式都用过的有()()7055100530+--=,所以该员工在该月A 、B 两种支付方式都使用过的概率30310010p ==. 故答案为:310. 【点睛】本题考查了古典概型的概率,主要考查计算能力,属于基础题.16.(2020·上海大学附属中学高三三模)一名工人维护甲、乙两台独立的机床,在一小时内,甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,则一小时内没有一台机床需要维护的概率为________【答案】0.42【分析】根据甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,利用独立事件和对立事件的概率求法求解.【详解】因为甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,所以一小时内没有一台机床需要维护的概率为()()10.410.30.42-⨯-=,故答案为:0.42【点睛】本题主要考查独立事件和对立事件的概率,属于基础题.17.(2020·上海长宁区·高三三模)2021年某省将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为________ 【答案】14【分析】甲同学从物理、历史二选一,其中选历史的概率为12,从化学、生物、政治、地理四选二,有6种选法,其中选化学的有3种,从而可得四选二,选化学的概率为12,然后由分步原理可得同时选择历史和化学的概率.【详解】解:由甲同学选科没有偏好,且不受其他因素影响,所以甲同学从物理、历史二选一选历史的概率为12,甲同学从化学、生物、政治、地理四选二有:化学与生物,化学与政治,化学与地理,生物与政治,生物与地理,政治与地理共6种不同的选法,其中选化学的有3种,所以四选二中有化学的概率为12, 所以由分步原理可知甲同学同时选择历史和化学的概率为111=224⨯, 故答案为:14 【点睛】此题考查古典概型概率以及独立事件概率乘法公式的求法,考查理解运算能力,属于基础题. 18.(2019·上海市七宝中学高三三模)一名信息员维护甲乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________【答案】0.88【分析】根据相互独立事件概率计算公式和对立事件的概率计算公式直接求解即可.【详解】"至少有一个公司不需要维护"的对立事件是"两公司都需要维护",所以至少有一个公司不需要维护的概率为10.30.40.88p =-⨯=,故答案为0.88.【点睛】本题主要考查概率的求法以及相互独立事件概率计算公式和对立事件的概率计算公式的应用. 19.(2019·上海金山区·高三二模)若生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别为0.01、0.02,每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率是________(结果用小数表示)【答案】0.9702【分析】利用对立事件概率计算公式和相互独立事件概率乘法公式能求出经过两道工序后得到的零件不是废品的概率.【详解】生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别0.01、0.02, 每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率:p =(1﹣0.01)(1﹣0.02)=0.9702.故答案为0.9702.【点睛】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.三、解答题20.(2019·上海普陀区·)某城市自2014年至2019年每年年初统计得到的人口数量如表所示.(1)设第n 年的人口数量为n a (2014年为第1年),根据表中的数据,描述该城市人口数量和2014年至2018年每年该城市人口的增长数量的变化趋势;(2)研究统计人员用函数0.6544450()2000 4.48781x P x e -=++拟合该城市的人口数量,其中x 的单位是年.假设2014年初对应0x =,()P x 的单位是万.设()P x 的反函数为()T x ,求(2440)T 的值(精确到0.1),并解释其实际意义.【分析】(1)根据表中的数据可得从2014年到2019年人口增加的数量,逐年增多,从2017年后,增加的人数逐年减少,但人口总数是逐年增加的;(2)根据函数的表达式,以及反函数的定义,代值计算即可.【详解】(1)201520142135208253f f -=-=,201620152203213568f f -=-=,201720162276220373f f -=-=,201820172339227663f f -=-=,201920182385233946f f -=-=,由上述计算可知,该地区2014年至2019年每年人口增长数量呈先增后减的变化趋势,每一年任可总数呈逐渐递增的趋势;(2)因为0.65444.48781x e -+为单调递减函数,则()P x 为单调递增函数,则0(2440)T x =0()2440P x ⇒=, 代入000.6544450()200024404.48781x P x e -=+=+,解得08.1x =,即(2440)8.1T =, 其实际意义为:可根据数学模型预测人口数量增长规律,及提供有效依据,到2022年人口接近2440万.【点睛】该题考查的是有关统计的问题,涉及到的知识点有利用表格判断其变化趋势,利用题中所给的函数解析式,计算相关的量,反函数的定义,属于中档题目.。

高中数学概率与统计的常见题型解析

高中数学概率与统计的常见题型解析随着高中数学课程的深入,概率与统计成为了学生们必修的重要内容之一。

在这个领域里,有许多常见的题型需要我们掌握和熟练运用。

本文将对高中数学概率与统计的常见题型进行解析,帮助同学们更好地理解和应用。

一、概率计算题1.基本原理概率计算题是考察学生对基本原理的理解与运用能力。

基本原理包括“分子数/总数”和“事件发生的次数/总次数”等计算方法。

通常,这类题目要求计算某一事件发生的概率。

2.排列组合排列组合也是概率计算中重要的一部分,常见的排列组合题型有“抽签问题”和“求解概率的可能性”等。

解决这类题目,需要熟悉排列组合的计算方法,并注意根据题目要求确定计算的范围和顺序。

3.条件概率条件概率是指在已知某一条件下发生某一事件的可能性。

解决条件概率题型,需要根据条件和事件的关系确定计算的方法,并利用已知信息进行计算。

二、统计分析题1.数据收集统计分析题通常给出一组数据,要求学生进行整理和计算。

在解决这类题目时,需要注意数据的归类和整理,以及正确选择和运用统计方法。

2.频数分布表频数分布表是将一组数据按照区间进行分类和统计后所得到的表格。

在解答频数分布表的题目时,需要根据给出的条件计算出各个区间的频数和频率,并进行适当的分析和解释。

3.统计图表常见的统计图表有柱状图、折线图、饼图等。

解决统计图表题目时,需要对图表进行仔细观察和理解,计算出各个数据的相关指标,并进行适当的比较和分析。

三、综合题综合题是将概率计算和统计分析相结合,考察学生对概率与统计知识的综合运用能力。

解决综合题的关键在于分析题干给出的条件和要求,运用合适的方法进行计算和分析。

高中数学概率与统计的常见题型解析至此结束。

通过对这些题型的解析和学习,相信同学们对于高中数学概率与统计的应用能力会有很大的提升。

希望同学们能够认真对待这一领域,做好充分的准备,取得优秀的成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

word 1 / 18 专题二 概率统计专题 【命题趋向】概率与统计是高中数学的重要学习内容,它是一种处理或然问题的方法,在工农业生产

和社会生活中有着广泛的应用,渗透到社会的方方面面,概率与统计的基础知识成为每个公民的必备常识.概率与统计的引入,拓广了应用问题取材的X围,概率的计算、离散型随机变量的分布列和数学期望的计算及应用都是考查应用意识的良好素材.在高考试卷中,概率与统计的内容每年都有所涉及,以解答题形式出现的试题常常设计成包含离散型随机变量的分布列与期望、统计图表的识别等知识为主的综合题,以考生比较熟悉的实际应用问题为载体,以排列组合和概率统计等基础知识为工具,考查对概率事件的识别及概率计算.解答概率统计试题时要注意分类与整合、化归与转化、或然与必然思想的运用. 由于中学数学中所学习的概率与统计内容是最基础的,高考对这一部分内容的考查注重考查基础知识和基本方法.该部分在高考试卷中,一般是2—3个小题和一个解答题. 【考点透析】概率统计的考点主要有:概率与统计包括随机事件,等可能性事件的概率,互斥事件有

一个发生的概率,古典概型,几何概型,条件概率,独立重复试验与二项分布,超几何分布,离散型随机变量的分布列,离散型随机变量的期望和方差,抽样方法,总体分布的估计,正态分布,线性回归等. 【例题解析】

题型1 抽样方法 【例1】在1000个有机会中奖的(编号为000999)中,在公证部门监督下按照随机抽取的方法确定后两位数为的为中奖,该抽样运用的抽样方法是 ( ) A.简单随机抽样 B.系统抽样 C. 分层抽样 D.以上均不对 分析:实际“间隔距离相等”的抽取,属于系统抽样. 解析:题中运用了系统抽样的方法采确定中奖,中奖依次为:088,188,288,388,488,588,688,788,888,988.答案B.

点评:关于系统抽样要注意如下几个问题:(1)系统抽样是将总体分成均衡几个部分,然按照预先定出的规则从每一部分抽取一个个体,得到所需要的样本的一种抽样方法.(2) 系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第一段中用简单随机抽样确定起始的个体编号;④按事先研究的规则抽取样本.(3)适用X围:个体数较多的总体. 例2(2008年高考某某卷理3)某校共有学生2000名,各年级男、女生人数如表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( ) A.24 B.18 C.16 D.12

分析:根据给出的概率先求出x的值,这样就可以知道三年级的学生人数,问题就解决了. 解析:C 二年级女生占全校学生总数的19%,即20000.19380x,这样一年级和二年级学生的总数是3733773803701500,三年级学生

有500人,用分层抽样抽取的三年级学生应是64500162000.答案C. 点评:本题考查概率统计最基础的知识,还涉及到一点分析问题的能力和运算能力,题目以抽样的等可能性为出发点考查随机抽样和分层抽样的知识. 例3.(2009某某某某期末第2题)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,

要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在2500,3500(元)月收入段应抽出人.

一年级 二年级 三年级 女生 373

x

y

男生 377 370

z word

2 / 18 分析:实际上是每100人抽取一人,只要把区间内的人数找出来即可. 解析:根据图可以看出月收入在2500,3500的人数的频率是

0.00050.00035000.4,故月收入在2500,3500人数是100000.44000,

故抽取25人. 点评:本题把统计图表和抽样方法结合起来,主要目的是考查识图和计算能力. 题型2统计图表问题 例4(某某省皖南八校2009届高三第二次联考理科数学第2题)从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中视力情况进行统计,其结果的频率分布直方图如右图:若某高校A专业对视力的要求在0.9以上,则该班学生中能报A专业的人数为

A.10 B.20 C.8 D.16 分析:根据图找出视力在0.9以上的人数的频率即可.

解析:B. 视力住0.9以上的频率为(10.75.025)0.20.4,人数为0.45020. 点评:在解决频率分别直方图问题时容易出现的错误是认为直方图中小矩形的高就是各段的频率,实际上小矩形的高是频率除以组距. 例5 (2009年某某市第一次高考科目教学质量检测理科第13题)某篮球运动员在一个赛季的40场比赛中的得分的茎叶图如图所示,则这组数据的中位数是 ;众数是 .

分析:根据茎叶图和中位数、众数的概念解决. 解析:由于中位数是把样本数据按照由小到大的顺序排列起来,处在中间位置的一个(或是最中间两个数的平均数),故从茎叶图可以看出中位数是23;而众数是样本数据中出现次数最多的数,故众数也是23. 点评:一表(频率分布表)、三图(频率分布直方图、频率折线图、茎叶图)、三数(众数、中位数、众word 3 / 18 数)和标准差,是高考考查统计的一个主要考点. 例5(2008高考某某文11)为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产

品的数量.产品数量的分组区间为45,55,55,65,65,75,75,85,

85,95由此得到频率分布直方图如图,则这20名工人中一天生产该产品数量在

55,75的人数是.

分析:找出频率即可. 解析: 200.0400.00251013. 点评:本题考查频率分布直方图,解题的关键是明确这个直方图上的纵坐标是频率/组距,得出生产数量在55,75的人数的频率. 题型3 平均数、标准差(方差)的计算问题 例6 (2008高考某某文9)从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )

A.3 B.2105 C.3 D.85 分析:根据标准差的计算公式直接计算即可. 解析: 平均数是5204103302301103100, 标准差是 222222053104330333023101310080103040821010055s



答案B. 点评:本题考查数据组的平均数和标准差的知识,考查数据处理能力和运算能力.解题的关键是正确理解统计表的意义,会用平均数和标准差的公式,只要考生对此认识清楚,解答并不困难.

例7.(某某市高三级2008—2009学年度第一学期期末统一考试理科第9题)若数据123,,,,nxxxx的word 4 / 18 平均数5x,方差22,则数据12331,31,31,,31nxxxx的平均数为,方差为. 分析:根据平均数与方差的性质解决. 解析:16,18 例8.(某某某某市2008学年度第一学期期末理科第3题)如图是2009年元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为 A. 84,4.84 B.84,1.6 C. 85,1.6 D.85,4

解析:C 题型4 用样本估计总体 例8(2008高考某某文12)从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示:

则该地区生活不能自理的老人中男性比女性约多_____________人. 解析:60 由上表得23211500023060.500 点评:考查样本估计总体的思想. 题型5.线性回归分析

例9.(2007高考某某)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据

3 6

2.5 4.5 (1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程ybxa; (3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤;试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?

分析:本题中散点图好作,本题的关键是求y关于x的线性回归方程ybxa,它既可以由给出的回归系数公式直接计算,也可以遵循着最小二乘法的基本思想――即所求的直线应使残差平方和最小,用求二word 5 / 18 元函数最值的方法解决. 解析:

(1)散点图如右; (2)方法一:设线性回归方程为ybxa,则

222222222(,)(32.5)(43)(54)(64.5)42(1814)(32.5)(43)(54)(64.5)fabbabababaaabbbab



∴793.54.52bab时, (,)fab取得最小值2222(1.51)(0.50.5)(0.50.5)(1.51)bbbb, 即22250.5[(32)(1)]572bbbb,∴0.7,0.35ba时,fab取得最小值. 所以线性回归方程为0.70.35yx. 方法二:由系数公式可知,266.544.53.566.5634.5,3.5,0.758644.5xyb 93.50.70.352a,所以线性回归方程为0.70.35yx.

(3)100x时,0.70.3570.35yx,所以预测生产100吨甲产品的生产能耗比技术改造前降低19.65吨标准煤. 点评:本题考查回归分析的基本思想.求线性回归方程的方法一这实际上是重复了回归系数公式的推导

过程,这里的另一个解决方法是对,fab我们再按b集项,即

22222,86(36133)2.5344.5fabbabaaaa,而这个时候,当

13336172ab时,fab有最小值,结合上面解法中3.54.5ab时,fab有最小值,组成方程组就

可以解出a,b的值;方法二前提是正确地使用回归系数的计算公式,一般考试中都会给出这个公式,但要注意各个量的计算;最后求出的19.65是指的平均值或者是估计值,不是完全确定的值.对于本题我们

可以计算题目所给的数据组的相关系数0.9899r,相关指数20.98R.这说明x,y具有很强的线性相关性,说明解释变量对预报变量的贡献率是98%,即耗煤量的98%是来自生产量,只有约2%来自其它因素,这与我们的直观感觉是十分符合的.本题容易用错计算回归系数的公式,或是把回归系数和回归常数弄颠倒了. 例10.(某某某某市2008-2009学年度第一学期期未调研测试第17题)为了分析某个高三学生的学习状

相关文档
最新文档