高中数学射影定理公式

合集下载

【名师一号】14-15高中数学(人教)选修4-1课件:1-4直角三角形的射影定理

【名师一号】14-15高中数学(人教)选修4-1课件:1-4直角三角形的射影定理

思考探究2 系?
射影定理中涉及了哪些线段、几组比例关
提示 射影定理中共涉及六条线段:直角三角形的两直角 边、斜边、斜边上的高,两直角边分别在斜边上的射影.三组 比例关系:斜边上高的平方等于两直角边分别在斜边上的射影 的乘积.两条直角边的平方,分别等于其在斜边上的射影与斜 边的乘积.
名师点拨 1.利用三角函数证明直角三角形的射影定理
5.射影定理的应用 (1)应用射影定理注意两个条件: 一是直角三角形,二是斜边上的高.在直角三角形的六条 线段中,应用勾股定理及射影定理,就可以从任意给出的两条 线中,求出其余四条线段的长度. (2)应用射影定理可求直角三角形的边长,面积等.还可 探究相似、比例等问题.
课堂互动探究
剖析归纳 触类旁通
AD AC 如图,在Rt△ABC和Rt△ACD中,cosA=AC =AB, ∴AC2=AD· AB. BD BC 在Rt△ABC与Rt△CBD中,cosB= = , BC AB ∴BC2=BD· AB. 在Rt△ACD和Rt△CBD中,∠A=∠BCD, ∴tanA=tan∠BCD.
CD BD 即AD=CD. ∴CD2=AD· BD.
ห้องสมุดไป่ตู้
解析 由勾股定理知,BC2=CD2+BD2=13. ∴BC= 13.由射影定理知,
2 BC 13 2 BC =BD· BA,∴AB= BD = 3 .
52 2 13 ∴AC =AB -BC = 9 ,∴AC= 3 .
2 2 2 2 AC 4 2 又AC =AD· AB,∴AD= = . AB 3
答案
【证明】 ∵CD垂直平分AB, ∴△ACD和△BDE均为直角三角形,并且AD=BD. 又∵DF⊥AC,DG⊥BE, ∴AF· AC=AD2,BG· BE=DB2. ∵AD2=DB2.∴AF· AC=BG· BE.

高中数学第一章相似三角形定理与圆幂定理1.1.4锐角三角函数与射影定理课件新人教B版选修4_

高中数学第一章相似三角形定理与圆幂定理1.1.4锐角三角函数与射影定理课件新人教B版选修4_
∠ABC交AC于点E,EF⊥BC于点F.求证:EF∶DF=BC∶AC.
分析先由射影定理得 AC


=

=CD·BC,即
2
=

,最后利用 EF=AE 进行代换,即可得证.


,再由 EF∥AD 得

M 目标导航 Z 知识梳理 Z 重难聚焦
UBIAODALI
HISHI SHULI
HONGNAN JVJIAO
D典例透析 S随堂演练
IANLI TOUXI
UITANGYANLIAN
【做一做2-1】 如图所示,在Rt△ABC中,AC⊥CB,CD⊥AB于点D,
且CD=4,则AD·DB等于(
)
C.2 D.不确定
解析:∵AC⊥CB,CD⊥AB,
∴AD·DB=CD2.

,即
4

9

16
= 16.∴ = 9 .
M 目标导航 Z 知识梳理 Z 重难聚焦
UBIAODAOHANG
1
2
3
4
HISHI SHULI
HONGNAN JVJIAO
D典例透析 S随堂演练
IANLI TOUXI
UITANGYANLIAN
5
3.已知PA是☉O的切线,切点为A,PA=2 cm,AC是☉O的直径,PC交
HONGNAN JVJIAO
题型二
证明 ∵∠BAC=90°,AD⊥BC,


由射影定理,知 AC2=CD·BC,即 = .
∵BE 平分∠ABC,EA⊥AB,EF⊥BC,
∴AE=EF.
∵EF⊥BC,AD⊥BC,


∴EF∥AD.∴ = .

高中数学 1.4直角三角形的射影定理 新人教A版选修4-1

高中数学 1.4直角三角形的射影定理 新人教A版选修4-1

再将线段进行代换,就可以实现等积式的证明.
证明:∵在 Rt△ABC 中,∠ACB=90°,CD⊥AB,
∴CD2=AD·BD,∴CD4=AD2·BD2.
栏 目
又∵在 Rt△ADC 中,DE⊥AC,在 Rt△BDC 中,DF⊥BC,
链 接
∴AD2=AE·AC,BD2=BF·BC.∴CD4=AE·BF·AC·BC.
链 接
影定理可知,AD2=BD·CD,
∴62=8×CD,∴CD=.
点评:充分利用线段间的长度关系,得出AD⊥BC, 从而推出∠BAC=90°,于是为使用射影定理创造 了条件.
ppt课件
►变式训练
1.在一直角三角形中,斜边上的高为6 cm,且把 斜 ___边__分__成_.3∶2两段,则斜边上中线的52 6长cm是
2.如图,在△ABC中,D、F分别在AC、BC上,
栏 目
且AB⊥AC,AF⊥BC,BD=DC=FC=1,求AC.


ppt课件
解析:在△ABC 中,设 AC 为 x,
∵AB⊥AC,AF⊥BC,又 FC=1,根据射影定理,得 AC2=FC·BC,
即 BC=x2.再由射影定理,得 AF2=BF·FC=(BC-FC)·FC,
1.4 直角三角形的射影定理
ppt课件
栏 目 链 接
ppt课件
理解射影定理,能应用射影定理解决简单几何问 题.
ppt课件
栏 目 链 接
ppt课件
题型一 线段长度的计算 例1 如图,D为△ABC中BC边上的一点,∠CAD= ∠B,若AD=6,AB=10,BD=8,求CD的长.
栏 目 链 接
ppt课件
分析:由勾股定理知∠ADB=90°,即AD⊥BC, 进一步可得∠BAC=90°,由射影定理求CD.

2016-2017学年高中数学选修4-1课件:第一讲1.4直角三角形的射影定理

2016-2017学年高中数学选修4-1课件:第一讲1.4直角三角形的射影定理
第十五页,编辑于星期五:十七点 三十分。
由射影定理可得,AB2=BD·BC, 所以 BC=ABBD2=15. 所以 CD=BC-BD=15-12=3. 由射影定理可得,AC2=CD·BC, 所以 AC= 3×15=3 5. 答案:3 3 5 4∶1
第十六页,编辑于星期五:十七点 三十分。
5.如图所示,在矩形 ABCD 中,AE⊥BD,OF⊥AB, DE∶EB=1∶3,OF=a,则对角线 BD 的长为________.
第二十八页,编辑于星期五:十七点 三十分。
又 AD⊥BD,则只需证明∠ADE=∠FDB, 从而转化为证明△FBD∽△EAD.
第二十九页,编辑于星期五:十七点 三十分。
[规范解答] 证明:因为∠CAB=90°,AD⊥BC, 所以 AB2=BD·BC.(2 分) 失分警示:若在此处用错射影定理,则本题无法得分. 所以BADB=BACB. 又∠ABC=∠ABD, 所以△ABC∽△DBA,(3 分)
2.如图所示,AA′⊥MN,垂足 A′是点 A 在直线 MN 上的正射影.如果点 A 是 MN 上的点,那么 A 在 MN 上 的正射影就是它本身.
第五页,编辑于星期五:十七点 三十分。
以上给出了一些图形的变式,不要把正射影理解为只 是由一点向水平线引垂线的特殊情形.
第六页,编辑于星期五:十七点 三十分。
又因为 AD⊥BC,所以∠FDA+∠BDF=90°, 所以∠FDE=90°, 所以 DE⊥DF.(10 分)
第三十四页,编辑于星期五:十七点 三十分。
归纳升华 应用射影定理证明几何题的思路
1.从已知条件入手,当已知存在直角三角形时,可 以考虑应用射影定理得到比例中项,再寻求证明结论的过 渡条件.
第三十五页,编辑于星期五:十七点 三十分。

射影定理高中难题

射影定理高中难题

射影定理高中难题射影定理是高中数学中的一个重要概念,它是几何与代数的结合,常常用于解决一些复杂的几何问题。

本文将通过举例和详细讲解,帮助读者更好地理解射影定理,并解决一道高中难题。

I. 什么是射影定理射影定理是几何学中的一条重要定理,它描述了平面上两条平行线与一条交于它们之间的第三条线的关系。

简而言之,射影定理表明,当一条直线与两条平行线相交时,这两条平行线上任意一点到交点的距离比例相等。

II. 射影定理的应用举例为了更好地理解射影定理,我们来看一个经典的应用案例:例题:在平面直角坐标系中,已知直线L1过点A(2,5)和B(8,1),直线L2过点C(5,7)和D(11,3)。

求证:L1与L2平行。

解析:首先,我们可以根据两点式求解直线L1和L2的方程。

直线L1的方程为:(x-2)/(8-2)=(y-5)/(1-5)整理得:4x-y+17=0直线L2的方程为:(x-5)/(11-5)=(y-7)/(3-7)整理得:4x-y+33=0我们可以观察到,L1和L2的方程中x的系数和y的系数相等,即两直线的斜率相等。

因此,根据斜率相等定理即可证明L1与L2平行。

III. 高中难题解析现在我们来解决一道实际的高中难题,利用射影定理来解决。

难题:在平面直角坐标系中,已知直线L1过点A(4,5),L2过点B(3,2)。

直线L与x轴和y轴的交点分别为C和D,且AC=BD。

求证:L1与L2平行。

解析:首先,我们可以根据已知条件得出点C的坐标为(a,0),点D的坐标为(0,b)。

根据射影定理,我们知道AC/BC=AD/BD。

而AC=BD已知,因此可以得出BC=AD。

我们可以利用两点式得出直线L1和L2的方程:直线L1的方程为:(x-4)/(a-4)=(y-5)/(0-5)整理得:5x-ay+20=0直线L2的方程为:(x-3)/(0-3)=(y-2)/(b-2)整理得:2x-by+6=0观察L1和L2的方程,我们可以发现两个方程中x的系数和y的系数均不相等。

高中数学竞赛平面几何定理

高中数学竞赛平面几何定理

平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥. 高线长:C b B c A abc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=(其中p 为周长一半). 6. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=.8. 角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin .9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11. 弦切角定理:弦切角等于夹弧所对的圆周角.12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13. 布拉美古塔(Brahmagupta )定理: 在圆接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15. 托勒密(Ptolemy )定理:圆接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD .16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一角都小于120°时,在三角形必存在一点,它对三条边所的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一角不小于120°时,此角的顶点即为费马点.18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE=BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,切圆半径为r ,外心与心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31; (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC+=+=+; ②)(31222222CA BC AB GC GB GA ++=++; ③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小; ⑤三角形到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心). 24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 心:三角形的三条角分线的交点—接圆圆心,即心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 心性质:(1)设I 为△ABC 的心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190; (3)三角形一角平分线与其外接圆的交点到另两顶点的距离与到心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的心;(4)设I 为△ABC 的心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则ac b KD IK KI AK ID AI +===; (5)设I 为△ABC 的心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;)2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (CB A Cy By AyC B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其切圆与外接圆半径之和. 27. 旁心:一角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,. 旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子); (2))(21C A I I I C B A ∠+∠=∠; (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论); (4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为切圆半径,)(21c b a p ++=. 29. 三角形中切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有 1=⋅⋅RBAR QA CQ PC BP .(逆定理也成立)31.梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q,∠C的平分线交边AB于R,∠B的平分线交边CA于Q,则P、Q、R三点共线.32.梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线.33.塞瓦(Ceva)定理:设X、Y、Z分别为△ABC的边BC、CA、AB上的一点,则AX、BY、CZ所在直线交于一点的充要条件是AZZB·BXXC·CYYA=1.34.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.35.塞瓦定理的逆定理:(略)36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37.塞瓦定理的逆定理的应用定理2:设△ABC的切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点.38.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).39.西摩松定理的逆定理:(略)40.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.41.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心.43.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P关于△ABC的镜象线.44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.53. 卡诺定理:通过△ABC 的外接圆的一点P ,引与△ABC 的三边BC 、CA 、AB 分别成同向的等角的直线PD 、PE 、PF ,与三边的交点分别是D 、E 、F ,则D 、E 、F 三点共线.54. 奥倍尔定理:通过△ABC 的三个顶点引互相平行的三条直线,设它们与△ABC 的外接圆的交点分别是L 、M 、N ,在△ABC 的外接圆上取一点P ,则PL 、PM 、PN 与△ABC 的三边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.55. 清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的两点,P 点的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.56. 他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2=OQ ×OP 则称P 、Q 两点关于圆O 互为反点)57. 朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中任三点作三角形,在圆周取一点P ,作P 点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.58. 从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59. 一个圆周上有n 个点,从其中任意n -1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60. 康托尔定理1:一个圆周上有n 个点,从其中任意n -2个点的重心向余下两点的连线所引的垂线共点.61. 康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线.62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L 三点,则M 、N 两点的关于四边形ABCD 的康托尔线、L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.64. 费尔巴赫定理:三角形的九点圆与切圆和旁切圆相切.65. 莫利定理:将三角形的三个角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和FA 的(或延长线的)交点共线.68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 尔刚(Gergonne )点:△ABC 的切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222ABC D 4||R d R S S EF -=∆∆.平面几何的意义就个人经验而言,我相信人的智力懵懂的大门获得开悟往往缘于一些不经意的偶然事件.罗素说过:“一个人越是研究几何学,就越能看出它们是多么值得赞赏.”我想罗素之所以这么说,是因为平面几何曾经救了他一命的缘故.天知道是什么缘故,这个养尊处优的贵族子弟鬼迷心窍,想要自杀来结束自己那份下层社会人家的孩子巴望一辈子都够不到的幸福生活.在上吊或者抹脖子之前,头戴假发的小子想到做最后一件事情,那就是了解一下平面几何到底有多大迷人的魅力.而这个魅力是之前他的哥哥向他吹嘘的.估计他的哥哥将平面几何与人生的意义搅和在一起向他做了推介,不然万念俱灰的的头脑怎么会在离开之前想到去做最后的光顾?而罗素真的一下被迷住了,厌世的念头因为沉湎于平面几何而被淡化,最后竟被遗忘了.罗素毕竟是罗素.平面几何对于我的意义只是发掘了一个成绩本来不错的中学生的潜力,为我解开了智力上的扭结;而在罗素那里,这门知识从一开始就使这个未来的伟大的怀疑论者显露了执拗的本性.他反对不加考察就接受平面几何的公理,在与哥哥的反复争论之后,只是他的哥哥使他确信不可能用其他的方法一步步由这样的公理来构建庞大的平面几何的体系的以后,他才同意接受这些公理.公元前334年,年轻的亚历山大从马其顿麾师东进,短短的时间就建立了一个从尼罗河到印度河的庞大帝国.随着他的征服,希腊文明传播到了,开始了一个新的文明时代即“希腊化时代”,这时希腊文明的中心也从希腊本土转移到了,准确地说,是从雅典转移到了埃及的亚历山大城.正是在这个城市,诞生了“希腊化时代”最为杰出的科学成就,其中就包括欧几里德的几何学.因为他的成就,平面几何也被叫作“欧氏几何”.“欧氏几何”以它无与伦比的完美体系一直被视为演绎知识的典,哲学史家更愿意把它看作是古代希腊文化的结晶.它由人类理性不可辩驳的几个极其简单的“自明性公理”出发,通过严密的逻辑推理,演绎出一连串的定理,这些在结构上紧密依存的定理和作为基础的几个公理一起构筑了一个庞大的知识体系.世间事物的简洁之美无出其右.★费马点:法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此介绍.★拿破仑三角形:读了这个题目,你一定觉得很奇怪.还有三角形用拿破仑这个名子来命名的呢!拿破仑与我们的几何图形三角形有什么关系?少年朋友知道拿破仑是法国著名的军事家、政治家、大革命的领导者、法兰西国的缔造者,但对他任过炮兵军官,对与射击、测量有关的几何等知识素有研究,却知道得就不多了吧!史料记载,拿破仑攻占意大利之后,把意大利图书馆中有价值的文献,包括欧几里德的名著《几何原本》都送回了巴黎,他还对法国数学家提出了“如何用圆规将圆周四等分”的问题,被法国数学家曼彻罗尼所解决.据说拿破仑在统治法国之前,曾与法国大数学家拉格朗日及拉普拉斯一起讨论过数学问题.拿破仑在数学上的真知灼见竟使他们惊服,以至于他们向拿破仑提出了这样一个要求:“将军,我们最后有个请求,你来给大家上一次几何课吧!”你大概不会想到拿破仑还是这样一位有相当造诣的数学爱好者吧!不少几何史上有名的题目还和拿破仑有着关联,他曾经研究过的三角形称为“拿破仑三角形”,而且还是一个很有趣的三角形.在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,如下图.这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙、的圆心构成的△——外拿破仑的三角形.⊙、⊙、⊙三圆共点,外拿破仑三角形是一个等边三角形,如下图.△ABC的三条边分别向△ABC的侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙的圆心构成的△——拿破仑三角形⊙、⊙、⊙三圆共点,拿破仑三角形也是一个等边三角形.如下图.由于外拿破仑三角形和拿破仑三角形都是正三角形,这两个三角形还具有相同的中心.少年朋友,你是否惊讶拿破仑是一位军事家、政治家,同时还是一位受异书籍、热爱知识的数学家呢?拿破仑定理、拿破仑三角形及其性质是否更让你非常惊讶、有趣呢?★欧拉圆:三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆〔通常称这个圆为九点圆〔nine-point circle〕,或欧拉圆,费尔巴哈圆.九点圆是几何学史上的一个著名问题,最早提出九点圆的是英国的培亚敏.俾几〔Benjamin Beven〕,问题发表在1804年的一本英国杂志上.第一个完全证明此定理的是法国数学家赛列〔1788-1867〕.也有说是1820-1821年间由法国数学家热而工〔1771-1859〕与赛列首先发表的.一位高中教师费尔巴哈〔1800-1834〕也曾研究了九点圆,他的证明发表在1822年的《直边三角形的一些特殊点的性质》一文里,文中费尔巴哈还获得了九点圆的一些重要性质〔如下列的性质3〕,故有人称九点圆为费尔巴哈圆.九点圆具有许多有趣的性质,例如:1.三角形的九点圆的半径是三角形的外接圆半径之半;2.九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;3.三角形的九点圆与三角形的切圆,三个旁切圆均相切〔费尔巴哈定理〕.。

人教版高中数学选修1.4直角三角形的射影定理ppt课件


C )
D .60 °
3.若关于 x 的一元二次方程 x2+ax+b=0 的两根是一直角 三角形的两锐角的正弦值,且 a+5b=1,则 a、b 的值分别为 ( B ) 3 8 7 12 A.- , B.- , 25 25 5 5 4 9 C.- , D.1,0 25 5 4.在 Rt△ABC 中,∠BAC=90,AD⊥BC 于点 D,若 AC 3 BD = ,则 =( C ) AB 4 CD 3 4 A. B. 4 3 16 9 C. D. 9 16
7.如图所示,四边形ABCD是矩形,∠BEF=90°,①②③④这四个三
角形能相似的是__________.
①③
8.在△ABC中,AC⊥BC,CD⊥AB于点D,AD=27,BD=3,则AC= ______,BC=______,CD=______. 9 10
3 10 9
9.如图所示,在矩形ABCD中,AB=a,BC=b,M 是BC的中点,DE⊥AM,E是垂足.求证:DE= 2 ab
如图所示,已知在Rt△ABC中,∠ACB=90°, CD⊥AB于点D, DE⊥AC于点E,DF⊥BC于点F.求证:AE· BF· AB=CD3.
分析:分别在Rt△ABC、Rt△ADC、Rt△BDC中运用射影定理,再将线段进
行代换,就可以实现等积式的证明.
证明:∵在Rt△ABC中,∠ACB=90°,CD⊥AB,
4a 2 b 2
证明:在 Rt△AMB 和 Rt△ADE 中, ∠AMB=∠DAE, ∠ABM=∠AED=90, ∴△ABM∽△DEA. AB AM ∴ = .∵AB=a,BC=b, DE AD AB AD a b 2ab ∴DE= = = . 2 2 2 AM b 4a b a2 4

人教版高中数学选修4-1《1.4直角三角形的射影定理》

(5)AC、AC在AB边上的射影、 AB之间有什么关系? (6) CD、 BC在AB边上的射影、AC在AB边上的射影 之间有什么关系?
直角三角形的射影定理
(1)文字语言: 直角三角形斜边上的高是 两直角边 在斜边上射影的比例 中项;两直角边分别是它们在 斜边 上射影与 斜边 的比例中项. (2)图形语言: 如图,在 Rt△ABC 中,CD 为斜边 AB 上的高, 则有 CD2= AD·BD , AC2= AD·AB , BC2= BD·AB .
直角三角形的射影定理
教学目标: 1.能正确写出直角三角形的射影定理; 2.能运用直角三角形射影定理解决问题。 教学重点、难点: 用射影定理解决直角三角形的有关问题。
一. 复习引入

射影 垂足 (1)点在直线上的正射影:从一点向一直线所引垂线的 叫做这个点在这条直线上的正射影. (2)线段在直线上的正射影:线段的两个端点 的 正射影 间的线段. ,
[证明] ∵CD 垂直平分 AB, ∴△ACD 和△BDE 均为直角三角形, 且 AD=BD. 又∵DF⊥AC,DG⊥BE, ∴AF· AC=AD2, BG· BE=DB2. ∵AD2=DB2, ∴AF· AC=BG· BE.
反思感悟
将原图分成两部分来看,就可以分别在两个三角形中 运用射影定理,实现了沟通两个比例式的目的.在求解此 类问题时,关键就是把握基本图形,从所给图形中分离出 基本图形进行求解或证明.
B.
2 3
C.

6
D.
5 6
五. 小结
直角三角形的射影定理
(1)文字语言: 直角三角形斜边上的高是 两直角边 在斜边上射影的比例 中项;两直角边分别是它们在 斜边 上射影与 斜边 的比例中项. (2)图形语言: 如图,在 Rt△ABC 中,CD 为斜边 AB 上的高, 则有 CD2= AD·BD , AC2= AD·AB , BC2= BD·AB .

数学选修一公式汇总

数学选修一公式汇总
以下是数学选修一的部分公式汇总:
1. 弧长公式:l = αr,其中α是弧对应的圆心角,r是圆的半径。

2. 圆的周长公式:C = 2πr,其中r是圆的半径。

3. 圆的面积公式:S = πr^2,其中r是圆的半径。

4. 球的表面积公式:S = 4πr^2,其中r是球的半径。

5. 球的体积公式:V = (4/3)πr^3,其中r是球的半径。

6. 圆锥的侧面积公式:S = πrl,其中r是底面圆的半径,l是母线长。

7. 圆锥的全面积公式:S = πr^2 + πrl,其中r是底面圆的半径,l是母线长。

8. 圆柱的侧面积公式:S = 2πrh,其中r是底面圆的半径,h是高。

9. 圆柱的全面积公式:S = 2πrh + 2πr^2,其中r是底面圆的半径,h是高。

10. 正弦定理:a/sinA = b/sinB = c/sinC = 2R (R为外接圆半径)。

11. 余弦定理:a^2 = b^2 + c^2 - 2bccosA。

12. 射影定理:a = (bcosa)/cosB。

这些公式都是解决相应数学问题的重要工具,需要熟练掌握。

高中数学必修一公式大全

高中数学必修一公式大全全文共四篇示例,供读者参考第一篇示例:高中数学必修一公式大全高中数学是我们学习的一门基础学科,掌握好数学知识对我们的学习和未来的发展至关重要。

在高中阶段,数学被划分为必修一和必修二两部分,其中必修一主要包括代数、函数、数列和不等式等内容。

在这篇文章中,我们将为大家整理高中数学必修一的常用公式,希望对大家学习和复习数学知识有所帮助。

一、代数部分公式1. 二次函数一般式:y=ax^2+bx+c2. 一元二次方程求根公式:x=\frac{-b±\sqrt{b^2-4ac}}{2a}3. 重要恒等式:(a+b)^2=a^2+2ab+b^24. 二次方程判别式:Δ=b^2-4ac1. 定义域和值域的定义:- 定义域:函数能够取值的集合- 值域:函数所有可能的输出值的集合2. 奇函数和偶函数的性质:- 奇函数:f(-x)=-f(x)- 偶函数:f(-x)=f(x)3. 函数的复合与反函数:- 复合函数:(f◦g)(x)=f[g(x)]- 反函数:f(f^(-1)(x))=x4. 函数的性质之一致性与不一致性- 一致性:若f(x)=g(x),则等式两边分别代入相同的值时,结果相等- 不一致性:若f(x)=g(x),则一定存在某一值x使得f(x)≠g(x)1. 等差数列求和公式:Sn=\frac{n(a1+an)}{2}2. 等比数列求和公式:Sn=\frac{a1(1-q^n)}{1-q}3. 通项公式:- 等差数列:an=a1+(n-1)d- 等比数列:an=a1*q^(n-1)4. 递推公式:- 等差数列:an=an-1+d- 等比数列:an=an-1*q四、不等式部分公式1. 绝对值不等式的性质:- |a|<b等价于-b<a<b- |a|>b等价于a<-b或者a>b2. 一元一次不等式解法:- 含有绝对值的一元一次不等式:|ax+b|<c等价于-b<ax+b<c和-b>ax+b>-c3. 一元二次不等式解法:- 一元二次不等式ax^2+bx+c<0或者ax^2+bx+c>0的解法以上是高中数学必修一的部分公式,这些公式是我们学习数学时常用到的基础知识,希望大家能够掌握好这些知识,为学习和考试打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学射影定理公式
高中数学射影定理作为一种在平面上将一个复杂几何图形变换成
另一个复杂几何图形的规律,在学习高中数学的过程中,起着重要的
作用。

高中数学射影定理是指:可以将一个大圆盘上一定区域内的任何
一点以等距发射成小圆盘上一定区域内同等方向上的另一点。

就是说,从大圆盘上任意一点出发,可以落到小圆盘上另一点。

这种落点和出
发点关系是一定的,可以用函数表示,所以也叫做射影定理。

高中数学射影定理有一定的公式,即大圆盘上点A(x1, y1),小
圆盘上点A'(x2, y2) 的坐标关系式为:x2/x1=y2/y1。

高中数学射影定理也有许多应用,比如在地理学上可用于表达坐
标变换,在机械学上可用于绘制两种坐标系的转换,在人体动作学上
也可用于表示变换坐标,这极大地丰富了高中数学射影定理的应用范围。

总之,高中数学射影定理以其独特的计算方法和公式极大地便利
了我们对几何变换的考察,在许多方面得到了广泛应用,有着重要的
实用价值。

相关文档
最新文档