天圆地方的计算公式

天圆地方的计算公式
天圆地方的计算公式

天圆地方的计算公式

正方形公式:L n=(a1

2?r sinβn)2+(a1

2

?r cosβn)2+H2

矩形公式:L n=(b1

2?r sinβn)2+(a1

2

?r cosβn)2+H2

?n任意素线长度a1,b1方口内尺寸r 圆的半径βn圆的任意等分角度H 天圆地方的垂直高度

圆的计算有关公式

圆的计算有关公式1、同一个圆中半径与直径的关系。(1)半径是直径的一半。 1d 用字母表示:r= 2 (2)直径是半径的2倍。 用字母表示:d=2r 2、圆的周长的计算有关公式。 (1)圆的周长=圆周率×直径。 用字母表示:c=兀d (2)圆的周长=圆周率×半径×2。 用字母表示:c=2兀r (3)圆的半径=圆的周长÷圆周率÷2。 用字母表示:r=c÷兀÷2 (4)圆的直径=圆的周长÷圆周率。 用字母表示:d=c÷兀 3、半圆的周长的计算有关公式。 (1)半圆的周长=圆周率×直径÷2+直径。 用字母表示:c=兀×d÷2+d (2)半圆的周长=圆周率×半径+半径×2。 用字母表示:c=兀×r+2r (3)圆的半径=半圆的周长÷(圆周率+2)。 用字母表示:c=c÷(兀+2)

(4)圆的直径=半圆的周长÷(圆周率+2)×2。 用字母表示:c=c÷(兀+2) ×2。 n+半径×2。 4、扇形的周长=圆的周长× 360 n+2r 用字母表示:c=2兀r× 360 (n表示圆心角的度数) 5、环形的周长=大圆的周长+小圆的周长。 用字母表示:c=2兀R+2兀r=2兀×(R+r) 6、圆的面积=圆周率×半径的平方。 用字母表示:S=兀r2 7、半圆的面积=圆周率×半径的平方÷2。 用字母表示:S=兀r2÷2 n。 8、扇形的面积=圆周率×半径的平方× 360 n 用字母表示: S=兀r2× 360 (n表示圆心角的度数) 9、环形的面积=大圆的面积-小圆的面积。 用字母表示:S =2兀R2-2兀r2=2兀×(R2-r2) 10、时钟先问题。 (1)一昼夜=一天=24小时 (2) 时针一昼夜转2圈 (3)分针一昼夜转24圈 (4)秒针一昼夜转1440圈

风道设计计算的方法与步骤

风道设计计算的方法与步骤(带例题) 一.风道水力计算方法 风道的水力计算是在系统和设备布置、风管材料、各送、回风点的位置和风量均已确定的基础上进行的。 风道水力计算方法比较多,如假定流速法、压损平均法、静压复得法等。对于低速送风系统大多采用假定流速法和压损平均法,而高速送风系统则采用静压复得法。 1.假定流速法 假定流速法也称为比摩阻法。这种方法是以风道内空气流速作为控制因素,先按技术经济要求选定风管的风速,再根据风管的风量确定风管的断面尺寸和阻力。这是低速送风系统目前最常用的一种计算方法。 2.压损平均法 压损平均法也称为当量阻力法。这种方法以单位管长压力损失相等为前提。在已知总作用压力的情况下,取最长的环路或压力损失最大的环路,将总的作用压力值按干管长度平均分配给环路的各个部分,再根据各部分的风量和所分配的压力损失值,确定风管的尺寸,并结合各环路间的压力损失的平衡进行调节,以保证各环路间压力损失的差值小于15%。一般建议的单位长度风管的摩擦压力损失值为0.8~1.5Pa/m。该方法适用于风机压头已定,以及进行分支管路压损平衡等场合。

3.静压复得法 静压复得法的含义是,由于风管分支处风量的出流,使分支前后总风量有所减少,如果分支前后主风道断面变化不大,则风速必然下降。风速降低,则静压增加,利用这部分“复得”的静压来克服下一段主干管道的阻力,以确定管道尺寸,从而保持各分支前的静压都相等,这就是静压复得法。此方法适用于高速空调系统的水力计算。 二.风道水力计算步骤 以假定流速法为例: 1.确定空调系统风道形式,合理布置风道,并绘制风道系统轴测图,作为水力计算草图。 2.在计算草图上进行管段编号,并标注管段的长度和风量。 管段长度一般按两管件中心线长度计算,不扣除管件(如三通、弯头)本身的长度。 3.选定系统最不利环路,一般指最远或局部阻力最多的环路。 4.选择合理的空气流速。 风管内的空气流速可按下表确定。 表8-3空调系统中的空气流速(m/s)

人类对宇宙的认识过程天圆地方说

1、人类对宇宙的认识过程:天圆地方说、地圆说、地心说、日心说、大爆炸宇宙学说。 2、宇宙的基本特点:由各种形态的物质构成,在不断运动和发展变化。 3、天体的分类:星云、恒星、行星、卫星、彗星、流星体、星际物质。 4、天体系统的成因:天体之间因相互吸引和相互绕转,形成天体系统。 5、天体系统的级别:地月系-太阳系-银河系(河外星系)-总星系 6、日地平均距离: 1.496 亿千米。 7、太阳系九大行星的位置:水金地火(小)、木土天海冥。 8、九大行星按结构特征分类:类地行星(水金地火)、巨行星(木土)、远日行星(天海冥)。 9、地球上生物出现和进化的原因:光照条件、稳定的宇宙环境、适宜的大气和温度、液态水。 10、太阳的主要成分氢和氦。 11、太阳辐射能量的来源核聚变反应。 12、太阳辐射对地球和人类的影响维持地表温度,水循环、大气运动等的动力,人类的主要能源。 13、太阳活动黑子(强弱标志| 光球层)、耀斑(最激烈|色球层)、日珥(色球层) 14、我国太阳能的分布:青藏高原(最高)、四川盆地(最低)。 15、太阳外部结构及其相应的太阳活动光球(黑子)、色球(耀斑)、日冕(太阳风)。 16、太阳黑子的变化周期11 年。 17、太阳活动对地球的影响:① 影响气候② 影响短波通讯③ 产生磁

暴现 18、月相新月、蛾眉月、上弦月、满月、下弦月、残月 19、月相变化规律:上上西西(上弦月),下下东东(下弦月) 20、星期的由来:朔望两弦四相。 21、空间探索阶段的开始1957年10月,原苏联第一颗人造地球卫星上天。 22、空间开发阶段的开始1981 年第一架航天飞机试航成功。 23、我国航天事业的发展史:1970年“东方红”一号、2005年“神舟六号”载人航天试验飞船。 24、宇宙自然资源的分类:空间资源(高真空、强辐射、失重)、太阳能资源、矿产资源。 25、保护宇宙环境清除太空垃圾、加强国际合作。 26、地球的平均半径6371 千米 27、地球的赤道周长 4 万千米 28、纬线和纬度,低纬、中纬、高纬的划分连接东西的线。每1 个纬度为111. 1千米;0-30、30-60、60-90。 29、经线和经度连接南北的线。相对的两条经线组成一个经线圈。 30、东西两半球的划分:西经20°和东经160 °的经线圈。 31、南北两半球的划分:以赤道为界,以北的为北半球,以南的为南半球。 32、南北回归线和南北极圈:23 ° 2和66 ° 3纬线 33、本初子午线0°经线,通过英国伦敦格林尼治天文台原址。 34、南北方向的判断有限方向,北极为最北,南极为最南。

圆的周长公式

各位老师好,我今天说课的内容是苏教版小学数学五年级下册第12章第三课时圆的周长。 一、教材分析 在此之前,学生已经有长方形、正方形周长认识为基础,是前面学习圆的圆的认识的深化,同时也是后面学习“圆的面积”的等相关知识的基础,这段知识起着一个承前启后的作用,是小学几何学习的重要内容。 根据上述教材分析,考虑到五年级学生已有的知识结构及心理特征,我制定了如下教学目标: 1.知道圆周长含义,理解圆周率的意义,掌握圆周率的近似值 2.经历圆周长计算公式的推导过程,掌握计算公式,并能利用公 式解决实际问题 3.通过介绍我国古代数学家祖冲之在圆周率方面的伟大成就,激 发学生的民族自豪感;通过探索公式的过程,感受成功的喜悦根据本班学生的实际情况,我确立本节课的教学重点是:经历圆周长公式的推导过程;教学难点是:对圆周率的认识。 根据教学内容特点和学生的认知规律,我将采取采取“猜想——验证”和有意义地接受相结合的学习方式,借助多媒体以及相关教学道具,激发学生的求知欲望。利用实验法和多媒体辅助教学法引导学生认识圆周率,推导圆周长的计算公式。同时在学习过程中,注意独

立思考、小组合作、动手操作的方法相结合,使学生既能学习知识又能培养动手能力. 在教学前需要准备的是:三张大小不同的圆形硬纸片,细线,多媒体课件,直尺 二、教学过程 我把教学过程分为复习引入、探究周长、巩固练习、回顾总结四个流程。 (一)复习引入 我采用以旧知引新知的建构方法,首先让学生回忆圆的相关知识,接着提问你还想知道圆的哪些知识?这样设计,既能回顾旧知,还有新问题的提炼,有效地唤醒学生对未知的探索欲望,激发学生对课题的思考。 (二)探究周长 我把探究周长又细分为4个部分 1.理解圆的周长 有以前所学的长方形正方形的周长为基础,出示一张圆形纸片,对圆的周长做比划触摸而后进行理解和表达。有效的触摸体验,充分的理性概括,使圆周长概念的建构过程充分而有效。

圆的周长计算公式

《圆的周长计算公式》 万建里 教学《圆的周长计算公式》时,教师可让学生利用圆片、铁丝圈、直尺、彩带等材料,测量圆周长。当学生探讨出不同的测量方法后,教师演示(拿着一个一端系有小球的绳子,手执另一端并不停地甩动形式成圆的轨迹),设疑;你们还能用刚才的方法测量出这个圆的周长吗?然后让学生猜一猜,圆的周长可能与它的什么有关?接着让学生把圆的周长与直径比一比,看看它们有什么关系?并让学生小组合作量出圆的周长和直径,算出圆的周长与直径的比值。通过实践探索,学生不难发现圆的周长与直径之间的倍数关系。这样学生就很自然地推导出圆的周长公式。由此可见,学生借助学具自主操作亲自去经历、去实践,获得的圆的周长公式,比教师直接灌输的知识理解得更深刻、记忆更牢固。 首先教师为学生提供了几个大小不一的圆,材质也不一样,有的是用纸板做的,有的是用软布做的,有的是用铁丝围成,有的画在纸上,要求学生分组活动测量出这些圆的周长,每一小组桌上都有教师预先放在桌上的材料工具,包括绳子、纸条、彩笔、尺子、剪刀等。小组活动时,学生纷纷把材料一一选出,逐样试验。一会用绳子绕,一会用纸条围,一会在桌上滚圆一会用剪刀比划着……在学生作讨论、动手活动中产生了许多简易又灵活的方法:生1:圆周是曲线不能直接用尺量,先用纸条围纸板圆一周,再把纸条展开后用尺量。生2:也能用绳子绕。生3:先在纸板圆周上用彩笔做一点标记,把标记放在尺的0刻度上,向前滚动一周,读出刻度。生4:把铁丝圈剪开,再拉直了测量。生5:沿桌边滚一周后直接测量桌边也行。生6:我把布圆对折再对折下去,这条曲线就能用尺小心的量了。这所有的方法归结起来就是绕圈法、滚动法、化曲为直法,而且这些方法得到了很多小组的赞同与证实。 丰富的实践源自巧妙的设计这个活动只是《圆的周长》一课中的一部分,教学目标是为了使学生掌握一些生活中的简易又灵活的测量圆周长的方法,是下面测量圆周长和直径、探求他们比值关系的基础。教师设计安排的这个小组活动充分体现了数学新课程表准中强调的“向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能……”这一理念。现代教育主张“要让学生动手做科学,而不是只用耳朵听科学”。因此,在教学中要加强学生动手操作能力的培养,把操作同观察、思维、语言表达有机结合,使学生逐步从具体的操作有效的转化为内部智力活动。特别是教师提供的不同材质的圆,深化了知识难度。每一个圆都是一个新问题,它们向学生设置了一个个具体的问题情境,激起学生寻找适当方法解决不同问题的愿

风管阻力计算

通风管道阻力计算 对于空调通风专业来说,我们最终的目的是让整个系统达到或接近设计及业主的要求。对于整套空调系统而言主要应该把握几个关键的参数:风量、温度、湿度、洁净度等。可见无论空调是否对新风做处理,我们送到房间的风量是一定要达到要求。否则别的就更不用考虑了。管道内风量主要是由风管内阻力影响的。 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。下边为标准工况且没有扰动的情况下的计算,如实际不是标准工况且有扰动需要进行修正。 一:摩擦阻力(沿程阻力)计算 摩擦阻力(沿程阻力)计算一:(公式推导法) 根据流体力学原理,无论矩形还是圆形风管空气在横断面形状不变的管道内流动时的摩擦阻力(沿程阻力) 按下式计算:ΔPm=λν2ρL/2D 以上各式中: ΔPm———摩擦阻力(沿程阻力),Pa。 λ————摩擦阻力系数【λ根据流体不同情况而改变不具有规律性,不可用纯公式计算,只能靠实验得到许多不同状态的半经验公式: 其中最常用的公式为:,《K-管壁的当量绝对粗糙度,mm (见表1-1);D-风管当量直径,mm(见一下介绍) ;Re雷诺数判断流体流动状态的准则数,(见表1-1);其实λ一般由莫台图所得,见图】 莫台曲线图

表1-1 一般通风管道中K、Re、λ的经验取值 ν————风管内空气的平均流速,m/s; 【其中ν=Q/F;Q为管内风量m3/S,F为管道断面积M2 ;其中矩形风管F=a×b;圆形风管F=πD2 /4,一般设计也直接选风速见表1-2】表1-2 一般通风系统中常用空气流速(m/s) ρ————空气的密度,Kg/m3;【在压力B0=101.3kPa、温度t0=20℃、一般情况下取ρ=1.205Kg/m3; 见表1-3】 L ———风管长度,m 【横断面形状不变的管道长度】 D———风管的当量直径,m; 【矩形风管流速当量直径:;流量当量直 径:;圆形风管D为风管直径】 摩擦阻力(沿程阻力)计算二:(比摩阻法)

天方地圆计算方法

EXCEL在天圆地方制作中的应用 论文作者:孙国勋沈标祥陶阳(原创) 摘要:本文介绍了如何利用Excel电子表格自动计算不同规格的天圆地方的放样参数。同时着重讲述了从公式推导到Excel内部函数的编写以及电子表格的具体制作与应用整个过程。 关键词:Excel 表格天圆地方参数 在天圆地方的制作放样过程中大部分是重复的投影与计算,既费时又费力。同时随着计算机的广泛普及和使用者水平的不断提高,人们开始用计算机来代替人工解决一些实际问题。笔者运用Excel电子表格对不同规格天圆地方的放样参数(画展开图时所需的连线长)进行精确计算,从而大大提高了施工速度,增强了企业的创新能力。 1.天圆地方及其放样过程概述 天圆地方又名方圆变径管,被广泛应用于圆断面与矩形断面的风管与设备间的连接。如圆通风管与风机出口,空调机组与风机进口等场合的连接。其放样过程简要如下: (1)先将上圆均分为若干等分,并将上圆各等分点与矩形角点依次相连,即将其分成若干个小三角形(如图1)。 (2)利用直角三角形定理先求出其在投影面上的长,再利用该值与天圆地方的高求出各连线空间实长。并同时求出圆上任意两个相邻点间的弧长。 (3)用(2)中求得的空间实长与圆上任意两个相邻点间的弧长作展开图(如图2)。

由上述步骤可知传统放样过程的确较为繁琐,当天圆地方为偏心或制作精度要求较高的情形时则更为繁琐。因此,寻找其快捷方式具有一定的现实意义。 2. 计算公式的推导 本文以两个方向偏心的天圆地方为例进行推导,以求出天圆地方放样参数的通用公式。假设现需制作一天圆地方,其上圆半径为r,矩形长为a 宽为b,其上下端面在长边方向上的偏心矩为e1,在短边方向上的偏心矩e2,天圆地方的高为h,同时结合实际将上圆等分数定为n(n一般为4的倍数,图中取为12)。 2.1 建立三维坐标 本文通过建立三维坐标将原来所需的两次计算减为经一次计算即可得出结果。先以X轴平行于矩形长边,Y轴平等于矩形短边,Z轴过圆心并平行于天圆地方的高,建立三维直角坐标系。同时根据实际情况将圆周进行n等分,并将各等分点与矩形角点相连(如图1)。则各相关点的坐标分别为:

圆的周长公式推导

课题:圆的周长公式推导 教学内容:圆的周长公式推导。 教学重点:周长公式的推导过程。 教学难点:灵活地运用圆的周长公式。 学情分析:学生在学习本课之前,已经学习了长方形和正方形周长和面积的计算,经历了用不同方式测量物体长度等学习活动,已经具备了探索 周长公式的知识基础,但学生对一些组合图形的周长概念比较模糊。 学习目标:1、通过动手操作,引导学生发现圆的周长与直径之间的关系,推导出圆周长的计算公式,并能运用公式解决一些简单的实际问题。 2、理解圆周率的意义,掌握圆周率的近似值,并介绍我国数学家对 圆周率的研究史实,向学生进行民族自豪感的教育。 3、理解、掌握圆周长的计算公式,能正确地计算圆的周长。 4、鼓励学生积极参与探索、交流等活动,在解决问题的过程中进行 简单的有条理的思考,获得成功的体验。 设计理念:1、提倡自主、合作、探究的学习方式。 2、课堂是民主的、活动的、自由的,教师是学习活动的参与者、组 织者和引导者。 教学准备:圆形铁丝、直尺、测绳、圆的模型、圆规、课件 教学流程:导入——探究新知——巩固练习——总结 教学过程: 一.引入 1.实践引题。 画圆,理解周长的含义,指出圆的周长。如果第二个圆一周长度(周长)要求比刚才这个圆的周长大,画的时候该怎么办?(半径变大,直径变大。)圆周长的长短与什么有关呢? 2.揭示课题,板书课题。 二.教学展开 1、按课本问题中的插图和讨论题,分4人小组进行讨论,师巡回指导。 2、出示用铁丝围成的圆,求它的周长,有些什么办法?(绳子绕一周,量绳子;铁丝剪断,化曲为直。) 出示一个圆形,求它一周的长度,还有什么办法?(引出在尺上滚动周长的方法。)在滚时要注意什么?(滚动时很容易原地打转,测量时容易有误差,所以要多次测量求平均值) 3、分组操作:用滚动(将圆片拿起,放在尺上滚)或用绳子绕一周,测绳子长度的方法,分别测出直径是2㎝,3㎝,4㎝,5㎝的圆的周长,填表计算,观察直径与圆周长的关系。(然后分小组汇报,由多组汇报都得到周长是直径的3倍多一点,让学生深刻体验到周长与直径的关系从而引出圆周率)

风道的设计计算方法

风道的设计计算方法 风道的设计计算有以下几种: 1.流速控制法 流速控制法的特点是,先按技术经济要求选定风管的流速,再根据风量确定风管的断面尺寸和阻力。 2.压损平均法 压损平均法也称:当量阻力法。这种方法的特点是在已知的情况下将总压头按干管长度平均分配给各个部分,再根据各部分的风量和分配到的作用压头。计算管道断面尺寸。该方法适用于风机压头已定,以及进行分支管道压损平衡等场合。 3.静压复得法 当流体的全压一定时,风速降低则静压增加。静压复得法就是利用这种管段内静压和动压的相互转换,由风管每一分支处复得的静压来克服该管段的阻力,根据这一原则确定风管的断面尺寸。此方法适用于高速空调系统的设计计算。 工程上应用最多的是流速控制法,下面主要介绍用这种方法进行风道系统的设计计算。 假定流速法风道设计计算方法 假定流速法的设计计算步骤如下: 1.绘制系统轴测图,标注各管段长度和风量。 2.选定最不利环路(一般指最长或局部构件最多的分支管路) 3.选定流速,确定断面尺寸。, 根据资料(推荐流速,及噪声控制)选定流速,当风量较大时,可选取高限。根据给定风量和选定流速,计算管道断面尺寸,并使其符合通风管道统一规格,再用规格化了的断面尺寸及风量,算出风道内实际流速。 4.计算各管段单位长度摩擦阻力和局部阻力,阻力计算应从最不利环路开始。 5.计算各段总阻力,并检查并联管路的阻力平衡情况。 6.根据系统的总阻力和总风量选择风机。(安全因素风压增加15%,考虑漏风风量增加10%)均匀送风管道 均匀送风管道通常有两种形式,一种是风道断面变化,各侧的面积相等;另一种是风道断面不变,而改变各侧孔面积的大小。后者虽保证均匀送风,但每个风口的出流速不等;而前者既可保证均匀送风,每个风口的出流速又相等。

圆概念公式定理

1.圆的周长C=2πr=πd 2.圆的面积S=πr2 3.扇形弧长l=nπr/180 4.扇形面积S=nπr2/360=rl/2 5.圆锥侧面积S=πrl 〖圆的定义〗 几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。 轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。 集合说:到定点的距离等于定长的点的集合叫做圆。 〖圆的相关量〗 圆周率:圆周长度与圆的直径长度的比叫做圆周率, 值是 3.141592653589793238462643383279502884197169399375105820974944 5923078164062862089986280348253421170679..., 通常用π表示,计算中常取3.14为它的近似值(但奥数常取3或3.1416)。 圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。 圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。 内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。 扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。 〖圆和圆的相关量字母表示方法〗 圆—⊙半径—r 弧—⌒直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S 〖圆和其他图形的位置关系〗 圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。

管道阻力损失计算

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数;

v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。

根据圆的周长公式解决实际问题

根据圆的周长公式解决实际问题 教学目标: 1、使学生进一步巩固圆的周长的计算方法,提高计算圆的周长的熟练程度。 2、使学生能根据圆的周长的直径或半径,进一步理解圆的半径、直径和周长的关系,提高学生应用知识解决简单实际问题的能力。 3、进一步培养学生分析、判断和推理等思维能力。 教学重难点:熟练计算圆的周长 教学过程: 一、复习 1、口述:圆的周长计算公式 2、算圆的周长 d=3l厘米 d=8dm r=2m r=2.5m 问;你能根据怎样的方法算出这些圆的周长吗? 3、引入新课 二、教学新课 1、一个圆形花坛的周长是25.12分米 ,这个花坛的直径是多少? 已知什么?要求什么? 对照公式看一看,已知哪个数要求什么数? 根据已知条件和要求的问题,你认为用什么方法解答比较好?为什么? 根据什么来列方程? 练习,说说方程是怎样列出来的? 2、用算术方法解答 怎样直接求出花坛的直径呢 25.12÷3.14 为什么可以这样列式? 三、巩固练习 1、练一练 (1)用一根31.4分米的铁丝围成一个正方形,正方形的边长是多少?如果围成一个圆,圆的直径是多少? 分组练习,说说是怎样想的? 如果已知圆的周长要求半径,应该应用哪个计算公式来解答?

2、练一练(2)一根铁丝正好折成一个正三角形,它的边长为31.4厘米,如果同样长的铁丝围成一个圆,这个圆的半径是多少厘米? 四、小结 学习了什么内容?圆的直径、半径和周长之间有什么关系?应用圆的周长计算公式能解决哪些问题? 教学内容:本内容是六年级上册第11—15页圆的周长。 一、教材分析 1、教学主要内容:探索并掌握圆的周长的计算方法,阅读圆周率发展的历史。 2、本节课内容的地位:圆的周长是在学生认识圆、掌握长方形和正方形周长的基础上,对圆的周长作进一步研究。学生掌握了圆周长的计算方法,就为学习圆的面积公式的推导、圆柱和圆锥的学习打下了基础。 3、教材编写特点: (1)开展测量活动,探索圆周率的意义及圆周长的计算方法。 教材引导学生开展测量实验活动,通过实际测量与计算,研究发现圆的周长与直径的关系,从而引出圆周率并得出圆的周长计算公式。 (2)经历探索圆周长计算公式的过程,初步渗透“以直代曲”的极限思想。 在数学阅读“圆周率的历史”中,教材介绍了运用正多边形逼近圆、计算圆周率的方法,使学生体会“以直代曲”的极限思想。 4、教学内容的核心思想:转化、归纳、函数和极限的思想。 二、学生分析 1、学生已有知识经验:在本课教学之前,学生已经认识了圆,会求正方形和长方形等直线段图形的周长,对图形周长已经很清楚了。 2、学生已有生活经验:由于圆的普遍存在和广泛应用,以及部分学生经过自己的课外学习,已经知道了圆周长的计算公式,但对于这个公式的形成过程缺乏了解,只是处于知其然而不知其所以然的状态,主要原因是对圆周率的意义并不理解。因此本节课针对这一点来确定教学目标和教学重难点,通过引导经历探索圆周长计算公式的过程,深入理解圆周率的意义。 3、学生学习该内容可能的困难:对圆周率的意义和“以直代曲”的极限思想的理解。

与圆有关的阴影面积的计算

辅导材料:与圆有关的阴影面积的计算 准备阶段: 1. 圆的面积公式:S r 2.其中r 为圆的半径. 1 2. 半圆的面积公式:S 半圆-r 2. 2 2 3. 扇形的面积公式:S 扇形n 其中r 为扇形的半径,n 为扇形的半径. 360 1 4?扇形的面积公式(另):S 扇形尹.其中r 为扇形的半径,> 为扇形的弧长. n r 180 n r 1 r — Ir . 180 2 5. 关于旋转: (1) 复习旋转的性质? (2) 会画出一个图形旋转后的图形. (3) 旋转的作用:通过旋转,有时候我们可以把分散的几何条件集中起来,使题目 呈现出整体上的特点. 该作用也常用于与圆有关的阴影面积的计算? 6. 重点介绍:转化思想 在解决数学问题时,把复杂问题简单化,把一般问题特殊化,把抽象问题具体 化等的思想方法,叫做转化思想. 7?怎样求与圆有关的阴影的面积? (1) 利用圆、半圆以及扇形的面积计算公式? 2 r ,1 360 2 . n r 1 --S 扇形 360 2

(2)利用整体与部分之间的关系. (3)采用整体思想求不规则图形的面积,一般将其转化为规则图形的和差来解决,具体可以通过平移、旋转或割补的形式进行转化

实战阶段: ★ 1.( 2015河南)如图(1)所示,在扇 形AOB 中,/ AOB=90,点C 为OA 的 中点,CE 丄OA 交弧AB 于点E.以点O 为圆心,OC 的长为半径作弧CD 交OB 于点D.若OA=2,则阴影部分的面积为 解析:图(1)中阴影所在图形为不规 则图形,可以利用整体与部分之间的关 系的方法求解,即采用整体和差的方 法. 解:连结OE. ??? OA=OB=OE v CE 丄 OA ???△ COE 为直角三角形 v 点C 为OA 的中点 1 1 d 二 OC -OA -OE 1 2 2 ???在 Rt △ COE 中,/ CEO=30 ???/ EOC=60 vZ AOB=90 ? / BOE=30 在Rt △ COE 中,由勾股定理得: CE ,OE 2 OC 2 . 22 12 3 S 阴影 S COE S 扇 形OBE S 扇形OCD 1 1 30 22 2 90 12 2 360 360 3 2 12 ★ 2. (2015.贵州遵义)如图(2)所示, 在圆心角为90°的扇形OAB 中半径 OA=2 cm,C 为弧AB 的中点,D 、E 分 别是OA 、OB 的中点,则图中阴影部分 的面积是 __________ .

风机计算_通风管道阻力计算

通风管道阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中 λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l ————风管长度,m Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。 矩形风管的摩擦阻力计算 我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种; 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。 二、局部阻力 当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。 局部阻力按下式计算: Z=ξν2ρ/2 ξ————局部阻力系数。 局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施: 1. 弯头

风道系统的阻力平衡自动计算解析

风道系统的阻力平衡自动计算 摘要:风道系统的阻力平衡直接影响着系统风量的实际分配值及技术经济指标。本文介绍的风道系统阻力平衡自动计算,不但可确保了设计的准确性,还可有效提高设计效率。 关键词:风道系统环路阻力平衡自动计算 一、引言 在空调、通风系统中,由于同一系统的风管是相互连接的一个整体,因而必然遵循各支路阻力平衡规律,当风管系统的结构形式、管道尺寸一经确定,在一定的风机作用下,各段的风量是按阻力平衡规律自动分配的。在设计计算时未经阻力平衡计算,会导致系统实际风量分配与设计不符。当然我们也可以通过调节风阀来分配风量,但这样一来就又使非最不利环路的风压多余。所以在设计计算时考虑各环路的阻力平衡具有现实意义。 然而,不少设计人员在进行风道水力计算及阻力平衡过程中仅仅凭经验估算或查图手算,这样费时费力还达不到理想效果。笔者所设计的计算软件以EXCEL为工作平台,用VBA语言为开发工具,从而确保了程序的执行效率。 二、阻力自动平衡计算的基本步骤 风道系统阻力平衡自动计算的执行过程基本延用常规设计的计算步骤,主要如下:

①将各节点间的逻辑关系、管段的相关参数依次输入并保存,然后根据技术要求初步选定各管段的假定风速; ②根据假定风速自动计算管段当量水力直径及阻力损失; ③用节点逆寻法自动查找系统各环路的路径及阻力损失,并确定系统最不利环路; ④对非不利环路进行自动阻力平衡。 ⑤对计算结果进行校核。 以上过程中只有工作量不大①、⑤需人工干预,而其他步骤全部由计算机自动完成。从而不但确保其计算速度及准确性,而且还可根据需要进行适当的手工调整。 三、设计要点 要实现风道系统的阻力平衡自动计算过程,主要体现在以下几个核心要点上。

天圆地方计算方法

天圆地方面积计算方法 天圆地方是我们机械加工的一个经典的例子,一般干过钳工的人都知道,还有上过技校的人可能也都学过,可是还有很多初学的人不知道,我们要计算的是天圆地方一种样子,如下图: 我们计算的这个部件具体情况如下:

1.地方的方是S=4380mm,方的高度是H=28 mm。 2.地方上表面到天圆顶面的垂直距离是H1=1170 mm。 3.天圆的圆的直径是D=3170 mm。 求的是在天圆顶面和地方上表面连接处的面积,这个面积分成了八块,两种形状,一种是圆台的外圈的四分之一,是由两条直线和天圆顶圆的周长的四分之一圆弧组成,是带弧状的倒三角。第二种是由地方上表面的边线和地方边线和边线的交点和天圆顶面圆四分之一处象限点的连线组成一个等腰三角形,我们要计算的就是这两种形状的面积,周长,展开图,和展开图的各个要素的具体情况。 第一种,如下:

此图是第一种形状,带弧状的倒三角展开后的形状,为什么是这样的形状呢,是因为带弧状的倒三角是圆台的四分之一面积,下面是圆台展开图:

我们要计算的是圆台的母线长和大圆锥的母线长,(我们说的大圆锥是地方对角线为底圆直径的圆锥)我们设大圆锥的母线长为R1,圆台的母线长为r1,圆台上圆锥的母线为r ,圆台高度为H1=1170mm ,大圆锥底面直径为R1=4380×2=6194。 求圆台的母线和大圆锥的母线: 1122222r H D S =+??????- r1=1912 2 /61942/317012=R r R1=(r2+r1)=(r2+1912) 3097 1585191222=+r r r2=2004 R1=3916 弧形三角形的圆弧周长为天圆周长的四分之一,L1=1/4L L=∏×D=3.14×3170≈9952 L1=1/4L=9952÷4=2488 小圆锥周长为L2 L=2×∏×r2=2×3.14×2004≈12585 圆弧三角形的展开面积在小圆锥的展开面积中占的的比例为Q ,只要知道圆弧三角形的圆弧在小圆锥的周长中占多少,因为圆一周是360度,先求得占多少比例就能知道圆弧三角形的圆弧在小圆锥中的圆心角A 是多少, Q=2488/12585≈0.198

与圆有关的相关公式

与圆有关的相关公式 1、圆的半径: 2、圆的直径: 圆的半径=圆的直径÷2 圆的直径=圆的半径×2 或=圆的周长÷圆周率÷2 或=圆的周长÷圆周率 3、圆的周长: 4、圆的面积: 圆的周长=圆的直径×圆周率圆的面积=圆的半径2×圆周率或=圆的半径×2×圆周率或=(圆的直径÷2)2×圆周率 或=(圆的周长÷圆周率÷2)2×圆周率5、圆柱、圆锥的底面积: 圆柱、圆锥的底面积=底面半径2×圆周率 或=(底面直径÷2)2×圆周率 或=(底面周长÷圆周率÷2)2×圆周率 6、圆柱的侧面积: 圆柱的侧面积=底面周长×高 或=底面直径×圆周率×高 或=底面半径×2×圆周率×高 7、圆柱的表面积: 圆柱的表面积=圆柱的侧面积+圆柱的底面积×2 或=底面周长×高+(底面周长÷圆周率÷2)2×圆周率×2 或=底面直径×圆周率×高+(底面直径÷2)2×圆周率×2 或=底面半径×2×圆周率×高+底面半径2×圆周率×2 8、圆柱的体积: 圆柱的体积=底面积×高 或=底面半径2×圆周率×高 或=(底面直径÷2)2×圆周率×高 或=(底面周长÷圆周率÷2)2×圆周率×高 9、圆锥的体积: 圆锥的体积=底面积×高 1 或=底面半径2×圆周率×高× 3 1 或=(底面直径÷2)2×圆周率×高× 3 1 或=(底面周长÷圆周率÷2)2×圆周率×高× 3

周长公式 长方形的周长=长×2+宽×2或=(长+宽)×2 C=2a+2b 或=2(a+b) 正方形的周长=边长×4 C=4a 平行四边形的周长=四条边的长度之和 梯形的周长=上底+下底+两条腰长 三角形的周长=三条边的长度之和 圆的周长=直径×圆周率或=半径×2×圆周率 C=πd 或=2πr 面积公式 长方形的面积=长×宽 S=ab 正方形的面积=边长×边长 S=a 2 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2或=2 1 (上底+上底)×高 S=(a+b)h 三角形的面积=底×高÷2或=2 1 底×高 圆的面积=半径的平方×圆周率

通风管道阻力的计算与公式

风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中 λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l————风管长度,m Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。 矩形风管的摩擦阻力计算

我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种; 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。 二、局部阻力 当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。 局部阻力按下式计算: Z=ξν2ρ/2 ξ————局部阻力系数。 局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施: 1.弯头 布置管道时,应尽量取直线,减少弯头。圆形风管弯头的曲率半径一般应大于(1~2)倍管径;矩形风管弯头断面的长宽比愈大,阻力愈小;矩形直角弯头,应在其中设导流片。 2.三通

椭圆周长和面积计算公式

一、椭圆周长、面积计算公式 根据椭圆第一定义,用a表示椭圆长半轴的长,b表示椭圆短半轴的长,且a>b>0。 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 二、椭圆常数由来及周长、面积公式推导过程 (一)发现椭圆常数 常数在于探索和发现。椭圆三要素:焦距的一半(c),长半轴的长(a)和短半轴的长(b)。椭圆三要素确定任意两项就确定椭圆。椭圆三要素其中两项的某种数学关系决定椭圆周长和面积。 椭圆的周长取值范围:4ab>0)。定义3:T=K1+f,T为椭圆周率”。有聪明的网友提出“定义:T=k1+f没有依据”,现就此问题作出如下分析说明。 (一)

中考复习与圆有关的计算

中考总复习——与圆有关的计算 ●教学目标 一、知识目标 1.弧长计算公式及扇形面积计算公式 2.圆锥的侧面积公式,表面积公式 二、能力目标 1.掌握弧长及扇形面积公式后,能用公式联想到与圆锥侧面和关系关掌握圆锥侧面积公式 2.能用弧长公式及扇形面积公式,求阴影部分的周长及面积 三、情感目标 1.体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力. ●教学重点 1.经历复习弧长及扇形面积计算公式的过程. 2.理解圆锥侧面与底面的联系 3.会用公式解决问题. 4. 会用两个不同的式子表示圆锥侧面展开图的弧长,会用两种不同的式子表示圆锥的侧面积 ●教学难点 1.应用弧长及扇形面积计算公式解决问题 2.根据圆锥侧面与底面的联系解决问题 3. 求阴影面积 ●教学过程 一、知识点复习 同学们,今天我们要进行的是中考总复习的第24课时,与圆有关的计算。主要内容分为弧长及扇形面积,圆锥,阴影面积的求法这三方面内容。而这些计算都离不开公式。所以,我们先来把基本知识点复习一下。 (接下来由教师引导,学生回答). 考点一:弧长及扇形面积 1.如果弧长为l,圆心角为n°,圆的半径为R,那么弧长的计算公式为:?Rn=l1802.由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.若 2?Rn扇形的圆心角为n°,所在圆的半径为R,弧长为l,面积为S,则S=或3601S=lR 2(注:公式中的n表示1°的圆心角的倍数,所以不写单位) 考点二:圆锥 1.如果把圆锥的侧面沿着它的一条母线剪开,那么它的侧面展开图是一个扇形.这个扇形的弧长等于底面的周长.这个扇形的面积可以用弧长l和底面半径r表示为________

相关文档
最新文档