金属结晶

合集下载

纯金属的结晶

纯金属的结晶
纯金属的结晶

结晶:金属从液态转变为固态(晶态)的过程 一次结晶:液态→固体晶态 二次结晶(重结晶):固体晶态→另一种固体晶态
1
纯金属的结晶
结晶: 液体 → 晶体 凝固: 液体 → 固体(晶体 或 非晶体)
液体
晶体
短程有序
长程有序
2
纯金属结晶的条件
1)热力学条件(必须过冷)
T
理论结晶温 度 开始结晶温度
G G
G G
液、固态金属的自由能-温度曲线
过冷度ΔT 越大,结晶的驱动力也越大。
7
问题:
固态金属熔化时是否会出现过热?为什么?



不一定出现过热。 熔化时,液相若与汽相接触,当有 少量液体金属在固相表面形成时, 就会很快复盖在整个表面(液体金 属总是润湿同一种固体金属), 表面张力平衡: 实验指出 熔化时表面能之间的关系 说明在熔化时,自由能的变化Δγ (表面)<0,即不存 在表面能障碍,也就不必过热。实际金属多属于这种情 况。 如果固体金属熔化时液相不与汽相接触,则有可能使固 体金属过热,然而,这在实际上是难以做到的。


8
2)结构条件(结构起伏)


在液态金属中的微小范围内,存在着紧密接触规则排列的 原子集团,称为近程有序。但在大范围内原子是无序分布 的。 液态金属结构的特点是,“远程无序,近程有序”。 在晶体中大范围内的原子却是有序排列的,称为远程有序。 不断变化着的近程有序原子集团称为结构起伏,或称为相 起伏,这是金属结晶重要的结构条件。

结构起伏的尺寸大小与温度有关,温度越低,结构起伏的 尺寸愈大。凝固时的晶核就是在结构起伏的基础上形成, 故又将其称为“晶胚”。在液体中的晶胚为形核准备了结 构上的条件。

纯金属的结晶

纯金属的结晶

❖ 结晶的必要条件:有一定过冷度 ❖ 影响过冷度的因素: ➢ 金属的本性:金属不同,过冷度不同; ➢ 金属的纯度:纯度越高,过冷度越大;
➢ 冷却速度:冷却速度越大,过冷度越大, 实际结晶温度越低;
2)结晶潜热:
金属在结晶时,从液态转变为固态时会 放出能量,此能量称为结晶潜热。
从图中可以看出:当液态金属的温度达 到结晶温度T1时,由于结晶潜热的释放, 补偿了散失到周围环境中的热量,所以 在冷却平曲线上出现了平台,平台延续 的时间就是结晶过程所需的时间。
交点处的温度用T0 (Tm)表示: 当T= Tm时,GS=GL,两相可以同时共存,具有 同样的稳定性,既不熔化也不结晶,处于热力 学平衡状态,所以Tm就是理论结晶温度,即熔 点。
当T<Tm时,GS<GL ,所以液态金属可以自发 地转变为固态金属,而两相的自由能差△G就构 成了金属结晶的驱动力。
当T>Tm时,GS>GL ,所以固态金属可以自发 的熔化为液态。
②结r晶>自rK动时进,行晶。胚长大, △G降低,
③ r=rK时,晶胚可能长大,也可 能胚消称失为。 界晶核半径rK:
No Image
❖过冷度对形核的影响:
➢ 增大过冷度,可减小临界晶核半径,使形核数 量增多。
➢ △Tk :临界过冷度 ➢ 实际过冷度△T△Tk时,rmax rk,不能形核
综度上 时所 ,述 液, 态只 金有属当才能T<结T晶0时。,即存在一定的过冷
dT0,离界面越远,温液度相越中低的,T过。冷度 dx 形成5:潜热释过放冷、。成分
❖ 过冷度与结晶驱动力( △G )的关系:
其中,Lm:熔化潜热,△T:过冷度;Tm:熔点;
❖看出: △G 与△T成正比; ❖结论:要获得结晶过程所需的驱动力△G ,一

金属的结晶与凝固

金属的结晶与凝固

-Fe
-Fe
2.3 碳钢中杂质
2.3 碳钢中杂质
2.3 碳钢中杂质
杂质:碳钢在冶炼和加工过程中,由原材料、 冶炼方法、工艺操作等原因,而残留或带入钢中 的其他金属和非金属元素以及化合物等。
锰Mn
在碳钢中的含量一般小于0.8%, 是有益元素。 可固溶,也可形成高熔点MnS(1600℃)夹杂物。 主要作用: ①溶于铁素体, 起固溶强化作用; ②使硫的有害作用减弱; ③MnS在高温下具有一定的塑性,不会使钢发 生热脆,加工后硫化锰呈条状沿轧 的 树 枝 晶
2.1 结晶过程
铸锭(件)的组织: 液态金属被浇注到锭模中 便得到铸锭,而注入到铸型 模具中成型则得到铸件。 铸锭(件)的宏观组织通 常由三个区域组成。
2.1 结晶过程
表层细晶区: 浇注时,由于冷模壁产 生很大的过冷度及异质形 核作用,使表面形成一层 很细的等轴晶粒区。 柱状晶区: 由于模壁温度升高,结晶放出潜热,使细晶区 前沿液体的过冷度减小,形核困难。加上模壁的 定向散热,使已有的晶体沿着与散热相反的方向 生长而形成柱状晶区。
2.1 结晶过程
晶核长大是具有方向性的渐进过程。一般沿过 冷度大的方向生长,直到液相消耗完毕。 在正温度梯度下,晶核长大以平面状态推进, 称为均匀长大。在负温度梯度下,由于晶核棱角 处的散热条件好,生长快,先形成一次轴,一次 轴又会产生二次轴…,称为树枝状长大。
2.1 结晶过程
金 属 的 树 枝 晶 金 属 的 树 枝 晶
溶化 结晶
T1
T0
2.1 结晶过程
自发形核:液态金属中的原子排列不规则,但 也存在着一些原子排列规则的极小原子团,时聚 时散,称为晶坯。在实际结晶温度下,经孕育期 时间后,有些晶坯开始稳定并长大,形成晶核。 异质形核:更为普遍的是液体中存在的高熔点 固态杂质形成的晶核。 晶核形成后便向各个方 向生长,同时又有新的晶 核生成。直到液体完全消 失。每个晶核最终长成一 个晶粒,晶粒相接触后形 成晶界。

金属结晶的必要条件

金属结晶的必要条件

金属结晶的必要条件
金属结晶的必要条件有:
一、空间热能
1. 水平温度:金属结晶过程受温度控制,达到特定温度有利于结晶,因此需要确保水平温度在要求范围内。

2. 时间:金属结晶需要一个可观的时间,以给予金属结晶所必须的热能。

二、晶体变质
1. 结晶的区域:金属结晶有其特定的区域,它需要晶体变质以引起结晶的发生,这就要求把熔融金属诱导至晶体变质区。

2. 晶体变质的温度:金属结晶过程中需要不同的温度,以最大程度实现晶体变质,即需要把温度选择在正确的高度。

三、低度抗氧化条件
1. 氧化:结晶过程中,需要确保空气中氧气浓度较低,以防止金属出现氧化影响熔融金属结晶过程。

2. 热量:金属结晶需要得到适当的热量,但是热量太多会受到氧化的影响,因此需要确保结晶的热量处于一定的范围。

四、去除杂质
1. 去除残留杂质:熔融金属在结晶过程中会吸收一定量的杂质,这些杂质最终会限制熔融金属的形成,因此必须在结晶前去除残留杂质。

2. 控制成分浓度:熔融金属在添加相应的成分后,需要控制成分的浓度,以获得满足结晶要求的金属材料。

五、良好的耐腐蚀性
良好的耐腐蚀性是提升金属结晶质量和使用寿命的关键,因此在结晶的过程中,有必要保证金属的耐腐蚀性。

金属晶体结构及结晶

金属晶体结构及结晶
★ 亚晶粒是组成晶粒的尺寸很小,位向差也很小(1 ~2)的小 晶块(或称“亚结构”)。亚晶粒之间的交界面称亚晶界 。亚晶界的原子排列也不规则,也产生晶格畸变。
亚晶界示意图
Cu-Ni 合金中的亚结构
金属的晶体结构
①使实际金属的强度远远小于理想金属 ②晶界处位错密度高,使其局部强度 强度 硬度 塑性 韧性 硬度
金属的晶体结构
(二)晶体学基础
把晶体中每个原子抽象成一个点,用直线连接,构成的空
间格架称为晶格。
组成晶格的最小几何组成单元是晶胞。a、b、c是晶格常 数,单位是10-10m(Å); 晶胞各边夹角以a、b及g表示。
Z
b g X ba a源自c Y原子排列模型晶



简单立方晶体
金属的晶体结构
(二)晶体学基础

物质由原子组成。原子的结 合方式和排列方式决定了物 质的性能。 原子、离子、分子之间的结 合力称为结合键。它们的具 体组合状态称为结构。 自然界中的固态物质按其原 子(或分子、离子)的聚集 状态可分为晶体和非晶体两 大类。
C60


金属的晶体结构

晶体:原子(原子团或离子)在三维空间按一定规则 周期性重复排列的固体。如固态金属、钻石、冰等。 晶体具有各向异性。 非晶体:原子(原子团或离子)在三维空间中无规则 排列的物质,也称为玻璃态。如松香、玻璃、塑料等。
[111]方向上,弹性模量E=290000Mpa ;[001]方向上,弹性模量E=135000Mpa
金属的晶体结构
(五)单晶体的各向异性 单晶体具有各向异性的特征。但工业上 实际应用的金属材料,因为属于多晶体,一
般不具有各向异性的特征。如工业纯铁在任
何方向上其弹性模量E均为2.1×105MPa。

金属的晶体结构与结晶

金属的晶体结构与结晶

晶体缺陷并不是静止不变的,而是随着一定 温度和加工过程等各种条件的改变而变动的
第三节、非金属晶体
• 在晶体中,根据原子间的键不同,一般可分为四类主要晶 体,即金属晶体、离子晶体、共价键晶体和分子晶体。
一、离子键
常见的离子晶体结构如氯化钠晶体结构,这种结构基本上是面 心立方晶格,钠离子失去一个电子成为带正电荷的钠离子,氯离 子获得一个电子成为带负电荷的氯离子。形成离子键。 离子键结合力大,离子晶体的硬度高,但脆性大。
第四节,金属结晶
一、 凝固与结晶的概念
物质由液态冷却转变为固态的过程称为凝固。 如果凝固的固态物质是原子(或分子)作有规则排列的晶体, 则这种凝固又称为结晶。
液态金属与固态金属的主要差别在于:液态金属无 一定形状,易流动,原子间的距离大,但在一定温 度条件下,在液态金属中存在与固态金属的“远程 排列”不同的“近程排列”。
向同性。
2、晶体结构的基本知识
(1)晶格
为了清楚的表明原子在空间的排列规律,人为地将原子看作一个 点,再用一些假想线条,将晶体中各原子的中心连接起来,便形成 了一个空间格子,这种抽象的、用于描述原子在晶体中规则排列方 式的空间几何图形称为结晶格子,简称晶格。晶格中的每个的点称 为结点。晶格中各种不同方位的原子面,称为晶面。
在常温下,晶粒越小,材料的强度越强,塑性、韧性越好
单晶体 其内部的晶格位向完全一致
(二)、晶体的缺陷
晶体内部的某些局部区域,原子的规则排列受到干扰而破坏,不象理想 晶体那样规则和完整。把这些区域称为晶体缺陷。这些缺陷的存在,对金 属的性能(物理性能、化学性能、机械性能)将产生显著影响,如钢的耐 腐蚀性,实际金属的屈服强度远远低于通过原子间的作用力计算所得数值。

第三章 纯金属(晶体)的凝固

形核率可表示为: N= KN1. N2 ,
K为比例常数。
形核率与温度(或过冷度)之间的关系如图3-5所示。
过冷度较小时,形核率 主要受形核功因子控制; 当过冷度继续增大时, 形核率受扩散的几率因 子所控制。
图3-5 形核率与温度的关系
有效形核温度:
有些易流动的液体,形 核率随温度下降至某值T*突 然显著增大,该温度就称为 均匀形核的有效形核温度。
a.连续长大 粗糙界面,由于界面上约有一半的原子位置空着,
故液相的原子可以进入这些位置与晶体结合起来,晶体 便连续地向液相中生长,这种生长方式为垂直生长。垂 直生长的生长速率较高。
图3-10’ 粗糙界面
b. 二维形核 二维晶核是指一定大小的单分子或单原子的平面薄
层。如图3-11所示。这种生长机制主要是在光滑界面上进 行。形成二维晶核需要形核功,这种机制下晶体的生长 速率很慢。a.swf
实验结果表明,有效形
核过冷度△T*≈0.2 Tm(Tm用 绝 对 温 度 表 示 , △ T* = Tm-
T*),如图3-6表示。
图3-6 金属的形核率N与过 冷度△T的关系。
二、 非均匀形核 除非在特殊的试验条件下,液态金属的凝固大都是非
均匀形核。
非均匀形核体系自由能的变化也由体积自由能和表面 自由能两部分组成。如图3-7所示。
图3-12 螺型位错台阶机制 示意图
图3-13 螺型位错台阶机制示意图
三、纯金属的生长形态
纯金属凝固时的生长形态不仅与液-固界面的微观结 构有关,而且取决于界面前沿液相中的温度分布情况,温 度分布可有两种情况:正的温度梯度和负的温度梯度。
a.在正的温度梯度下 dT/dx>0,结晶潜热只能通过固相而散出,相界面的

金属结晶知识点总结

金属结晶知识点总结一、金属结晶概述金属是由金属元素组成的单一晶体或是由几种金属元素组成的合金。

金属晶体的结构是由金属原子以一定的方式排列组合而成,而金属的结晶结构则是由晶体结构决定的,晶体结构又受到原子间的相互作用力的影响。

金属的结晶结构对金属的性能起着决定性的影响,因此,对金属结晶的研究具有重要的理论和实际意义。

二、金属晶体结构金属的晶体结构可以按照原子排列的周期性进行分类,目前已知的金属结晶结构有十四种。

其中,最常见的金属结晶结构有立方晶系、六方晶系和逆六方晶系。

不同的金属晶体结构对金属的性能影响也不尽相同。

1. 立方晶结构立方晶结构是最简单的金属结晶结构,它的晶胞是一个立方体。

在立方晶结构中,原子的排列是最为紧密的,因此具有较高的密度和硬度。

常见的具有立方晶结构的金属有铝、铜、镁等。

2. 六方晶系结构六方晶系结构也称为六角密堆结构,其晶胞形状为六方柱体。

六方晶系结构中的原子排列方式具有特殊性,因此具有优异的性能。

六方晶系结构的常见金属有锌、钛、镉等。

3. 逆六方晶系结构逆六方晶系结构是六方晶系结构的变体,其晶胞结构类似于六方晶系结构,但是原子的排列方向不同。

逆六方晶系结构中金属的性能与六方晶系结构类似,也具有较好的性能。

三、金属晶体缺陷金属晶体不可避免地存在着各种缺陷,这些缺陷对金属的性能、性质以及应用产生重要的影响。

金属晶体缺陷主要包括晶界、点缺陷和线缺陷。

1. 晶界晶界是指晶粒之间的分界面,是晶体中晶粒之间的分界面。

晶界是金属晶体中的一种特殊结构,具有较高的能量和活性。

晶界对金属的塑性变形和强韧性有着重要的影响,因此研究晶界对金属材料的性能改善具有重要的科学意义。

2. 点缺陷点缺陷是指晶体中原子位置的缺失或错位,包括空位、间隙原子、间隙偏移原子等。

点缺陷对晶体的塑性变形、相变和力学性能具有重要的影响。

点缺陷在金属材料的强化、退变形、晶界迁移等方面起着重要的作用。

3. 线缺陷线缺陷是指晶体中排列有序的原子排列序列中出现的缺陷,包括蠕滑带、蠕滑线、夹层等。

纯金属结晶的基本规律

纯金属结晶的基本规律一、引言金属材料是人类历史上最早使用的材料之一,具有良好的导电、导热、机械性能等特点,因此被广泛应用于各个领域。

而金属结晶是金属材料中最基本的组织形态,其结构和性质对金属材料的力学性能、物理性能等都有着重要影响。

因此,研究纯金属结晶的基本规律对于深入理解金属材料的性质和应用具有重要意义。

二、纯金属结晶的定义纯金属结晶是指由同种原子组成的晶体,在不同温度下经过凝固或加工后形成的具有一定形状和大小的结构体。

纯金属结晶可以分为单晶、多晶和多孪晶三种类型。

三、纯金属结晶的形成机制1.核心生长机制:当液态金属降温到一定温度时,会出现过饱和现象,此时在液态中就会出现微小团簇。

这些团簇在进一步降温过程中逐渐增大,并且在团簇表面形成晶核,晶核周围的原子开始有序排列,形成晶体,最终形成单晶或多晶。

2.固相生长机制:当金属材料在室温下进行变形加工时,金属中的原子会发生位错和滑移等变化,导致晶体内部结构发生变化。

这种结构变化会引起局部应力集中,从而促进新的晶核形成。

随着加工次数的增加,新的晶核逐渐长大并与周围的晶粒相互交错,最终形成多孪晶。

四、纯金属结晶的基本规律1.单晶生长方向规律:单晶是由一个完整的、没有任何缺陷和杂质的结构体组成。

在单晶生长过程中,由于表面张力作用等因素影响,在某些方向上生长速度较快,在其他方向上则较慢。

因此,在单晶中会出现一些特定方向上生长速度较快的区域,这些区域被称为“取向区”。

2.多孪晶取向规律:多孪晶是由多个孪生组分组合而成的结构体。

在多孪晶中存在着一些特定的取向规律,即同一晶粒内的各个孪生组分在晶格取向上具有一定的关系。

这种关系可以通过X射线衍射等手段进行测量和分析。

3.晶界结构与性能规律:晶界是指不同晶粒之间的交界面,其结构和性质对金属材料的力学性能、物理性能等都有着重要影响。

在纯金属中,晶界主要由原子错配和原子缺陷等因素引起。

因此,在金属材料中研究晶界结构和性质对于深入理解金属材料的力学性能、物理性能等方面具有重要意义。

第二章纯金属的结晶ppt课件

分开,没有过渡层。 光学显微镜下,光滑界面由了若
干曲折的小平面构成,所以又称小平面界面。
b. 粗糙界面 (Rough interface):原子尺度下,界面两侧有几
个原子层厚度的过渡层,固液原子犬牙交错排列。光学
显微镜下,这类界面是平直的,所以又称非小平面界面。
42
2.5 晶核的长大
界面结构
光滑界面
液态金属中不仅存在结构起伏,而且存在能量起伏,也即
液态金属不同区域内的自由能也并不相同,因此形核功可
通过体系的能量起伏来提供。当体系中某一区域的高能原
子附着在临界晶核上,将释放一部分能量,一个稳定的晶
核即可形成。
34
2.4 晶核的形成
形核率 (Nucleation rate)
单位时间在单位体积液体内形成晶核的数目称为形核率。
22
2.3 金属结晶的结构条件
液态金属相起伏的特点
23
2.4 晶核的形成
前面谈到了结晶的热力学条件和结构条件。但事实上,
许多过冷液体并不立即发生凝固结晶。如液态高纯Sn过
冷5~20℃时,经很长时间还不会凝固。说明凝固过程还
存在某种障碍。
因此,还必须进一步研究凝固过程究竟如
何进行的(机理问题)?进行的速度如何
靠液态金属的能量变化,由晶胚直接形核的过程。
非均匀形核:又称异质形核或非自发形核。是指依附液体中现有固
体杂质或容器表面形成晶核的过程。实际液态金属中,总有或多或
少的杂质,晶胚总是依附于这些杂质质点上形成晶核,实际的结晶
过程主要是按非均匀形核方式进行。
25
2.4 晶核的形成
均匀形核 (Homogeneous nucleation)
作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档