半导体制造工艺_07扩散(上)剖析
半导体器件的制造工艺

半导体器件的制造工艺半导体器件是现代电子技术中不可或缺的重要组成部分,它们被广泛应用于计算机、通信、医疗、军事等领域。
而半导体器件的核心是芯片,芯片上集成着数亿个晶体管等器件,通过这些器件控制电流,完成信息的处理和传输。
那么,半导体器件的制造工艺是怎样的呢?首先,要制造一颗芯片,首先需要选择适合的半导体材料,例如硅、镓、锗等。
目前,硅是最常用的半导体材料,因为它的物理性质稳定、易于加工,并且具有较好的电学特性。
在材料选择后,需要洁净化处理,为后续的工艺步骤做好准备。
接下来,是制造半导体芯片的关键工艺——沉积。
沉积是指将物质沉积在半导体表面上,用于制造各种器件。
主要有化学气相沉积(CVD)、分子束外延(MBE)等技术。
其中,CVD是最常用的沉积工艺,它通过在高温下将气体分子分解成原子,然后使其在半导体表面沉积,形成一层薄膜。
完成沉积后,需要进行光刻工艺,在芯片表面上覆盖一层光阻,然后利用光刻机将需要制造的器件图形映射到光阻层上,最后使用化学溶液将未被覆盖的部分刻蚀掉,形成器件的图形。
接下来,就是最难的工艺:离子注入。
这一步需要将芯片表面注入所需要的杂质元素,通过控制注入剂量和质量比等参数,改变半导体材料的电学性质。
这一步需要高度精确的控制,因为注入的元素数量一定要精确,否则器件无法正常工作。
完成离子注入后,需要进行电极制作。
这一步需要将金属电极制作在芯片表面,为芯片提供电流。
这个过程非常重要,因为涉及到电极材料与半导体的粘附力、金属材料与半导体的反应性等问题。
注入的杂质元素本身也可以用作电极材料。
最后,进行封装和测试。
封装是将芯片封装在保护性的外壳中,以防止对芯片器件的损伤。
测试是检查芯片工作的正常性和稳定性,通常包括温度测试、电性测量和反复使用测试等。
然而,在制造半导体器件的过程中,还有很多其他的技术问题需要解决,例如微影工艺、微细加工技术、超精密仪器和设备等。
这些都是保证半导体芯片能够得到完美制造的重要技术要素。
八大半导体工艺顺序剖析

八大半导体工艺顺序剖析八大半导体工艺顺序剖析在现代科技领域中,半导体材料和器件扮演着重要的角色。
作为电子设备的基础和核心组件,半导体工艺是半导体制造过程中不可或缺的环节。
有关八大半导体工艺顺序的剖析将会有助于我们深入了解半导体制造的工作流程。
本文将从简单到复杂,逐步介绍这八大工艺的相关内容。
1. 排版工艺(Photolithography)排版工艺是半导体制造过程中的首要步骤。
它使用光刻技术,将设计好的电路图案转移到硅晶圆上。
排版工艺需要使用光刻胶、掩膜和曝光设备等工具,通过逐层叠加和显影的过程,将电路图案转移到硅晶圆上。
2. 清洗工艺(Cleaning)清洗工艺在排版工艺之后进行,用于去除光刻胶和其他污染物。
清洗工艺可以采用化学溶液或高纯度的溶剂,保证硅晶圆表面的干净和纯净。
3. 高分辨率电子束刻蚀(High-Resolution Electron BeamLithography)高分辨率电子束刻蚀是一种先进的制造技术。
它使用电子束在硅晶圆表面进行刻蚀,以高精度和高分辨率地制作微小的电路图案。
4. 电子束曝光系统(Electron Beam Exposure Systems)电子束曝光系统是用于制造高分辨率电子束刻蚀的设备。
它具有高能量电子束发射器和复杂的控制系统,能够精确控制电子束的位置和强度,实现微米级别的精细曝光。
5. 高能量离子注入(High-Energy Ion Implantation)高能量离子注入是半导体器件制造中的一项重要工艺。
通过将高能量离子注入到硅晶圆表面,可以改变硅晶圆的电学性质,实现电路中的控制和测量。
6. 薄膜制备与沉积(Film Deposition)薄膜制备与沉积是制造半导体器件的关键工艺之一。
这个工艺将薄膜材料沉积在硅晶圆表面,包括化学气相沉积、物理气相沉积和溅射等方法。
这些薄膜能够提供电介质、导电材料或阻挡层等功能。
7. 设备和工艺完善(Equipment and Process Optimization)设备和工艺完善的步骤是优化半导体制造工艺的关键。
半导体工艺流程简介ppt

不输入信号,检测电路的直流电学特性
静态测试
输入信号,检测电路的交流电学特性
动态测试
输入特定信号,检测电路的功能是否正常
功能测试
集成电路测试方法
用于设计、模拟、分析和优化集成电路测试
EDA工具
用于手动测量信号波形和参数
万用表和示波器
用于自动生成测试向量,提高测试效率
自动测试生成系统
集成电路测试工具
工业和自动化
.2.1 产品应用
.2.2 产品维护
清洁
为了保持半导体的性能和稳定性,需要定期清洁其表面和内部。
09
.3 设计思路和方案介绍
VS
在设计方案之前,需要明确客户的需求和目标,包括产品类型、性能指标、应用场景等。
制定技术路线
根据客户需求,分析技术难点和重点,制定切实可行的技术路线,明确关键技术及创新点。
将半导体表面暴露于热化学环境中,例如水蒸气和氧气,以形成一层保护膜(即氧化膜),从而保护半导体表面不受进一步的化学腐蚀。
氧化
热处理工艺
06
半导体制造步骤-5
封装是半导体制造的最后一步,通常包括晶圆切割、晶粒封装、测试与检验等。切割后的晶圆会被送到封装区域,进行减薄、切割、贴装、引线焊接等步骤。
封装步骤
将光刻胶上的电路图案转移到硅片上,形成模具。
制作模具
光刻工艺
去除多余物质
01
利用化学反应或离子束刻蚀等方法,去除半导体芯片表面多余物质。
刻蚀工艺
刻蚀掩膜
02
利用光刻胶作为掩膜,将半导体芯片表面不需要被刻蚀掉的地方遮盖住。
形成结构
03
将半导体芯片表面不需要被掩膜遮盖住的地方进行刻蚀,形成电路结构。
半导体知识:扩散工艺基础知识讲解

半导体知识:扩散工艺基础知识讲解扩散技术目的在于控制半导体中特定区域内杂质的类型、浓度、深度和PN结。
在集成电路发展初期是半导体器件生产的主要技术之一。
但随着离子注入的出现,扩散工艺在制备浅结、低浓度掺杂和控制精度等方面的巨大劣势日益突出,在制造技术中的使用已大大降低。
3.1 扩散机构3.1.1 替位式扩散机构这种杂质原子或离子大小与Si原子大小差别不大,它沿着硅晶体内晶格空位跳跃前进扩散,杂质原子扩散时占据晶格格点的正常位置,不改变原来硅材料的晶体结构。
硼、磷、砷等是此种方式。
3.1.2 填隙式扩散机构这种杂质原子大小与Si原子大小差别较大,杂质原子进入硅晶体后,不占据晶格格点的正常位置,而是从一个硅原子间隙到另一个硅原子间隙逐次跳跃前进。
镍、铁等重金属元素等是此种方式。
3.2 扩散方程N / t = D*2N / x2N=N(x,t)杂质的浓度分布函数,单位是cm-3D:扩散系数,单位是cm2/s加入边界条件和初始条件,对上述方程进行求解,结果如下面两小节所诉。
3.2.1 恒定表面浓度扩散整个扩散过程中,硅片表面浓度N S保持不变N(x,t)=N S erfc(x/(2*(Dt)1/2))式中erfc称作余误差函数,因此恒定表面浓度扩散分布符合余误差分布。
3.2.2.限定源扩散杂质源限定在硅片表面薄的一层,杂质总量Q是常数。
N(x,t)=(Q/(pDt)1/2)*exp(-X2/4Dt)exp(-X2/4Dt)是高斯函数,因此限定源扩散时的杂质分布是高斯函数分布。
由以上的求解公式,可以看出扩散系数D以及表面浓度对恒定表面扩散的影响相当大3.2.3 扩散系数扩散系数是描述杂质在硅中扩散快慢的一个参数,用字母D表示。
D大,扩散速率快。
D与扩散温度T、杂质浓度N、衬底浓度N B、扩散气氛、衬底晶向、缺陷等因素有关。
D=D0exp(-E/kT)T:绝对温度;K:波尔兹曼常数;E:扩散激活能D0:频率因子3.2.4 杂质在硅中的固溶度杂质扩散进入硅中后,与硅形成固溶体。
半导体制造工艺流程解读

半导体制造工艺流程解读第一章半导体制造概述 (2)1.1 半导体材料简介 (2)1.2 半导体器件分类 (2)第二章晶圆制备 (3)2.1 晶圆生长 (3)2.2 晶圆切割与抛光 (4)第三章光刻工艺 (4)3.1 光刻原理 (4)3.2 光刻胶与光刻技术 (5)3.2.1 光刻胶 (5)3.2.2 光刻技术 (5)3.3 光刻后处理 (5)第四章离子注入 (5)4.1 离子注入原理 (6)4.2 离子注入工艺流程 (6)第五章化学气相沉积 (6)5.1 化学气相沉积原理 (6)5.2 化学气相沉积工艺 (7)第六章物理气相沉积 (8)6.1 物理气相沉积原理 (8)6.2 物理气相沉积工艺 (8)6.2.1 真空蒸发沉积 (8)6.2.2 电子束蒸发沉积 (8)6.2.3 磁控溅射沉积 (9)6.2.4 分子束外延沉积 (9)第七章湿法刻蚀 (9)7.1 湿法刻蚀原理 (9)7.2 湿法刻蚀工艺 (10)第八章等离子体刻蚀 (11)8.1 等离子体刻蚀原理 (11)8.2 等离子体刻蚀工艺 (11)第九章掺杂与扩散 (12)9.1 掺杂原理 (12)9.1.1 掺杂剂的选择 (12)9.1.2 掺杂方法 (12)9.2 扩散工艺 (12)9.2.1 扩散原理 (13)9.2.2 扩散工艺流程 (13)9.2.3 扩散工艺参数 (13)第十章封装与测试 (13)10.1 封装工艺 (13)10.1.1 封装概述 (13)10.1.2 芯片贴装 (14)10.1.3 塑封 (14)10.1.4 引线键合 (14)10.1.5 打标 (14)10.2 测试方法与标准 (14)10.2.1 测试方法 (14)10.2.2 测试标准 (14)10.2.3 测试流程 (14)第一章半导体制造概述1.1 半导体材料简介半导体材料是现代电子技术的基础,其导电功能介于导体和绝缘体之间。
半导体材料的导电功能可以通过掺杂、温度、光照等外界条件进行调控。
扩散工艺知识..

扩散⼯艺知识..第三章扩散⼯艺在前⾯“材料⼯艺”⼀章,我们就曾经讲过⼀种叫“三重扩散”的⼯艺,那是对衬底⽽⾔相同导电类型杂质扩散。
这样的同质⾼浓度扩散,在晶体管制造中还常⽤来作欧姆接触,如做在基极电极引出处以降低接触电阻。
除了改变杂质浓度,扩散的另⼀个也是更主要的⼀个作⽤,是在硅平⾯⼯艺中⽤来改变导电类型,制造PN 结。
第⼀节扩散原理扩散是⼀种普通的⾃然现象,有浓度梯度就有扩散。
扩散运动是微观粒⼦原⼦或分⼦热运动的统计结果。
在⼀定温度下杂质原⼦具有⼀定的能量,能够克服某种阻⼒进⼊半导体,并在其中作缓慢的迁移运动。
⼀.扩散定义在⾼温条件下,利⽤物质从⾼浓度向低浓度运动的特性,将杂质原⼦以⼀定的可控性掺⼊到半导体中,改变半导体基⽚或已扩散过的区域的导电类型或表⾯杂质浓度的半导体制造技术,称为扩散⼯艺。
⼆.扩散机构杂质向半导体扩散主要以两种形式进⾏:1.替位式扩散⼀定温度下构成晶体的原⼦围绕着⾃⼰的平衡位置不停地运动。
其中总有⼀些原⼦振动得较厉害,有⾜够的能量克服周围原⼦对它的束缚,跑到其它地⽅,⽽在原处留下⼀个“空位”。
这时如有杂质原⼦进来,就会沿着这些空位进⾏扩散,这叫替位式扩散。
硼(B )、磷(P )、砷(As )等属此种扩散。
2.间隙式扩散构成晶体的原⼦间往往存在着很⼤间隙,有些杂质原⼦进⼊晶体后,就从这个原⼦间隙进⼊到另⼀个原⼦间隙,逐次跳跃前进。
这种扩散称间隙式扩散。
⾦、铜、银等属此种扩散。
三.扩散⽅程扩散运动总是从浓度⾼处向浓度低处移动。
运动的快慢与温度、浓度梯度等有关。
其运动规律可⽤扩散⽅程表⽰,具体数学表达式为: N D tN 2?=?? (3-1)在⼀维情况下,即为: 22xN D t N ??=?? (3-2)式中:D 为扩散系数,是描述杂质扩散运动快慢的⼀种物理量;N 为杂质浓度;t 为扩散时间;x 为扩散到硅中的距离。
四.扩散系数杂质原⼦扩散的速度同扩散杂质的种类和扩散温度有关。
半导体制造工艺之扩散原理概述
I+VSis
表示晶格上 的Si原子
As受间隙和空位 扩散两种机制控 制,氧化时的扩 散受影响较小
4、发射极推进效应(Emitter Push effect)
Phosphorus
Boron
✓ 实验现象:在P(磷)发射区下的B扩散比旁边的B扩散快 ,使得基区宽度改变。
✓ A+IAI,由于发射区内大量A(P)I的存在使得反应向左进 行,通过掺杂原子A(P)向下扩散并找到晶格位置的同时, 释放大量的间隙原子I,产生所谓“间隙原子泵”效应,加快 了硼的扩散。
例: 预淀积: 950 oC 通源 10-20 分钟,N2 再分布: 1100 - 1200 o C干氧+湿氧+干氧
2)液态源磷扩散
2、液态源扩散
舟
利入用高载温气扩(散如反应N2管),通杂过质液蒸态汽杂在质高源温,下携分带解着,杂并质与蒸硅汽表进 面硅原子发生反应,释放出杂质原子向硅中扩散。
1)液态源硼扩散
• 源 硼酸三甲脂 B[(CH3)O]3
• 在500 oC 以上分解反应 B[(CH3)O]3 B2O3 + CO2 + H2O + ... 2B2O3 + 3Si 3SiO2 + 4B
3)所需离子注入的杂质剂量 可以推算出
该剂量可以很方便地用离子注入实 现在非常薄的范围内的杂质预淀积
4)假如采用950 C热扩散预淀积而非离子注入 此时,B的固溶度为2.5×1020/cm3,扩散系数D=4.2×10-15 cm2/s 该预淀积为余误差分布,则 预淀积时间为
即使
但是预淀积时间过短,工艺无法实现。应改为离子注入!
1 )OED:对于原子B或P来说,其在硅中的扩散可以 通过间隙硅原子进行。氧化时由于体积膨胀,造成大 量Si间隙原子注入,增加了B和P的扩散系数
半导体工艺基础 第六章 扩散
kT D q
(6-7)
§6.3 半导体中杂质原子扩散的浓度分布
一、扩散方程(费克第二定律)
N ( x, t ) 2 N ( x, t ) D t x 2
(6-8)
式中假定D为常数,与杂质浓度N( x, t )无关,x 和 t 分别表 示位置和扩散时间。针对不同边界条件求出方程(6-8)的解, 可得出杂质浓度N的分布,即N与 x 和 t 的关系。
五、影响杂质浓度分布的其它因素 前面得出的扩散后的杂质分布是采用理想化假设的结果, 实际上理论分布与实际分布存在一定的差异,包括: 1、二维扩散 实际扩散中,杂质通过窗口垂直向硅中扩散的同时,也将 在窗口边缘沿表面进行横向扩散,横向扩散的距离约为纵向扩 散距离的75%~80%,因此考虑到横向扩散,要得到实际的杂质 分布,须解二维或三维扩散方程。由于横向扩散的存在,实际 扩散区域大于由掩模版决定的尺寸,此效应直接影响到 VLSI的 集成度。
N(x, 0)= 0
x>0
(6-11)
由上述边界条件与初始条件可求出扩散方程( 6-8 )的解, 即恒定表面源扩散的杂质分布情况:
2 N ( x, t ) N S 1
x 2 Dt 0
e
2
x d N S erfc 2 Dt (6-12)
Pi v0e
Ei / kT
(6-3)
可见,跳跃率随温度指数式地增加。室温下,硅中间隙杂质以每 分钟一次的速度跳跃着,在典型的扩散温度(900℃~1200℃)下, 其跳跃速度是很快的。间隙杂质的扩散系数为:
D a v0e
2
Ei / kT
(6-4)
二、替位式扩散 占据晶格位置的外来原子称为替位杂质。只有当替位杂质 的近邻晶格上出现空位,替位杂质才能比较容易地运动到近邻 空位上。在晶格位置上的替位杂质,相对势能最低,而间隙位 置处的势能最高。替位杂质要从一个位置运动到近邻格点上, 也需要越过一个势垒 Es ,势垒高低位置与间隙杂质的正好相 反。 替位杂质的运动与间隙杂质相比,更为困难。首先要在近 邻出现空位(形成一个空位所需能量为Ev ),同时还要依靠热 涨落获得大于势垒高度Es 的能量才能实现替位运动。替位杂质 的跳跃率应为近邻出现空位的几率乘上跳入该空位的几率,即:
半导体制造工艺扩散下
半导体制造工艺扩散下什么是扩散?扩散是指在纯净的半导体材料中,将杂质元素或掺杂剂引入到晶体结构中的过程。
这个过程是通过在半导体晶体表面或体内引入少量的掺杂剂进行实现的。
半导体制造工艺半导体制造工艺是通过一系列的步骤,将半导体材料转变为半导体器件的过程。
制造半导体器件的过程包括以下几个步骤:1.材料生长:在高温、高压的环境下,将纯净的半导体材料转化为单晶半导体材料。
2.清洗和切割:将生长好的晶体材料进行清洗和切割,使它可以被用于制造半导体器件。
3.晶体质量控制:可以使用X射线和透射电子显微镜来检查晶体中的结构缺陷和掺杂浓度,以确保晶体质量达到要求。
4.掺杂和扩散:在半导体晶体中引入杂质元素或掺杂剂。
这个过程被称为扩散。
5.清洗:在制造过程中,器件表面可能会有残留物或杂质,必须通过清洗和处理来去除它们。
6.沉积:在器件表面沉积物质,可以用于制造晶体管的隔离极或其他有用的结构。
7.光刻:在器件上涂覆光刻胶,照射一定的光线后刻出芯片上的结构。
8.腐蚀:通过腐蚀,可以去除芯片中不需要的部分,并产生所需要的形状和尺寸。
以上步骤不一定是按照讲述的顺序进行的,但所有的步骤都非常重要,以确保芯片制造的成功。
半导体制造工艺中扩散的重要性扩散是半导体器件制造的重要步骤。
掺杂浓度的控制非常重要,因为它直接影响到器件的性能。
掺杂剂的扩散与半导体晶体的结构紧密相关。
掺杂剂的扩散速度通常取决于实验条件,例如掺杂剂种类、半导体材料的制备方式、温度和时长等。
扩散的过程可以通过计算机模拟来进行精确控制。
在扩散过程中,掺杂剂会与纯净半导体材料发生化学反应,并改变材料中的电子结构。
这些化学反应会改变半导体材料的导电性能和其他物理特性。
扩散的应用扩散是半导体器件制造过程中的关键步骤。
通过控制扩散过程,可以精确控制器件的性能,使其具有所需的导电性能、开关特性和噪声特性。
扩散还可以用于制造其他应用中需要的材料。
例如,在硅晶体管中,掺杂硼和砷可以提高材料的导电性能。
半导体制造工艺技术(PPT 68页)
半导体制造技术 by Michael Quirk and Julian Serda
电信学院微电子教研室
目标
通过本章的学习,将能够:
1. 描述出多层金属化。叙述并解释薄膜生长的三个阶段。 2. 提供对不同薄膜淀积技术的慨况。 3. 列举并描述化学气相淀积(CVD)反应的8个基本步骤,包
Figure 11.10
电信学院微电子教研室
CVD 反应中的压力
如果CVD发生在低压下,反应气体通过边 界层达到表面的扩散作用会显著增加。这会增 加反应物到衬底的输运。在CVD反应中低压的 作用就是使反应物更快地到达衬底表面。在这 种情况下,速度限制将受约于表面反应,即在 较低压下CVD工艺是反应速度限制的。
半导体制造技术 by Michael Quirk and Julian Serda
电信学院微电子教研室
MSI时代nMOS晶体管的各层膜
顶层
垫氧化层
Poly
n+
金属前氧化层 侧墙氧化层
栅氧化层
ILD 场氧化层
n+
p- epi layer
氮化硅
氧化硅
氧化硅 多晶
p+
金属
金属
p+
n-well
p+ silicon substrate
Photo 11.3
电信学院微电子教研室
CVD 化学过程
• 高温分解: 通常在无氧的条件下,通过加热化 合物分解(化学键断裂);
2. 光分解: 利用辐射使化合物的化学键断裂分解; 3. 还原反应: 反应物分子和氢发生的反应; 4. 氧化反应: 反应物原子或分子和氧发生的反应; • 氧化还原反应: 反应3与4地组合,反应后形成两