1 六 比例尺的意义

合集下载

部编六年级上数学《比例尺》周威教案PPT课件 一等奖新名师优质课获奖比赛教学设计西南师大

部编六年级上数学《比例尺》周威教案PPT课件 一等奖新名师优质课获奖比赛教学设计西南师大

《比例尺》教学设计第一课时大生小学周威【教材内容】西南师大2011课标版小学数学六年级上册第5单元比例尺【学情与教材分析】“比例的应用”是在学生已经学习了比和比例的意义、比例的基本性质之后的一个教学内容。

“比例尺”是运用数学解决生活问题的一个典型范例之一。

本节课,要通过在生活中的应用,把握比例尺的内涵——图上距离与实际距离的比,认识两种不同的比例尺——数值比例尺和线段比例尺。

比例尺的内涵是教学的一个重点,学生在学习时,对于比例尺的本质——比例尺是一个比,往往容易因为名称的误导产生歧义,对于由比例尺的规定形式——前项或后项为1,而产生的计算上的易错点,都是教学中需要特别关注的。

【教学目标】1、知识与技能:使学生理解比例尺的意义,学会求比例尺。

2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。

3、情感态度与价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。

【教学重难点】教学重点:正确理解比例尺的含义,学会求比例尺。

教学难点:运用比例尺的有关知识,解决生活中的一些实际问题。

【教学准备】多媒体课件【教学过程】(一)、激发兴趣,感受比例尺师:首先老师给大家出一道脑筋急转弯:我们的家乡在重庆开州,开州到重庆大约310千米,坐车从开州到重庆大约要4小时,可是一只甲壳虫从开州爬到重庆只用了4秒,你们知道是怎么回事吗?生:在地图上爬行的。

师:同学们反应真快,甲壳虫爬的是从开州到重庆的图上距离,而车走的是从开州到重庆的实际距离。

出示中国地图、重庆地图、开州地图师:要跨越省与省,市与市,区县与区县,从地图上看似乎很近,可实际上的距离却要上百上千千米呢!而这几张图是把实际距离按一定的比例缩小之后画到图纸上的,在绘图的过程中,离不开一把神奇的“尺子”,就是比例尺(板书)(二)、动手操作,认识比例尺1、操作计算。

师:那图上距离与实际距离之间有什么关系呢?让我们先来做个游戏。

六年级数学下册知识讲义-4 比例尺的意义-人教版

六年级数学下册知识讲义-4 比例尺的意义-人教版

小学数学比例尺的意义知识梳理仔细观察下列图形,说出下面比例尺表示的意义。

比例尺1:4 的意义是图上1厘米表示实际的4厘米,图上距离是实际距离的,实际距离是图上距离的4倍。

比例尺的意义是图上1厘米的距离相当于实际距离的5米。

1. 比例尺的意义在绘制地图和平面图时,需要把实际距离按一定的比缩小(或放大),再画在图纸上。

这时,就要确定图上距离和相对应的实际距离的比。

一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

2. 比例尺的关系式图上距离︰实际距离=比例尺或=比例尺。

例如一幅图的比例尺是1:6000000,它的意义是图上1厘米表示实际6000000厘米;图上距离是实际距离的;实际距离是图上距离的6000000倍。

3. 比例尺的书写格式比例尺是图上距离与实际距离的最简整数比,可以写成带比号的形式,也可以写成分数形式。

即比例尺1:6000000也可以写成。

为了方便,把比例尺写成前项或后项是1的形式,这是比例尺的书写特征。

注意:比例尺是一个比,它表示图上距离和实际距离的倍比关系,因此不能带计量单位。

比例尺的分类:1. 根据表现形式的不同,比例尺可以分为数值比例尺和线段比例尺用数字形式表示的比例尺是数值比例尺。

如一幅地图的比例尺是1︰50000,就是数值比例尺。

在图上附有一条注有数量关系的线段,用来表示和地面上相对应的实际距离,这样的比例尺叫做线段比例尺。

如一幅地图的中的比例尺,就是线段比例尺。

它表示图上1厘米的距离相当于实际距离25千米。

该比例尺可以改写成数值比例尺,图上距离︰实际距离=1厘米︰25千米=1厘米︰2500000厘米=1︰2500000。

2. 根据图上距离是将实际距离缩小还是放大,比例尺可以分为缩小比例尺和放大比例尺(1)缩小比例尺:在绘图时,有时需要把实际距离按一定的比缩小后再在纸上画出来,用这种方法得到的比例尺就是缩小比例尺。

缩小比例尺写成带比号的形式时,前项一般化简为1;若写成分数的形式,分子一般化简为1。

小学数学_比例尺教学设计学情分析教材分析课后反思

小学数学_比例尺教学设计学情分析教材分析课后反思

人教版小学六年级《比例尺》教学设计一.教学内容:人教版小学六年级下册教材第53页比例尺的认识。

二、教学目标:1、使学生理解比例尺的意义,学会求比例尺。

2、使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。

3、结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。

三、教学重、难点本节课的教学重点是:理解比例尺的意义。

本节课的教学难点是:能熟练的解答比例尺的相关实际问题, 从不同角度理解比例尺的意义。

四、教学结构的设计:1、激发兴趣,感受比例尺师:在学习新的知识之前我们先做一个脑筋急转弯,看谁的转的更快。

从北京到上海有1200千米,可是一只小蚂蚁从北京到上海只用了5秒钟,你知道是怎么回事吗?生:蚂蚁是在地图上爬行的。

师:大家真聪明。

生活中地图我们随处可见,老师今天把我们的首都北京搬进了课堂,你们知道北京和上海这些大城市是如何画在地图上的吗?多媒体出示中国地图,引导学生认识图上距离和实际距离。

生:把它缩小。

师:老师可以利用手中的直尺很快的告诉大家任意两地之间的距离,想知道其中的奥妙吗?生:想!师:我们可以量出地图上的图上距离,但是能不能量出实际距离吗?生:不能。

师:那我们如何根据图上距离来求出两地之间的实际距离呢?2、揭示课题,提出疑问。

师:我们还需要用地图上的比例尺来帮忙,今天我们这节课就来认识比例尺。

(板书:比例尺)师:关于比例尺,你想了解什么呢?生:什么叫比例尺?怎样求比例尺?比例尺是尺子吗?比例尺有几种形式?3、实验对比,得出结论。

师:为了解决同学们提出的疑问,我们来做一个实验。

请同学们画一条长1厘米的线段,再画一条长2厘米的线段,我这里有一条1米长的线段,你能把它画在练习本上吗?师:遇到什么问题了,纸不够大吧,有什么好的办法吗?小组讨论,汇报交流。

师:你是用几厘米代表实际1米的长度的?生:我用1厘米表示实际1米。

师:实际上你画在图上的1厘米就是图上距离,它代表的实际长度1米就是实际距离(板书:图上距离和实际距离)师:还有其他的画法吗?师:同样一段1米的线段画在图上为什么有长有短呢?生:因为他们缩小的不一样。

比例尺的意义

比例尺的意义

比例尺的意义》教学设计教材分析:在比例尺一课的教学设计前,我了解到学生在社会课上已经接触了大量的地图,因此就将教学从地图着手展开,使学生感受比例尺的由来、用途。

这一部分知识虽然比较简单,教师如果直接揭示比例尺的意义,学生固然也能接受并理解,但这明显违背了以学生为主体、鼓励学生探究的思想,我们通过一些操作的教学环节,预设由学生中出现的一些数据揭示比例尺的意义。

教学目标:1.在实践活动中体验生活中需要的比例尺。

2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。

3.能读懂两种形式的比例尺。

4.体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

教学重点:理解比例尺的意义。

教学难点:会求一幅图的比例尺。

教学准备:中国地图。

教学过程:一、情景导入,激发兴趣。

1、脑筋急转弯:一只蚂蚁五秒钟内从南京爬到北京。

请问它是怎样爬过去的?(在地图上爬)2、老师出示中国地图(遮住比例尺),指出爬行路线师:蚂蚁为什么能够在五秒钟内从南京爬到北京呢?生:因为蚂蚁走的是按一定的比缩小了以后的距离,不缩小了,蚂蚁不可能从南京走到北京的。

(设计意图:从学生最感兴趣的脑筋急转弯导入,激发了学生学习这部分知识的兴趣,并能初步感受比例尺的由来及用途。

)二、探究新知,理解意义1、让学生量出南京到北京的图上距离15厘米。

(板书)给出“图上距离”这个名称。

师:难道南京到北京的实际距离就这么长吗?(不可能)告诉学生实际距离。

(板书)给出“实际距离”这个名称。

2、让学生算一算,图上距离和实际距离的比是多少?(练习)针对出现的错误讲清一定要统一单位。

3、数学上把图上距离和实际距离的比就叫做这幅图的比例尺。

(板书)。

问:根据这个比例尺的意义,你能说说怎样求比例尺吗?(板书:图上距离:实际距离=比例尺)比例尺带单位吗?4、根据这个比例尺,你能说出图上距离和实际距离的关系吗?(图上距离是实际距离的几分之几?实际距离是图上距离的几倍?)你知道,当图上距离1厘米时,实际距离是多少吗?这些都是我们从这个比例尺中得到的信息。

小学六年级数学小升初珍藏版复习资料第5讲 比和比例(解析)

小学六年级数学小升初珍藏版复习资料第5讲 比和比例(解析)

2022-2023学年小升初数学精讲精练专题汇编讲义第5讲比和比例知识点一:比1.比的意义:两个数相除又叫作两个数的比。

2.比的各部分名称及比的读法:4 : 5=4÷5=0.8↓↓↓↓前项比号后项比值3.比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变4.求比值与化简比(1)求比值:前项除以后项所得的商是比的结果,叫比值。

同类量的比,其比值没有单位名称; 不同类量的比,其比值有单位名称。

例如: 100千米:5时=20千米/时(2)化简比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

把两个数的比化成最简整数比的,称为化简比或比的化简。

5.比与分数、除法的关系关系:比与分数相比,比的前项相当于分子,比的后项相当于分母,比值相当于分数值,比号相当于分数线;比与除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于商,比号相当于除号。

(1)比、分数和除法之间的联系与区别如下表所示:名称比分数除法联系前项分子被除法:(比号)一(分数线)÷(除号)后项分母除数比值分数值商知识精讲除法各部分间的关系可知,比的基本性质、分数的基本性质以及商不变的规律三者只是说法不同,其实质是一样的。

6.按比分配:(1)在工农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配,这种分配方法通常叫作按比分配。

(2)按比分配应用题的特征:已知总数量和部分数量的比,求各部分数量。

(3)常用的解题方法有两种:一种是先求总份数,再求各部分量占总量的几分之几,最后求各部分数量;另一种是先求每份是多少,再求几份是多少。

知识点二:比例1.比例的意义:表示两个比相等的式子叫做比例。

2.比例的各部分名称:组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

3.比例的基本性质:在比例里,两个外项的积等于两个内项的积。

这叫做比例的基本性质。

六年级数学下册 比例的意义和基本性质--重难点

六年级数学下册 比例的意义和基本性质--重难点

六年级下册 比例的意义和基本性质【重难点】1、理解比例的意义和基本性质,认识比例各部分名称。

2、理解正、反比例的意义,会判断成正、反比例的量。

3、掌握用比例的方法解答相关的应用题。

4、使学生进一步理解比例的意义和基本性质,能区分比和比例。

5、通过复习使学生熟练地应用比例知识来解答正反比例应用题。

比例的意义:表示两个比相等的式子叫做比例。

例 10:6 = 4.5:2.7 21:31= 3:2根据表中所给的数据写出有意义的比。

80:2 =200:5 结果表示速度。

比例的基本性质:在比例式中两个外项的积等于两个内项的积,这就是比例的基本性质。

比例的意义和基本性质:80 :2 = 200 :5比值相等 内项外项解比例:根据比例的基本性质,已知比例的三项,求另外未知项叫做解比例。

例1:解比例 3:8=15:x3:8 = 15:x解:3x = 8×15 x = x=40比例尺的意义:图上距离和实际距离的比,叫做这幅图的比例尺。

指出图上距离是比的前项,实际距离是比的后项。

一种比例尺叫数值比例尺,一种比例尺叫做线段比例尺。

例:设计一座厂房,在平面图上用10厘米的距离表示地面上10米的距离,求图上距离和实际距离的比。

10米=1000厘米10:1000=1:100例:在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米,南京到北京的实际距离大约是多少千米? 15:x = 1:6000000 x = 15×6000000 x = 90000000 90000000厘米=900千米答:南京到北京的实际距离为900千米。

如果我们把线段比例尺改成数值比例尺,应该怎么办? 线段比例尺0 50 100千米线 段 比 例 尺 数值比例尺: 1:50000008× 15 3成 正 比 例 的 量(变)时间(时)相关联的量(变)路程(千米)(一定)速度(千米)总价 米数总重量袋数正比例和反比例的比较:例:(1)出示表格两张观察两张表格,⑴表⑴中汽车所行的路程和时间成什么比例?为什么? 方法一:140÷2×5=350(千米) 方法二:140×(5÷2)=350(千米) 方法三:解:设甲乙两地之间的公 140 X 2 5 X = 350答:甲乙两地之间的公路长350千米= 单价(一定)=每袋面粉的重量(一定)=比的前后项相除所得的商叫做比值,求比值。

人教版小学数学六年级下册4.6 比例尺(1) 课件(共21张PPT)

2 cm=20 mm 20∶5 =4∶1 答:这幅图纸的比例尺是4∶1。
小学人教版数学六年级下册精编教学PPT课件
1. 一幅地图的比例尺是1:30000000,你能用线段 比例尺表示出来吗?(选自教材P54 T1) 用线段比例尺表示为:
0 300千米
小学人教版数学六年级下册精编教学PPT课件
2. 一套房子的客厅东西方向长 4 m,在图纸上的长度是4 cm。 这幅图纸的比例尺是多少? (选自教材P54 T2)
小学人教版数学六年级下册精编教学PPT课件
4. 学校操场上的一条直跑道长210米,画在图纸上为 30厘米,这幅图纸的比例尺是多少? 210米=21000厘米 30∶21000=1∶700 答:这幅图纸的比例尺是1∶700。
小学人教版数学六年级下册精编教学PPT课件
求比例尺之前需要先统一单位。
小学人教版数学六年级下册精编教学PPT课件
如果要画中国地图呢?
小学人教版数学六年级下册精编教学PPT课件
知识点1 比例尺的意义
什么叫比例尺?
一幅图的图上距离和 实际距离的比,叫作 这幅图的比例尺。
小学人教版数学六年级下册精编教学PPT课件
图上距离∶实际距离=比例尺

图上距离 实际距离
=比例尺
比例尺有两种表现形式,一种是数值比例尺,另 一种是线段比例尺。
小学人教版数学六年级下册精编教学PPT课件
小学人教版数学六年级下册精编教学PPT课件
数值比例尺:1:5000000 或
1 5000000
线段比例尺:0 50km
表示图上1厘米相当于实际距离50千米。 改写时要统一单位
小学人教版数学六年级下册精编教学PPT课件
比例尺1∶200表示什么意思? 1

第二单元 比例 比例尺(课件)北师大版数学六年级下册

比例尺1: 15000000
图上1cm表示实际距离15000000cm,即150km。
第四关 我会认
说说下面图中比例尺的实际意义。
图上1cm表示实际距离200m。
第五关 我会算 北京到广州的实际距离大约是1920km,在一幅
地图上量得这两地间⋮的距离20cm。这幅地图的
比例尺是多少? 20cm:1920km
量一量、
选一选
(1分钟)
谁画的合理?
1.先在学习单上量一量 2.小组内说说理由。
体会 笑笑在图上是怎么表示
必要性
这几个位置的呢?
表示100米
按相等的比缩小, 画的才合理。
合理
认识定义
图上距离和实际距离的比,叫作这幅图的比例尺。 比例尺=图上距离︰实际距离= 图上距离 实际距离
学生活动2 求比例尺
比现例形尺式的(2表)这个线段比例尺表示什么实际意义?
线段比例尺
图上1cm表示实际距离90km。
把线段比例尺转化成 ⋮ 数值比例尺。
1cm: 90km = 1cm: 9000000cm
比例尺 0 90km
0
90km
180km
= 1:9000000
数值比例尺 1:9000000
两种比例尺 数值比例尺和线段比例尺的
对比
和不同点。
1:900┊0000
比例尺
0
90km
直观
相同点:都可以表示图上距离和实际距离的关系。
拓展:比例 尺的功能
比例尺 20:1
放大比例尺
1:9000000
缩小比例尺
闯关答题
你认识比例尺了吗?
第一关 我会选
1.比例尺是( B ),比例尺的前 项表示( D ),后项表示( C )。

数学人教版六年级下册 《比例尺(一)》教案

4.3.1《比例尺(一)》教案教学设计教学内容:比例尺(一)教学时间:月日课堂类型:新授课教学目标:1、理解比例尺的意义、种类。

2、会求一幅图的比例尺。

3、对学生进行辩证唯物主义的初步渗透。

教学重点:理解比例尺的意义、种类。

教学难点:会求一幅图的比例尺。

教学方法:合作、探究、交流教具准备:多媒体PPT师生互动观图激趣、设疑导入出示课件的第一张幻灯片。

1、谈话导入(PPT课件出示脑筋急转弯)。

师:同学们,老师这里有一个脑筋急转弯,一起来猜一猜把!生1:因为蚂蚁是在地图上爬过去的。

探究新知教学比例尺的意义及种类,理解比例尺的含义以及关系式。

1、阅读教材第53页关于比例尺的内容。

师:阅读教材后,汇报你知道了哪些关于比例尺的知识。

生1:通过阅读我知道:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

图上距离∶实际距离=比例尺。

(板书比例尺的意义)"图上距离" /"实际距离" =比例尺生2:比例尺是绘图时用的,它是把实际距离按一定的比缩小或扩大,再画在图纸上。

生3:教材介绍说,地图上的比例尺有1∶100000000,这是数值比例尺,它也可以写成1/100000000这种形式,也叫数值比例尺。

(板书)生4:老师,我看见这样表示比例尺的:师:这叫线段比例尺。

它表示的是:图上1厘米的距离相当于地面上50 km的实际距离。

(板书)生5:我会把上面的线段比例尺改成数值比例尺。

图上距离∶实际距离。

=1 cm∶50 km=1 cm∶5000000 cm(单位要相同)=1∶5000000(板书过程)生6:比例尺1∶5000000表示图上距离是实际距离的1/5000000。

实际距离是图上距离的5000000倍。

生7:我发现一个和地图比例尺不一样的一个比例尺2∶1,我知基础练习:拓展练习:。

六年级下册数学试题-比例尺的应用,放大与缩小(含答案)人教版

比例的应用与图形的放大与缩小(一)比例的意义比例尺的意义:在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),在画在图纸上,这时,就要确定图上距离和相对应的实际距离的比。

一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

(二)比例尺的关系式图上距离:实际距离=比例尺或图上距离/实际距离=比例尺(三)比例尺的分类按表现形式分:比例尺可以分为数值比例尺和线段比例尺。

数值比例尺:用分数或数字比例的形式表示的比例尺,就是数值比例尺,如:1:1000000或10000001 线段比例尺:在图上附有一条注有数目的线段,用它来表示和地面上相对应的实际距离,这样的比例尺叫做线段比例尺.按实际距离缩小还是放大分,比例尺可以分为缩小比例尺和放大比例尺。

知识点一:数值比例尺例题1: 甲、乙两地相距48km ,画在一幅地图上的长度为6cm ,这幅地图的比例尺是( )。

练习1. 甲地到乙地的实际距离是120km ,画在比例尺是1:6000000的地图上,两地的图上距离是( )练习2:比例尺为1:50000的一幅地图,现在改用200001的比例尺重新绘制,原地图中的4.8cm 的距离,在新地图中应该画多少厘米?例题2:在一幅比例尺是1:500的平面上量得一块空地长3厘米,宽2厘米,这块空地的面积是多少平方米?练习1:在比例尺是1:8000000的地图上,量得甲、乙两地的距离是6cm 。

一辆汽车以每小时80km 的速度从甲地到丙地,需要行驶几小时?练习2:在比例尺是1:8000000的地图上,量得A、B两地相距6cm,甲、乙两车分别从A、B两地同时相对开出,经过5小时两车相遇。

已知甲、乙两车的速度比是5:7。

甲、乙两车每小时各行多少千米?知识点二:线段比例尺例题1:在标有 0 60 120km的地图上量得甲、乙两地的距离是4.5cm,甲、乙两地的实际距离是()km。

练习:0 180 360 540km是一个()比例尺,它表示图上()cm的距离相当于实际距离()km,把它转化成数值比例尺是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比例尺的意义教学内容:青岛版小学数学六年级下册52-54页第一个红点教学目标:1.结合具体操作活动,理解比例尺的意义,明确比例尺的作用;2.在解决问题过程中,进一步理解比例尺的意义;3.结合实际认识数值比例尺和线段比例尺,并能进行相互改写;4.体会比例尺在生活中的应用,感受数学与生活的密切联系,发展学生的应用意识和空间观念。

教学重难点教学重点:理解比例尺的意义,体会比例尺的作用,能根据图上距离、实际距离、比例尺中的两个量求第三个量。

教学难点:通过测量、绘图、估算和计算等活动,学会解决生活中的一些实际问题。

教具、学具教师准备:课件学生准备:课前搜集地图教学过程:一、创设情境,导入新课谈话导入:同学们,你们看过足球比赛吗?知道教练是怎样指挥比赛的吗?教师出示教练利用球场平面图指挥比赛的场景并引导学生发现。

学生发现:教练在纸上边画边指挥比赛。

二、自主学习,小组探究1.操作活动,明确长和宽的比决定图形形状(1)介绍足球场的实际长和宽。

教师介绍:足球场是长方形的,通常长90米,宽60米。

教师提出问题:怎样画这个足球场的平面图呢?下面请同学们讨论一下。

学生讨论,汇报:预设生1:我认为不能把真正的足球场地画在纸上,因为它太大了,我们应把足球场地适当缩小后再画在纸上。

生2:我们可以把足球场地的长和宽缩小一定的倍数后,再画在纸上。

(2)试画足球场的平面图。

过渡语:同学们说得很有道理,现在请大家就按照这两位同学提供的方法在纸上画一个足球场的平面图,要求:(1)不能走样儿;(2)要说明画法。

(课件出示足球场地资料:长90米、宽60米)生画平面图,师巡视指导。

(3)汇报。

教师让同桌之间互相欣赏一下,看看同桌画得怎么样。

(教师选择性的把学生作品贴到黑板上展示)生上台展示作品并说明画法。

生1:我是将90米先化成9000厘米,再缩小1000倍后是9厘米,把它作为足球场地平面图的长,将60米先化成6000厘米,也缩小1000倍后是6厘米,把它作为足球场地平面图的宽,这样便画出了足球场的平面图。

生2:我是将95米先化成9500厘米,再缩小500倍后是19厘米,把它作为平面图的长,将60米先化成6000厘米,也缩小500倍后是12厘米,把它作为平面图的宽,这样画出了足球场的平面图。

三、汇报交流,评价质疑。

1.在互评中感悟按比例缩小长方形的长和宽,才能保持原来的形状。

教师提出要求:他们画得像不像?大家评价一下。

提示:(引导学生从“大小”和“形状”两个方面进行评价) 预设学生回答:① 第(3)(4)幅图画得不像;② 第(3)(4)幅图形变形了;③ 第(3)(4)幅图不是按比例画的;教师挑出学生认为画得很像的作品(1)(2)放在一起,并提出问题:是什么原因让大家感觉(1)(2)画得比较像呢?预设学生回答:①把平面图按原样缩小了;②长和宽缩小的比例都一样;③长和宽的比都是一定的,都是3:2;教师引导学生再算出实际足球场的长和宽的比。

(师板书:实际:90:60=3:2)教师引导:由此你发现了什么?学生思考学生发现:实际的长和宽的比是3:2,当图上的长和宽的比是3:2时,这样的图看上去形状相同。

(师板书:形状相同)。

教师继续引导学生观察画得不像的作品(3)(4),提出疑问:为什么(3)4cm 6cm 6cm 9cm 10cm 2cm 8cm 6cm(1)(2) (3)(4)画得不像呢?学生通过以上经验,得到第(3)(4)幅图长和宽的比不是3:2,所以看上去不像.教师小结:看来应该把长和宽保持相同的变化才能保证画得像。

2 理解比例尺的意义教师引导:第(1)(2)幅图长和宽的比都是3:2,所以形状是一样的,还有什么不一样?学生回答:它们的大小不一样。

教师提问:到底是什么原因导致它们的大小不一样呢?学生回答:第(1)(2)幅图缩小的比例不同;教师分别让学生观察:第(1)(2)幅图的长和宽分别缩小到原来的多少?学生这时会想到分数,预设学生回答:①(1)幅图图上的长是实际长的11500,宽也是实际宽的11500②(2)幅图图上的长是实际长的11000,宽也是实际宽的11000教师板书:90m=9000cm; 60=6000cm;6 9000=11500;99000=1:1000;4 6000=11500;66000=1:1000;1 1500=1:150011000=1:1000教师提出问题:1:1500,1:1000表示什么意思?学生回答:①1:1500表示图上的1cm,代表实际的1500cm;②1:1000表示图上的1cm,代表实际的1000cm; 教师引导:1:1000,1:1500,这些都叫做比例尺。

教师提问:什么叫比例尺呢?学生思考学生汇报:图上距离比上实际距离就是比例尺。

教师引导:在生活中,你们在哪儿见过比例尺?学生回答:地图上。

教师引导学生把课前搜集的地图拿出来,找到地图的比例尺,互相说一说你这幅图的比例尺是什么意思。

教师再次提问:观察一下,这些比例尺有哪些共同特点?学生归纳:① 这些比例尺的前项都是1;②它们的单位都是厘米③这些比例尺都是图上距离比实际距离。

教师点评:同学们总结得很好,这就是我们今天要学习的新知识。

(教师板书课题:比例尺的意义)3认识数值比例尺和线段比例尺教师引导:同学们,你们还见过其他形式的比例尺吗?学生思考预设学生回答:有的地图上是用线段表示的比例尺 教师出示线段比例尺教师引导: 这条线段长3cm ,表示实际的30m 。

提出问题:那1cm 表示实际距离的多少呢?学生回答:可以说1cm 表示实际距离10m 。

教师评价:同学们特别善于观察,用一条线段表示图上距离与实际距离的关系,我们把这样的比例尺叫做线段比例尺,用数来表示的比例尺叫做数值比例尺。

教师提问:能不能把线段比例尺改成数值比例尺呢?学生交流预设学生回答:把线段表示的距离换算成厘米,看1cm 表示多少就可以了。

四、回顾整理,总结提升教师过渡语:同学们通过本节课的学习,比例尺是哪两个数据的比值呢? 预设:=图上距离比例尺实际距离教师继续提问:图上距离怎样计算呢?实际距离呢?预设:图上距离=比例尺×实际距离;实际距离=图上距离÷比例尺教师继续引导:我们认识了哪两种比例尺?学生:数值比例尺和线段比例尺。

五、巩固应用拓展提高1.教师出示自主练习第1题。

(检测教学目标1)说出上面比例尺表示的意义。

分析:此题主要考察学生对于数字比例尺和线段比例尺的区分。

建议:逐一出示2个平面图,引导学生区分认一认。

【设计意图:本题以实物的方式展示信息,通过练习,让学生加深理解比例尺的意义。

】2.教师出示自主练习第2题。

(检测教学目标2)分析:此题是根据比例尺的计算公式计算比例尺的大小的题目。

建议:练习时先让学生求出图上距离和实际距离的比,再提醒学生根据比例尺的前项都是1,求出比例尺。

【设计意图:本题是让学生熟悉根据图上距离和实际距离计算出比例尺的过程】3.教师出示自主练习第4题。

(检测教学目标3)按比例缩小分析:此题主要考察学生线段比例尺和数值比例尺的互化。

建议:逐一出示题目,引导学生说出数值比例尺和线段比例尺的所表示的具体数量。

【设计意图:本题以实物图的形式呈现,练习数值比例尺和线段比例尺之间的相互改写。

】4.课堂小结同学们,通过今天这节课的学习,你有什么收获?(教师引导,学生回顾整理,师点名汇报,全班交流。

)【设计意图:通过对所学知识的整理回顾,使知识更加系统,将知识打成捆让学生背回家。

】板书设计:比例尺的意义实际:90:60=3:2 90m=9000cm; 60=6000cm;形状相同69000=11500; 99000=1:1000; 大小不一样 46000=11500; 66000=1:1000; 11500=1:1500 11000=1:1000 =图上距离比例尺实际距离1:1000 数值比例尺 线段比例尺使用说明:1.教学反思:回味课堂我感觉亮点之处有:(1)本节课贯彻“四基”理念,设计了有价值的数学活动,通过把球场平面图画在白纸上,分别提出了两个问题:是什么原因使作品画得比较像?是原因导致画出来的形状一样但图形大小不一样的呢?学生在活动和思考中,对比的理解由模糊到逐渐清晰。

(2)本节课教学内容是“比例尺的意义”,不仅仅是让学生知道什么是比例尺,本节课更重要的体现在使学生体会比例尺的作用,使学生加深对于比这个重要概念的认识。

(3)在本节课中,我还贯彻了学生从头到尾的思考问题,自主发现运用比例尺表示的合理性。

激发学生的创造力和数学表达能力。

2.使用建议。

本节内容注重两点:第一,通过把球场平面图画在白纸上,明确长方形的长和宽的比决定图形的形状;第二,在活动中体会比例尺的意义和作用,体会按照一定的比例画出来的图形保证图形的形状不变,比例不同画出来的图形大小不同。

3.需要突破的问题:在习题中建议增加1个根据零件的大小放大的比例尺,比例尺的后项是1的比例尺,增加学生知识面。

王新鑫昌路小学。

相关文档
最新文档