统计学假设检验公式整理

合集下载

中级统计师统计业务知识公式

中级统计师统计业务知识公式

中级统计师统计业务知识公式1.描述性统计公式描述性统计是统计学中最基础和常用的方法之一,用于对数据进行概括性的描述。

以下是常用的描述性统计公式:- 平均数(Mean):指一组数据的总和除以其观测值的个数。

计算公式为:平均数 = 总和 / 观测值个数。

- 中位数(Median):指将一组数据按大小排列,位于中间位置的数值。

计算公式为:中位数 = (n + 1) / 2,其中n为观测值个数。

- 众数(Mode):指在一组数据中出现次数最多的数值。

对于连续数据,可通过分组频数表找出众数。

- 极差(Range):指一组数据中最大值与最小值之间的差值。

计算公式为:极差 = 最大值 - 最小值。

2.概率公式概率是统计学中的一个重要概念,用于描述随机事件发生的可能性。

以下是常用的概率公式:- 频率概率(Empirical Probability):指事件发生的频率。

计算公式为:频率概率 = 事件发生次数 / 总试验次数。

- 独立事件的乘法公式(Multiplication Rule for Independent Events):指两个或多个事件相互独立时,它们共同发生的概率等于各事件发生的概率的乘积。

- 条件概率(Conditional Probability):指在一定条件下事件发生的概率。

计算公式为:条件概率 = 事件发生次数 / 条件出现次数。

- 贝叶斯公式(Bayes' Theorem):指用于计算在已知事件的条件下,另一个事件发生的概率。

计算公式为:P(A,B) = P(A) * P(B,A) /P(B),其中P(A)和P(B)分别为事件A和事件B独立发生的概率,P(B,A)为在事件A发生的条件下事件B发生的概率。

3.假设检验公式假设检验是统计学中用于判断统计样本与总体之间关系的方法。

以下是常用的假设检验公式:- Z检验公式(Z-test):适用于大样本(样本容量大于30)的情况下,比较样本均值和总体均值的差异。

统计学公式汇总

统计学公式汇总

统计学公式汇总统计学是研究数据收集、分析、解释和预测的一门学科。

在统计学中,有许多重要的公式被广泛应用于数据的处理和分析过程中。

本文将汇总一些常见的统计学公式,并简要介绍其应用场景和使用方法。

1. 均值(Mean)均值是统计学中最常用的概念之一,用于衡量一组数据的集中趋势。

对于一个样本集合,均值可以通过将所有观测值相加,然后除以样本容量来计算。

其数学公式如下:均值= ∑(观测值) / 样本容量2. 方差(Variance)方差是用于衡量一组数据的离散程度的指标。

方差越大,表示数据的离散程度越高;方差越小,表示数据的离散程度越低。

方差的计算公式如下:方差= ∑((观测值-均值)^2) / 样本容量3. 标准差(Standard Deviation)标准差是方差的平方根,用于衡量数据的离散程度,并且具有和原始数据相同的单位。

标准差的计算公式如下:标准差 = 方差的平方根4. 相关系数(Correlation Coefficient)相关系数用于衡量两组变量之间的线性关系强度和方向。

相关系数的取值范围在-1到1之间,其中-1表示完全的负相关,1表示完全的正相关,0表示无相关。

相关系数的计算公式如下:r = Cov(X,Y) / (σX * σY)5. 回归方程(Regression Equation)回归方程用于建立一个或多个自变量与因变量之间的线性关系。

回归方程的一般形式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1、X2、...、Xn表示自变量,β0、β1、β2、...、βn表示回归系数,ε表示模型的误差项。

6. 样本容量和置信水平(Sample Size and Confidence Level)在统计学中,样本容量和置信水平是决定实验或调查结果可靠性的重要因素。

样本容量是指从总体中抽取的样本大小,而置信水平是指对总体参数的估计值的信任程度。

统计学公式总结期末

统计学公式总结期末

统计学公式总结期末一、概率论1. 加法法则:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)加法法则用于计算两个事件同时发生或其中一个事件发生的概率。

2. 乘法法则:P(A ∩ B) = P(A) × P(B|A)乘法法则用于计算两个事件同时发生的概率。

3. 条件概率:P(A|B) = P(A ∩ B) / P(B)条件概率用于计算在已知某个事件发生的情况下,另一个事件发生的概率。

4. 贝叶斯定理:P(A|B) = P(B|A) × P(A) / P(B)贝叶斯定理用于计算在已知某个事件发生的条件下,另一个事件发生的概率。

5. 期望值:E(X) = ∑(x × P(X = x))期望值用于计算随机变量X的平均值。

6. 方差:Var(X) = E((X - μ)^2) = E(X^2) - (E(X))^2方差用于度量随机变量X的离散程度。

7. 协方差:Cov(X, Y) = E((X - μ_x)(Y - μ_y))协方差用于度量两个随机变量X和Y之间的线性关系。

二、描述统计学1. 样本均值:x̄= ∑(x) / n样本均值用于估计总体均值。

2. 样本方差:s^2 = ∑((x - x̄)^2) / (n - 1)样本方差用于估计总体方差。

3. 样本标准差:s = √s^2样本标准差用于度量样本数据的离散程度。

4. 权重平均:x̄_w = ∑(x × w) / ∑(w)权重平均用于估计带有不同权重的样本数据的平均值。

5. 百分位数:P_p = ((p/100) × (n + 1))th value百分位数是将数据按升序排列后,某个百分比处的数值。

三、推断统计学1. 样本标准误:SE = s / √n样本标准误用于估计样本均值与总体均值之间的误差。

2. 置信区间:CI = x̄± (Z × SE)置信区间用于估计总体均值的范围。

统计学中的假设检验方法

统计学中的假设检验方法

统计学中的假设检验方法统计学中的假设检验方法是一种常见的数据分析技术,用于验证关于总体特征的假设。

通过统计抽样和概率分布的理论基础,可以通过假设检验方法来评估样本数据对于某种假设的支持程度。

本文将介绍假设检验的基本原理、步骤以及一些常见的假设检验方法。

一、假设检验的原理假设检验是基于一个或多个关于总体特征的假设提出的。

一般来说,我们称原假设为零假设(H0),表示研究者对于总体特征没有明确的预期;对立假设(H1或Ha)则用来说明研究者认为存在显著的差异或关联关系。

假设检验的基本原理是通过对抽样分布的计算和统计量进行假设检验,从而得出是否拒绝零假设的结论。

根据样本数据的统计量计算出的P值,可以作为评估假设支持程度的标准。

一般来说,当P值小于显著性水平(一般为0.05)时,我们会拒绝零假设。

二、假设检验的步骤假设检验的步骤一般包括以下几个方面:1. 明确研究问题和假设:首先要明确研究者所关注的问题和假设,以及零假设和对立假设的表述。

2. 选择适当的检验方法:根据样本数据的类型和问题的特征,选择适当的假设检验方法。

常见的假设检验方法包括t检验、卡方检验、方差分析等。

3. 设置显著性水平:根据研究者对错误接受零假设和拒绝真实假设的容忍度,设置显著性水平。

一般来说,0.05是常用的显著性水平。

4. 计算统计量和P值:根据样本数据计算统计量,并通过统计分布计算对应的P值。

P值表示了在零假设成立的情况下,获得观察到的统计量或更极端结果的概率。

5. 做出结论:根据P值和显著性水平的比较,得出是否拒绝零假设的结论。

如果P值小于显著性水平,我们会拒绝零假设,认为样本数据支持对立假设;反之,我们无法拒绝零假设。

三、常见的假设检验方法1. 单样本t检验:单样本t检验用于比较一个样本的平均值是否显著不同于一个已知的总体平均值。

适用于连续型数据,例如身高、体重等。

2. 独立样本t检验:独立样本t检验用于比较两个独立样本的平均值是否显著不同。

t检验计算公式

t检验计算公式

t检验计算公式在统计学中,t 检验是一种常用的假设检验方法,用于比较两个样本的均值是否存在显著差异。

t 检验的计算公式是其核心部分,理解和掌握这个公式对于正确应用 t 检验至关重要。

t 检验的基本思想是基于样本数据,通过计算 t 值来判断两个样本所代表的总体均值之间的差异是否具有统计学意义。

简单来说,如果计算得到的 t 值较大,超过了一定的临界值,就可以认为两个样本的均值差异不是由随机误差引起的,而是具有实质性的差异。

首先,我们来看看单样本t 检验的计算公式。

假设我们有一个样本,其均值为`x`,样本量为`n`,已知总体均值为`μ`,样本标准差为`s`。

那么单样本 t 检验的 t 值计算公式为:`t =(xμ) /(s /√n)`在这个公式中,`(xμ)`表示样本均值与总体均值的差值,反映了实际观测值与理论值之间的偏差。

`s /√n` 则是标准误差,用于衡量样本均值的抽样误差大小。

接下来是独立样本 t 检验的计算公式。

假设有两个独立的样本,分别为样本 1 和样本 2,其样本量分别为`n1` 和`n2`,均值分别为`x1` 和`x2`,标准差分别为`s1` 和`s2`。

首先,我们需要计算合并方差`Sp²`:`Sp²=(n1 1)s1²+(n2 1)s2²/(n1 + n2 2)`然后,独立样本 t 检验的 t 值计算公式为:`t =(x1 x2) /√(Sp²(1 / n1 + 1 / n2))`这个公式中,`(x1 x2)`表示两个样本均值的差值,而`√(Sp²(1 / n1 + 1 / n2))`是标准误差。

为了更好地理解 t 检验计算公式,让我们通过一个具体的例子来进行说明。

假设我们想要比较两种教学方法对学生成绩的影响。

我们随机选取了两组学生,分别采用不同的教学方法进行教学。

第一组有30 名学生,平均成绩为 85 分,标准差为 10 分;第二组有 25 名学生,平均成绩为90 分,标准差为 8 分。

统计假设检验-t检验

统计假设检验-t检验
单组样本数据的t检验样本均数与总体均数标准值比较两组样本数据比较的t检验1成对数据配对设计均数的比较成组数据不配对两个均数的比较单样本t检验onesamplettest即比较抽样的单个样本均数与已知总体均数为理论值标准值的差别
统计假设检验
一、假设检验的概念与分类
假设检验(hypothesis test) 亦称显著 性检验(significance test),是利用 样本信息,根据一定的概率水准,推断 指标(统计量) 与总体指标(参数)、不 同样本指标间的差别有无意义的统计分 析方法。
(3)确定P 值,作出推断结论
t 7.925 t0.05/ 2,9 2.262, p 0.05
同理 t=7.925>t0.001/2,9=4.781,P<0.001 结论;按 =0.05水准,拒绝 H0 ,p<0.001, 差别有统计学意义。两种方法对脂肪含量的测 定结果不同,哥特里-罗紫法测定结果高于脂 肪酸水解法。
2.选择检验方法、计算统计量
根据:①研究目的, ②资料的类型和分布, ③设计方案, ④统计方法的应用条件, ⑤样本含量大小等, 选择适宜的统计方法并计算出相应 的统计量。
3.确定P值、做出推论
假设检验中的P值是指在由无效假设所 规定的总体作随机抽样,获得等于及大 于(和/或等于及小于)现有统计量的概 率。 即各样本统计量的差异来自抽样误差的 概率,它是判断H0成立与否的依据。
差值 d (4)=23 0.260 0.082 0.174 0.316 0.350 0.461 0.296 0.218 0.203 0.364 2.724
配对数据检验的统计量t,公式
d 0 d0 t Sd Sd / n
(3-16)
n -1

医学统计学假设检验


❖ 例如,根据大量调查,已知正常成年男性 平均脉搏数为72次/分,现随机抽查了20名 肝阳上亢成年男性病人,其平均脉搏为84 次/分,标准差为6.4次/分。问肝阳上亢男 病人的平均脉搏数是否较正常人快?
❖ 以上两个均数不等有两种可能:
第一,由于抽样误差所致;
第二,由于肝阳上亢的影响。
例如
已知正常成年男子脉搏平均为72 次/分,现随机检查20名慢性胃炎所致 脾虚男病人,其脉搏均数为75次/分, 标准差为6.4次/分,问此类脾虚男病人 的脉搏快于健康成年男子的脉搏?
2、假设检验的目的
判断是由于何种原因造成的不同,以做出决策。
3、假设检验的原理
反证法:当一件事情的发生只有两种可能A和B,为了肯
定其中的一种情况A,但又不能直接证实A,这时否定另一 种可能B,则间接的肯定了A。
概率论(小概率) :如果一件事情发生的概率很小,那
么在进行一次试验时,我们说这个事件是“不会发生的”。 从一般的常识可知,这句话在大多数情况下是正确的,但是 它一定有犯错误的时候,因为概率再小也是有可能发生的。
α是在统计推断时,预先设定的一个小概率值,是当H0 为真时,允许错误地拒绝H0的概率。
双侧与单侧检验界值比较
(2) 选定适当的检验方法,计算检验
统计量值 t 检验 Z 检验
❖ 设计类型 ❖ 资料的类型和分布 ❖ 统计推断的目的 ❖ n的大小 ❖ 如完全随机设计实验中,已知样本均数
与总体均数比较,n又不大,可用t检验, 计算统计量t值。
(1)建立假设,选定检验水准:
假设两种:一种是检验假设,假设差异完全由抽样误差造 成,常称无效假设,用H0表示。另一种是和H0相对立的备 择假设,用H1表示。假设检验是针对H0进行的。

第八章 假设检验 (《统计学》PPT课件)

与其,为选取“适当的”的而苦恼,不如干脆 把真正的(P值)算出来。
第二节 一个正态总体的假设检验
一、正态总体
设总体X ~ N(m, 2),抽取容量为n的样本 x1, x2, xn
样本均值 X 与方差S2 计算公式分别为:
2
1 n 1
n i1
(xi
X)
我们将利用上述信息,来检验关于未知参数均值 和方差的假设。
总体参数
均值
方差
总体方差已知
z 检验
(单尾和双尾)
总体方差已知
t 检验
(单尾和双尾)
2 检验
(单尾和双尾)
第二节 一个正态总体的假设检验
二、均值m的假设检验
1.H0:m=m0
2.选择检验统计量:
2已知: Z X m0 ~ N(0,1)
/ n
2未知:
小样本: t X m0 ~ t(n 1)
这个值不像我 们应该得到的 样本均值 ...
...因此我们拒绝 原假设μ=50
... 如果这是总 体的假设均值
60
μ=80
H0
样本均值
第一节 假设检验概述
三、假设检验的程序
一个完整的假设检验过程,通常包括以下几个步骤:
首先,设立原假设H0与备选假设H1; 第二步,构造检验统计量,并根据样本观察数据
小样本:当 t t
2
,则拒绝原假设,反之则接受H0;
5.得出结论。
二、均值m的假设检验
6.例题分析
[例8.3] 某广告公司在广播电台做流行歌曲磁带广告 ,它的插播广告是针对平均年龄为21岁的年轻人的,标 准差为16。这家广告公司经理想了解其节目是否为目标 听众所接受。假定听众的年龄服从正态分布,现随机抽 取400多位听众进行调查,得出的样本结果为x 25 岁S2,18 。以0.05的显著水平判断广告公司的广告策划是否符合 实际?

概率论与统计学公式总结【已整理 可直接打印】

概率论与统计学公式总结【已整理可直接打印】1. 概率公式概率 P(A) = n(A) / n(S),其中 n(A) 表示事件 A 发生的次数,n(S) 表示样本空间中所有可能事件发生的次数。

2. 条件概率公式事件 B 在事件 A 已经发生的条件下发生的概率,表示为P(B|A),计算公式为P(B|A) = P(A∩B) / P(A),其中P(A∩B) 表示事件 A 和事件 B 同时发生的概率。

3. 独立事件公式如果事件 A 和事件 B 相互独立,则事件 A 发生与否不会对事件 B 发生的概率产生影响,表示为P(A∩B) = P(A) * P(B)。

4. 期望值公式离散型随机变量 X 的期望值E(X) = ΣxP(X=x),其中 x 表示可能的取值,P(X=x) 表示 X 取值为 x 的概率。

5. 方差公式离散型随机变量 X 的方差Var(X) = Σ(x-E(X))^2 * P(X=x),其中 x 表示可能的取值,E(X) 表示随机变量 X 的期望值。

6. 正态分布公式正态分布的概率密度函数为f(x) = (1 / (σ * √(2π))) * exp(-(x-µ)^2 / (2σ^2)),其中 µ表示均值,σ 表示标准差。

7. 中心极限定理对于一个总体中的任意样本,样本均值的分布接近正态分布,当样本容量足够大时,均值的分布越接近正态分布。

8. 置信区间公式无偏样本的均值x的置信水平为 1-α 的置信区间为 [x - Z * (σ/√n), x + Z * (σ/√n)],其中x表示样本均值,Z 表示标准正态分布的分位数,σ 表示总体标准差,n 表示样本容量。

9. 假设检验公式在给定总体参数假设的条件下,进行样本均值的假设检验,计算统计量的值,与临界值进行比较,判断是否拒绝原假设。

10. 线性回归公式通过最小二乘法确定线性回归方程,表示为y = β₀ + β₁x₁ + β₂x₂ + ... + βₙxₙ,其中 y 表示因变量,x₁, x₂, ..., xₙ 表示自变量,β₀, β₁, β₂, ..., βₙ 表示回归系数。

统计学原理 假设检验


50个零件尺寸的误差数据 (mm) 1.26 1.19 1.31 0.97 1.81 1.13 0.96 1.06 1.00 0.94 0.98 1.10 1.12 1.03 1.16 1.12 1.12 0.95 1.02 1.13 1.23 0.74 1.50 0.50 0.59 0.99 1.45 1.24 1.01 2.03
双侧检验与单侧检验
(假设的形式)
假设
单侧检验 双侧检验
左侧检验 右侧检验
原假设 H0 : = 0 H0 : 0 H0 : 0
备择假设 H1 : ≠0 H1 : < 0 H1 : > 0
假设检验中的两类错误
1. 第Ⅰ类错误(弃真错误)
原假设为真时拒绝原假设
第Ⅰ类错误的概率记为
被称为显著性水平
样本数据,检验新机床加工的零件 1.98 1.97 0.91 1.22 1.06
尺寸的平均误差与旧机床相比是否 1.11 1.54 1.08 1.10 1.64
有显著降低? (=0.01)
1.70 2.37 1.38 1.60 1.26
左侧检验
1.17 1.12 1.23 0.82 0.86
总体均值的检验(
补充: 假设检验
1 假设检验的基本问题 2 一个总体参数的检验 3 两个总体参数的检验 ( 不讲 )
什么是假设检验?
(hypothesis test)
1. 先对总体的参数(或分布形式,总体参数包括总体均值、 比率、方差等)提出某种假设,然后利用样本信息判断假 设是否成立的过程
2. 有参数检验和非参数检验 3. 逻辑上运用反证法,统计上依据小概率原理
1/2 P 值
/2 拒绝H0
1/2 P 值
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计学假设检验公式整理
统计学假设检验是统计学中常用的一种方法。

通过使用统计学的方法,我们可以根据样本数据对总体的某种假设进行检验,以确定该假设是否得到支持。

在进行假设检验时,我们需要使用一些公式来计算统计量,从而得到检验结果。

本文将对常见的统计学假设检验公式进行整理和介绍。

一、单样本均值假设检验公式
单样本均值假设检验用于确定总体均值是否与给定值相等。

常见的统计学公式包括:
1. Z检验公式
Z检验适用于大样本(样本容量大于30)的情况,公式如下:
$$Z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$
其中,$\overline{x}$ 表示样本均值,$\mu$ 表示总体均值,
$\sigma$ 表示总体标准差,$n$ 表示样本容量。

2. t检验公式
t检验适用于样本容量较小(30以下)或总体标准差未知的情况,公式如下:
$$t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$$
其中,$\overline{x}$ 表示样本均值,$\mu$ 表示总体均值,$s$ 表示样本标准差,$n$ 表示样本容量。

双样本均值假设检验常用于比较两个样本之间的均值是否有显著差异。

常见的统计学公式包括:
1. 独立双样本t检验公式
独立双样本t检验适用于两个样本是相互独立的情况,公式如下:
$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 -
\mu_2)}{\sqrt{\frac{{s_1}^2}{n_1} + \frac{{s_2}^2}{n_2}}}$$其中,$\overline{x}_1$ 和 $\overline{x}_2$ 分别表示第一个样本和
第二个样本的均值,$\mu_1$ 和 $\mu_2$ 分别表示第一个总体和第二
个总体的均值,$s_1$ 和 $s_2$ 分别表示第一个样本和第二个样本的标
准差,$n_1$ 和 $n_2$ 分别表示第一个样本和第二个样本的容量。

2. 配对双样本t检验公式
配对双样本t检验适用于两个样本存在配对关系的情况,公式如下:$$t = \frac{\overline{d} - \mu_d}{\frac{s_d}{\sqrt{n}}}$$
其中,$\overline{d}$ 表示配对样本的差异均值,$\mu_d$ 表示配对
样本的差异总体均值,$s_d$ 表示配对样本的差异标准差,$n$ 表示配
对样本的容量。

三、比例假设检验公式
比例假设检验用于比较两个样本或一个样本中的比例是否有显著差异。

常见的统计学公式包括:
独立样本比例假设检验适用于比较两个相互独立样本的比例是否有显著差异,公式如下:
$$Z = \frac{(\hat{p}_1 - \hat{p}_2) - (\pi_1 -
\pi_2)}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-
\hat{p}_2)}{n_2}}}$$
其中,$\hat{p}_1$ 和 $\hat{p}_2$ 分别表示第一个样本和第二个样本的比例,$\pi_1$ 和 $\pi_2$ 分别表示第一个总体和第二个总体的比例,$n_1$ 和 $n_2$ 分别表示第一个样本和第二个样本的容量。

2. 配对样本比例假设检验公式
配对样本比例假设检验适用于比较两个存在配对关系的样本的比例是否有显著差异,公式如下:
$$Z = \frac{\hat{p}_d - \pi_d}{\sqrt{\frac{\hat{p}_d (1-
\hat{p}_d )}{n}}}$$
其中,$\hat{p}_d$ 表示配对样本的比例差异,$\pi_d$ 表示配对样本的差异总体比例,$n$ 表示配对样本的容量。

通过上述整理的统计学假设检验公式,我们可以在实际问题中根据样本数据进行相应的假设检验,从而得到科学、准确的结论。

在进行假设检验时,需要注意根据具体问题选择适用的检验方法和对应的公式,以确保检验结果的可靠性和科学性。

相关文档
最新文档