高考等比数列练习题

高考等比数列练习题
高考等比数列练习题

等比数列练习题

一、选择题

1.(2010·重庆卷)在等比数列{a n }中,a 2010=8a 2007,则公比q 的值为( )

A .2

B .3

C .4

D .8

答案:A

解析:∵a 2010=8a 2007,∴a 2007·q 3=8a 2007.

∴q 3=8.∴q =2.

2.(2010·全国Ⅰ卷)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6等于( )

A .5 2

B .7

C .6

D .4 2 答案:A

解析:数列{a n }为等比数列,由a 1a 2a 3=5得a 23=5,由a 7a 8a 9=10得a 83=10,所以a 23a 83=50,即(a 2a 8)3=50,即a 56=50,

所以a 53=52(a n >0).所以a 4a 5a 6=a 53=5 2.

3. 数列{a n }的前n 项和S n =3n -c ,则c =1是数列{a n }为等比数列的( )

A .充分非必要条件

B .必要非充分条件

C .充分必要条件

D .既非充分又非必要条件 答案:C 解析:数列{a n }的前n 项和为S n =3n -c ,则a n =?????

3-c (n =1)

2·3n -1 (n ≥2). 由等比数列的定义可知:c =1?数列{a n }为等比数列.

4. 等比数列{a n }的各项为正,公比q 满足q 2=4,则a 3+a 4a 4+a 5

的值为( ) A. 14

B. 2

C. ±12

D. 12

答案:D

解析:本题考查等比数列的概念和性质,属于基础题.∵等比数列{a n }的各项为正,∴q >0.

又q 2

=4,∴q =2,∴a 3+a 4a 4+a 5=a 1q 2+a 1q 3a 1q 3+a 1q 4=1q =12,故选D. 5. (2010·哈尔滨模拟)已知等比数列{a n }满足a n >0,n ∈N *,且a 3·a 2n -3=4n (n >1),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=( )

A. n 2

B. (n +1)2

C. n (2n -1)

D. (n -1)2 答案:A

解析:由a 3·a 2n -3=4n 得

a 1·a 2n -1=a n 2=4n ,

又a n >0,∴a n =2n ,

∴log 2a 1+log 2a 3+…+log 2a 2n -1

=log 2(a 1·a 3·…·a 2n -1)

=log 221+3+…+2n -1=log 22n (1+2n -1)2

=log 22n 2=n 2.

6. 设数列{a n }是首项为1公比为3的等比数列,把{a n }中的每一项都减去2后,得到一个新数列{b n },{b n }的前n 项和为S n ,对任意的n ∈N *,下列结论正确的是( )

A. b n +1=3b n 且S n =12

(3n -1) B. b n +1=3b n -2且S n =12

(3n -1) C. b n +1=3b n +4且S n =12

(3n -1)-2n D. b n +1=3b n -4且S n =12

(3n -1)-2n 答案:C

解析:由已知易得b n =3n -1-2,

故有3b n +4=3(3n -1-2)+4=3n -2=b n +1,

又S n =(1+3+32+…+3n -1)-2n =3n -12

-2n ,故选C. 二、填空题

7.(2010·福建卷)在等比数列{a n }中,若公比q =4,且前3项之和等于21,则该数列的通项公式a n =________.

答案:4n -

1 解析:∵S 3=a 1+a 2+a 3=a 1(1+q +q 2)=21a 1=21,

∴a 1=1.∴a n =1·4n -1=4n -1.

8.在正数等比数列{a n }中,若a 1+a 2+a 3=1,a 7+a 8+a 9=4,则此等比数列的前15项的和为________.

答案:31

解析:设数列{a n }的公比为q (q >0),则有q 6

=a 7+a 8+a 9a 1+a 2+a 3=4,注意到数列S 3,S 6-S 3,S 9-S 6,S 12-S 9,S 15-S 12是以q 3=2为公比的等比数列,因此S 15=1×(1-25)1-2

=31,即正数等比数列{a n }的前15项和为31.

9. (2010·济南模拟)等比数列{a n }的公比为q ,前n 项的积为T n ,并且满足a 1>1,a 2009·a 2010-1>0,(a 2009-1)(a 2010-1)<0,给出下列结论:①01成立的最大的自然数是4018.其中正确结论的序号为________.(将你认为正确的全部填上)

答案:①②④

解析:由题可知a 2009a 2010>1,可得a 12q 4017>1,则q >0,如果q >1,则(a 2009-1)(a 2010-

1)>0,与已知不符,所以01,a 2010<1,则T 4018=a 1a 2…a 4018=(a 2009a 2010)2009>1,T 4019=a 1a 2…a 4019=(a 2010)4019<1,故④正确;由上式可知T 4019=(a 2010)4019

=(a 2009a 2011)40192

<1,所以a 2009a 2011<1,故②正确;由题知T n =a 1a 2…a n ,当n =2010时,a 2010<1,所以T 20101,所以T 2009为最大,故③错.综上可知①②④正确.

三、解答题

10.等比数列{a n }满足:a 1+a 6=11,a 3·a 4=329

,且公比q ∈(0,1). (1)求数列{a n }的通项公式;

(2)若该数列前n 项和S n =21,求n 的值.

解:(1)∵a 3·a 4=a 1·a 6=329

, 由条件知:a 1,a 6是方程x 2-11x +329

=0的两根, 解得x =13或x =323

.

又0

, ∴q 5=a 6a 1=132,q =12

, 从而a n =a 6·q n -6=13·(12

)n -6. (2)∵323[1-(12)n ]1-12

=21,得(12)n =164, ∴n =6.

11. 设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *).

(1)求a 2,a 3的值;

(2)求证:数列{S n +2}是等比数列.

解:(1)∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),∴当n =1时,a 1=2×1=2; 当n =2时,a 1+2a 2=(a 1+a 2)+4,∴a 2=4;

当n =3时,a 1+2a 2+3a 3=2(a 1+a 2+a 3)+6,∴a 3=8.

(2)∵a 1+2a 2+3a 3+…+na n

=(n -1)S n +2n (n ∈N *)①

∴当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1

=(n -2)S n -1+2(n -1)②

①-②得na n =(n -1)S n -(n -2)S n -1+2

=n (S n -S n -1)-S n +2S n -1+2

=na n -S n +2S n -1+2.

∴-S n +2S n -1+2=0,即S n =2S n -1+2,

∴S n +2=2(S n -1+2)

∵S 1+2=4≠0,

∴S n -1+2≠0,

∴S n +2

S n -1+2=2,

故{S n +2}是以4为首项,2为公比的等比数列.

12. (2010·四川卷)已知数列{a n }满足a 1=0,a 2=2,且对任意m ,n ∈N *都有a 2m -1+a 2n -1=2a m +n -1+2(m -n )2.

(1)求a 3,a 5;

(2)设b n =a 2n +1-a 2n -1(n ∈N *),证明:{b n }是等差数列;

(3)设c n =(a n +1-a n )q n -

1(q ≠0,n ∈N *),求数列{c n }的前n 项和S n . 解:(1)由题意,令m =2,n =1可得a 3=2a 2-a 1+2=6, 再令m =3,n =1可得a 5=2a 3-a 1+8=20.

(2)当n ∈N *时,由已知(以n +2代替m )可得a 2n +3+a 2n -1=2a 2n +1+8. 于是[a 2(n +1)+1-a 2(n +1)-1]-(a 2n +1-a 2n -1)=8, 即b n +1-b n =8.

所以,数列{b n }是公差为8的等差数列.

(3)由(1)、(2)的解答可知{b n }是首项b 1=a 3-a 1=6,公差为8的等差数列. 则b n =8n -2,即a 2n +1-a 2n -1=8n -2.

另由已知(令m =1)可得,a n =a 2n -1+a 12

-(n -1)2, 那么,a n +1-a n =a 2n +1-a 2n -12-2n +1=8n -22

-2n +1=2n . 于是,c n =2nq n -1.

当q =1时,S n =2+4+6+…+2n =n (n +1). 当q ≠1时,S n =2·q 0+4·q 1+6·q 2+…+2n ·q n -1. 两边同乘q 可得

qS n =2·q 1+4·q 2+6·q 3+…+2(n -1)·q n -1+2n ·q n .

上述两式相减即得(1-q )S n =2(1+q 1+q 2+…+q n -1)-2nq n =2·1-q n 1-q

-2nq n =2·1-(n +1)q n +nq n +1

1-q

所以S n =2·nq n +1-(n +1)q n +1(q -1)2

. 综上所述,S n =????? n (n +1),q =1,2·nq n +1-(n +1)q n

+1(q -1)2,q ≠1.

高考等比数列专题及答案百度文库

一、等比数列选择题 1.在流行病学中,基本传染数R 0是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.初始感染者传染R 0个人,为第一轮传染,这R 0个人中每人再传染R 0个人,为第二轮传染,…….R 0一般由疾病的感染周期?感染者与其他人的接触频率?每次接触过程中传染的概率决定.假设新冠肺炎的基本传染数0 3.8R =,平均感染周期为7天,设某一轮新增加的感染人数为M ,则当M >1000时需要的天数至少为( )参考数据:lg38≈1.58 A .34 B .35 C .36 D .37 2.已知各项不为0的等差数列{}n a 满足2 6780a a a -+=,数列{}n b 是等比数列,且 77b a =,则3810b b b =( ) A .1 B .8 C .4 D .2 3.中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?此问题中1斗为10升,则牛主人应偿还多少升粟?( ) A . 503 B . 507 C . 100 7 D . 200 7 4.已知{}n a 是正项等比数列且1a ,312a ,22a 成等差数列,则91078 a a a a +=+( ) A 1 B 1 C .3- D .3+5.在等比数列{}n a 中,132a =,44a =.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ) A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项 D .无最大项,无最小项 6.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于( ) A .40 B .81 C .121 D .242 7.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件 11a >,66771 1, 01 a a a a -><-,则下列结论正确的是( ) A .681a a > B .01q << C .n S 的最大值为7S D .n T 的最大值为7T 8.在数列{}n a 中,12a =,对任意的,m n N * ∈,m n m n a a a +=?,若 1262n a a a ++???+=,则n =( )

等差数列与等比数列练习和解析(高考真题)

1.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2 -8n D .S n =12 n 2 -2n 2.(2019·长郡中学联考)已知数列{a n }满足,a n +1+2a n =0,且a 2 =2,则{a n }前10项的和等于( ) A.1-2103 B .-1-210 3 C .210-1 D .1-210 3.已知等比数列{a n }的首项为1,公比q ≠-1,且a 5+a 4=3(a 3 +a 2),则 9 a 1a 2a 3…a 9等于( ) A .-9 B .9 C .-81 D .81 4.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10 D .12 5.(2019·山东省实验中学联考)已知等差数列{a n }的公差不为零,S n 为其前n 项和,S 3=9,且a 2-1,a 3-1,a 5-1构成等比数列,则S 5=( ) A .15 B .-15 C .30 D .25 二、填空题 6.(2019·北京卷)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________. 7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:“有一个人走378里路,

高三等比数列复习专题

一、等比数列选择题 1.已知单调递增数列{}n a 的前n 项和n S 满足()( )* 21n n n S a a n =+∈N ,且0n S >,记 数列{} 2n n a ?的前n 项和为n T ,则使得2020n T >成立的n 的最小值为( ) A .7 B .8 C .10 D .11 2.在等比数列{}n a 中,24a =,532a =,则4a =( ) A .8 B .8- C .16 D .16- 3.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9= ( ) A .4 B .5 C .8 D .15 4.已知数列{}n a 满足112a = ,* 11()2 n n a a n N +=∈.设2n n n b a λ-=,*n N ∈,且数列 {}n b 是单调递增数列,则实数λ的取值范围是( ) A .(,1)-∞ B .3 (1,)2 - C .3(,)2 -∞ D .(1,2)- 5.已知数列{}n a 满足:11a =,*1()2 n n n a a n N a +=∈+.则 10a =( ) A . 11021 B . 11022 C .1 1023 D .1 1024 6.已知数列{}n a 的前n 项和为n S 且满足111 30(2),3 n n n a S S n a -+=≥=,下列命题中错误的是( ) A .1n S ?????? 是等差数列 B .13n S n = C .1 3(1) n a n n =- - D .{} 3n S 是等比数列 7.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( ) A .-3+(n +1)×2n B .3+(n +1)×2n C .1+(n +1)×2n D .1+(n -1)×2n 8.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n n n S a b n =---?+,*n N ∈,则 存在数列{}n b 和{}n c 使得( ) A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列 B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列 C .· n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .· n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 9.公比为(0)q q >的等比数列{}n a 中,1349,27a a a ==,则1a q +=( )

历年高考数学真题精选25 等比数列

历年高考数学真题精选(按考点分类) 专题25 等比数列(学生版) 一.选择题(共6小题) 1.(2014?全国)等比数列4x +,10x +,20x +的公比为( ) A . 1 2 B . 43 C . 32 D .53 2.(2014?大纲版)设等比数列{}n a 的前n 项和为n S .若23S =,415S =,则6(S = ) A .31 B .32 C .63 D .64 3.(2014?重庆)对任意等比数列{}n a ,下列说法一定正确的是( ) A .1a ,3a ,9a 成等比数列 B .2a ,3a ,6a 成等比数列 C .2a ,4a ,8a 成等比数列 D .3a ,6a ,9a 成等比数列 4.(2014?上海)如果数列{}n a 是一个以q 为公比的等比数列,*2()n n b a n N =-∈,那么数列{}n b 是( ) A .以q 为公比的等比数列 B .以q -为公比的等比数列 C .以2q 为公比的等比数列 D .以2q -为公比的等比数列 5.(2013?福建)已知等比数列{}n a 的公比为q ,记(1)1(1)2(1)n m n m n m n m b a a a -+-+-+=++?+,(1)1(1)2(1)n m n m n m n m a a a -+-+-+=?g g g e,*(,)m n N ∈,则以下结论一定正确的是( ) A .数列{}n b 为等差数列,公差为m q B .数列{}n b 为等比数列,公比为2m q C .数列{}n e为等比数列,公比为2 m q D .数列{}n e为等比数列,公比为m m q 6.(2012?北京)已知{}n a 为等比数列,下面结论中正确的是( ) A .1322a a a +… B .222 1322a a a +… C .若13a a =,则12a a = D .若31a a >,则42a a >

2019高三第一轮复习:等比数列

2019高三第一轮复习:等比数列 1.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16 B .8 C .4 D .2 2.已知等差数列的公差为,若成等比数列,则的值为( ) A . B . C . D . 3.已知数列是公比为的等比数列,且成等差数列,则公比的值为( ) A . B .-2 C .1或 D .-1或 4.已知等比数列满足,则( ) A .243 B .128 C .81 D .64 5.在正项等比数列{}n a 中,若657,3,a a a 依次成等差数列,则{}n a 的公比为( ) A .2 B .1 2 C . 3 D .1 3 6.等差数列的公差是2,若成等比数列,则的前项和( ) A . B . C . D . 7.若等差数列的公差且成等比数列,则( ) A . B . C . D .2 8.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( ) A .64 B .81 C .128 D .243 9.如果数列的前n 项和为,则这个数列的通项公式是() A . B . C . D . 10.记为数列的前项和,若,则等于 A . B . C . D . 11.若公差为的等差数列的前项和为,且成等比数列,则 A . B . C . D . 12.等比数列中,,则的前4项和为( ) A .48 B .60 C .81 D .124

13.已知是等比数列前项的和,若公比,则( ) A . B . C . D . 14.数列{}n a 的前n 项和为n S ,且13a =,*12()n n a a n N +=∈,则5S 等于( ) A .32 B .48 C .62 D .93 15.等比数列{}n a 的各项均为正数,且544a a =,则212822log log log a a a ++?+=( ) A .7 B .8 C .9 D .10 16.等比数列中,.(1)求的通项公式;(2)记为的前项和.若,求. 17.已知数列满足,,设. (1)求 ;(2)判断数列是否为等比数列,并说明理由;(3)求的通项公式. 18.已知等差数列的前项和为,等比数列的前项和为,且,,. (1)若,求的通项公式;(2)若,求.

各地高考等比数列真题试卷(含详细答案)

等比数列练习题 一、选择题 1.(2009年广东卷文)已知等比数列}{n a 的公比为正数,且3a ·9a =22 5a ,2a =1,则1a = A. 2 1 B. 22 C. 2 D.2 【答案】B 【解析】设公比为q ,由已知得( )2 2 8 41112a q a q a q ?=,即2 2q =,又因为等比数列}{n a 的公比为 正数,所以q = 故212a a q = == ,选B 2、如果1,,,,9a b c --成等比数列,那么( ) A 、3,9b ac == B 、3,9b ac =-= C 、3,9b ac ==- D 、3,9b ac =-=- 3、若数列}{ n a 的通项公式是=+++-=1021),23()1(a a a n a n n 则 (A )15 (B )12 (C )-12 D )-15 答案:A 4.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( ) A.18 B.20 C.22 D.24 答案:B 解析: 20 ,100,1111111110=∴+==∴=a d a a a S S 5.(2008四川)已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是() A.(],1-∞- B.() (),01,-∞+∞ C.[)3,+∞ D.(][),13,-∞-+∞ 答案 D 6.(2008福建)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为( ) A.63 B.64 C.127 D.128 答案 C 7.(2007重庆)在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 答案 A 8.若等比数列{a n }满足a n a n +1=16n ,则公比为 A .2 B .4 C .8 D .16 答案:B 9.数列{a n }的前n 项和为S n ,若a 1=1,a n +1 =3S n (n ≥1),则a 6= (A )3 × 44 (B )3 × 44+1 (C )44 (D )44+1 答案:A 解析:由a n +1 =3S n ,得a n =3S n -1(n ≥ 2),相减得a n +1-a n =3(S n -S n -1)= 3a n ,则a n +1=4a n (n ≥ 2),a 1=1,a 2=3,则a 6= a 2·44=3×44,选A . 10.(2007湖南) 在等比数列{}n a (n ∈N*)中,若11a =,41 8 a =,则该数列的前10项和为( ) A .4122- B .2122- C .101 22 - D .11122- 答案 B 11.(2006湖北)若互不相等的实数 成等差数列, 成等比数列,且310a b c ++=,则a = A .4 B .2 C .-2 D .-4 答案 D 解析 由互不相等的实数,,a b c 成等差数列可设a =b -d ,c =b +d ,由310a b c ++=可得b =2,所以a =2-d ,c =2+d ,又,,c a b 成等比数列可得d =6,所以a =-4,选D 12.(2008浙江)已知{}n a 是等比数列,4 1 252==a a ,,则13221++++n n a a a a a a =( ) A.16(n --4 1) B.6(n --2 1) ,,a b c ,,c a b

2019高考数学二轮复习专题三数列与不等式第1讲等差数列与等比数列学案

第1讲 等差数列与等比数列 [考情考向分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.等差、等比数列的判定及综合应用也是高考考查的重点,注意基本量及定义的使用,考查分析问题、解决问题的综合能力. 热点一 等差数列、等比数列的运算 1.通项公式 等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n -1 . 2.求和公式 等差数列:S n = n (a 1+a n ) 2 =na 1+ n (n -1) 2 d ; 等比数列:S n =????? a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1),na 1(q =1). 3.性质 若m +n =p +q , 在等差数列中a m +a n =a p +a q ; 在等比数列中a m ·a n =a p ·a q . 例1 (1)(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5等于( ) A .-12 B .-10 C .10 D .12 答案 B 解析 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4, 得3???? ??3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d ,将a 1=2代入上式,解得d =-3, 故a 5=a 1+(5-1)d =2+4×(-3)=-10.故选B. (2)(2018·杭州质检)设各项均为正数的等比数列{a n }中,若S 4=80,S 2=8,则公比q =________,a 5=________. 答案 3 162

高三数学等比数列问题常见错误

等比数列问题常见错误剖析 一、概念不明 例1 若2233k k k ++, ,是一个等比数列的前三项,则k = . 错解:依题意22k +是k 和33k +的等比中项, 2(22)(33)k k k +=+∴,整理得2540k k ++=, 解得1k =-或4k =-. 剖析与正解:此解忽视了等比数列任意一项都不为0这一条件,所以1k =-不适合题意,应舍去,答案为4k =-. 二、忽视隐含条件 例2 已知等比数列{}n a ,若1237a a a ++=,1 238a a a =··,求n a . 错解:2132a a a =∵·,312328a a a a ==∴··, 22a =∴,1313 54a a a a +=??=?,,∴· 解得1314a a =??=?,,或13 41a a =??=?,. 231a a q =∵,2q =±∴或12 q =±, 12n n a -=∴或1(2)n n a -=-或32n n a -=或3(2)n n a -=-. 剖析与正解:由上面求出的123a a a ,,的值,可得到题目的一个隐含条 件0q >,所以2q =或12 q =,所以12n n a -=或32n n a -=. 三、忽视公式的使用范围 例3 已知等差数列{}n a 的首项12a =,公差为d ,2n a n b =,求数列{}n b 的前n 项和n S . 错解:11()1222n n n n a a a n a n b b ++-+==∵,∴数列{}n b 是一个首项为124a =,公比为2d 的

等比数列, 4(12)12 nd n d S -=-∴. 剖析与正解:等比数列的前n 项和公式1(1)1n n a q S q -=-只在1q ≠时适用,当1q =时,1n S na =. 4(0)4(12)(0)12nd n d n d S d =??=?-≠??-∴ ,. 例4 已知数列{}n a 的前n 项和为n S 满足2log (1)1n S n +=+,求数列{}n a 的通项公式. 错解:由2log (1)1n S n +=+,得121n n S +=-, 1121(21)2n n n n n n a S S +-=-=---=∴, ∴数列{}n a 的通项公式为2n n a =. 剖析与正解:错因在于忽略了公式1n n n a S S -=-成立的条件为1n >. 当1n =时,113a S ==,不满足2n n a =,所以数列{}n a 的通项公式为 3(1)2(1) n n n a n =?=?>?,.

高考备考等差等比数列教案

姓名: 等差数列 1、已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( ) A.有最小值且是整数 B. 有最小值且是分数 C. 有最大值且是整数 D. 有最大值且是分数 2、已知等差数列{}n a 的公差1 2 d = ,8010042=+++a a a ,那么=100S A .80 B .120 C .135 D .160. 3、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13S A .390 B .195 C .180 D .120 4、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( ) A. 130 B. 170 C. 210 D. 260 5、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为( ) A. 13 B. 12 C. 11 D. 10 6、已知某数列前n 项之和3n 为,且前n 个偶数项的和为)34(2 +n n ,则前n 个奇数项的和为( ) A .)1(32 +-n n B .)34(2 -n n C .23n - D . 3 2 1n 7、等差数列{}n a 中,若638a a a =+,则9s = . 8、已知等差数列{}n a 的公差是正整数,且a 4,126473-=+-=?a a a ,则前10项的和 S 10= 9、一个等差数列共有10项,其中奇数项的和为 25 2 ,偶数项的和为15,则这个数列的第6项是 10、两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,若 3 37++=n n T S n n ,则8 8a b = , =+++11 513973b b a b b a 11、设等差数列{}n a 的前n 项和为n S ,已知312a =,12S >0,13S <0, ①求公差d 的取值范围; ②1212,,,S S S 中哪一个值最大?并说明理由.

2017年高考试题分类汇编(数列)

2017年高考试题分类汇编(数列) 考点1 等差数列 1.(2017·全国卷Ⅰ理科)记n S 为等差数列{}n a 的前n 项和.若4524a a +=, 648S =,则{}n a 的公差为 C A .1 B .2 C .4 D .8 2.(2017·全国卷Ⅱ理科)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则 11n k k S ==∑ . 21n n + 3.(2017·浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是 “465+2S S S >”的 C A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 考点2等比数列 1.(2017·全国卷Ⅲ理科)设等比数列{}n a 满足121a a +=-,133a a -=-,则 4a =____.8- 2.(2017·江苏卷)等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知 374S = ,6634 S =,则8a = . 32 3.(2017·全国卷Ⅱ理科)我国古代数学名著《算法统宗》中有如下问题:“远 望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是: 一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍, 则塔的顶层共有灯 B A .1盏 B .3盏 C .5盏 D .9盏 考法3 等差数列与等比数列综合 1.(2017·全国卷Ⅲ理科)等差数列{}n a 的首项为1,公差不为0.若2a ,3a , 6a 成等比数列,则{}n a 前6项的和为 A A .24- B .3- C .3 D .8

等差数列与等比数列练习和解析(高考真题)

1.(2019·全国卷Ⅰ)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则( ) A.a n=2n-5 B.a n=3n-10 C.S n=2n2-8n D.S n=1 2 n2-2n 2.(2019·长郡中学联考)已知数列{a n}满足,a n+1+2a n=0,且a2=2,则{a n}前10项的和等于( ) A.1-210 3 B.- 1-210 3 C.210-1 D.1-210 3.已知等比数列{a n}的首项为1,公比q≠-1,且a5+a4=3(a3 +a2),则9 a1a2a3…a9等于( ) A.-9 B.9 C.-81 D.81 4.(2018·全国卷Ⅰ)记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=( ) A.-12 B.-10 C.10 D.12 5.(2019·山东省实验中学联考)已知等差数列{a n}的公差不为零,S n为其前n项和,S3=9,且a2-1,a3-1,a5-1构成等比数列,则S5=( ) A.15 B.-15 C.30 D.25 二、填空题 6.(2019·北京卷)设等差数列{a n}的前n项和为S n.若a2=-3,S5=-10,则a5=________,S n的最小值为________. 7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要

见次日行里数,请公仔细算相还.”其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则此人第4天走的里程是________里. 8.(2019·雅礼中学调研)若数列{a n }的首项a 1=2,且a n +1=3a n +2(n ∈N *).令b n =log 3(a n +1),则b 1+b 2+b 3+…+b 100=________. 三、解答题 9.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9 =-a 5. (1)若a 3=4,求{a n }的通项公式; (2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 10.已知数列{a n }是等比数列,并且a 1,a 2+1,a 3是公差为-3的等差数列. (1)求数列{a n }的通项公式; (2)设b n =a 2n ,记S n 为数列{b n }的前n 项和,证明:S n < 163 . B 级 能力提升 11.(2019·广州调研)已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }的前n 项和,则2S n +16a n +3 (n ∈N * )的最小值为( ) A .4 B .3 C .23-2 D.92 12.设等差数列{a n }的前n 项和为S n ,a =(a 1,1),b =(1,a 10),若a ·b =24,且S 11=143,数列{b n }的前n 项和为T n ,且满足2a n -1

理科数学2010-2019高考真题分类训练等比数列

专题六 数列 第十六讲 等比数列 2019年 1.(2019全国1理14)记S n 为等比数列{a n }的前n 项和.若21461 3 a a a ==,,则S 5=____________. 2.(2019全国3理5)已知各项均为正数的等比数列{a n }的前4项为和为15,且a 5=3a 3+4a 1,则a 3= A . 16 B . 8 C .4 D . 2 3.(2019全国2卷理19)已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+ ,1434n n n b b a +-=-. (1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式. 2010-2018年 一、选择题 1.(2018北京) “十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比 例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比 都等于.若第一个单音的频率为f ,则第八个单音的频率为 A B C . D . 2.(2018浙江)已知1a ,2a ,3a ,4a 成等比数列,且1234123ln()a a a a a a a +++=++.若 11a >,则 A .13a a <,24a a < B .13a a >,24a a < C .13a a <,24a a > D .13a a >,24a a > 3.(2017新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红 光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381

专题10 等差数列与等比数列—三年高考(2015-2017)数学(文)真题汇编

1.【2017浙江,6】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】C 【考点】 等差数列、充分必要性 【名师点睛】本题考查等差数列的前n 项和公式,通过公式的套入与简单运算,可知 4652S S S d +-=, 结合充分必要性的判断,若q p ?,则p 是q 的充分条件,若q p ?, 则 p 是q 的必要条件,该题“0>d ”?“02564>-+S S S ”,故为充要条件. 2.【2015高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若 844S S =,则10a =( ) (A ) 172 (B )19 2 (C )10 (D )12 【答案】B 【解析】∵公差1d =,844S S =,∴11118874(443)2 2 a a +??=+??,解得1a =1 2 , ∴101119 9922 a a d =+= += ,故选B. 【考点定位】等差数列通项公式及前n 项和公式 【名师点睛】解等差数列问题关键在于熟记等差数列定义、性质、通项公式、前n 项和公式,利用方程思想和公式列出关于首项与公差的方程,解出首项与公差,利用等差数列性质可以简化计算. 3.【2014高考重庆文第2题】在等差数列{}n a 中,1 352,10a a a =+=,则7a =( ) .5A .8B .10C .14D 【答案】B

【解析】 试题分析:设等差数列{}n a的公差为d,由题设知,12610 a d +=,所以,1 102 1 6 a d - ==所以,716268 a a d =+=+=.故选B. 考点:等差数列通项公式. 【名师点睛】本题考查了等差数列的概念与通项公式,本题属于基础题,利用下标和相等的两项的和相等更能快速作答. 4.【2014天津,文5】设 {} n a是首项为 1 a,公差为1-的等差数列,n S为其前n项和,若, , , 4 2 1 S S S成等比数列,则 1 a=() A.2 B.-2 C. 2 1 D . 1 2 - 【答案】D 考点:等比数列 【名师点睛】本题考查等差数列的通项公式和前n项和公式,本题属于基础题,利用等差数列的前n项和公式表示出, , , 4 2 1 S S S然后依据, , , 4 2 1 S S S成等比数列,列出方程求出首项.这类问题考查等差数列和等比数列的基本知识,大多利用通项公式和前n项和公式通过列方程或方程组就可以解出. 5.【2014辽宁文9】设等差数列{}n a的公差为d,若数列1{2}n a a为递减数列,则()A.0 dC.10 a d 【答案】C 【解析】 试题分析:由已知得,111 22 n n a a a a- <,即 1 11 2 1 2 n n a a a a- <,1n1 (a) 21 n a a- -<,又n1 a n a d - -=,故121 a d<,从而10 a d<,选C. 【考点定位】1、等差数列的定义;2、数列的单调性. 【名师点睛】本题考查等差数列的通项公式、数列的性质等,解答本题的关键,是写出等差

全国卷数列高考题汇总附答案

数列专题 高考真题 (2014·I) 17. (本小题满分12分) 已知数列{}的前项和为,=1, , ,其中为常数. (Ⅰ)证明:; (Ⅱ)是否存在,使得{}为等差数列并说明理由. (2014·II) 17.(本小题满分12分) 已知数列 满足=1, . (Ⅰ)证明是等比数列,并求 的通项公式; (Ⅱ)证明: . (2015·I)(17)(本小题满分12分) 为数列的前项和.已知, (Ⅰ)求的通项公式: (Ⅱ)设 ,求数列 的前项和。 (2015·I I)(4)等比数列 满足 ,135a a a ++ =21,则357a a a ++= ( )

(A )21 (B )42 (C )63 (D )84 (2015·I I)(16)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. (2016·I)(3)已知等差数列 前9项的和为27, ,则 (A )100 (B )99 (C )98 (D )97 (2016·I)(15)设等比数列满足 的最大值为 __________。 (2016·II)(17)(本题满分12分) S n 为等差数列的前项和,且=1 ,=28 记 ,其中表示不超过的最大整数, 如 . (I )求,, ; (II )求数列的前1 000项和. (2016·III)(12)定义“规范01数列” 如下: 共有项,其中项为0,项为1,且对任意, 中0的个数不少于1的个数.若 ,则不同的“规范01数列”共有 (A )18个 (B )16个 (C )14个 (D )12个 (2016·III)(17)(本小题满分12分) 已知数列的前项和 ,其中 (I )证明是等比数列,并求其通项公式; (II )若 ,求. (2017·I)4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1 B .2 C .4 D .8 (2017·I)12.几位大学生响应国家的创业号召,开发了一款应用软件。为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列

高考数学必考点 等差数列与等比数列 计算题专项

等差数列与等比数列测试题 1.在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)对任意m ∈N ﹡,将数列{a n }中落入区间(9m ,92m )内的项的个数记为bm ,求数列{b m }的前m 项和S m 。 2.已知等差数列{}n a 的前5项和为105,且2052a a =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27 m 的项的个数记为m b .求数列{}m b 的前m 项和 m S . 3、设{}n a 是等差数列,1()2n a n b =,已知123218b b b ++= ,12318 b b b =, 求等差数列{}n a 的通项公式。 4、设数列{}n a 为等差数列,n S 为数列{}n a 的前n 项和,已知7157,75S S ==,n T 为数列{n S n }的前n 项和,求n T 。 5、设n S 为数列{}n a 的前n 项和,2n S kn n =+,*n N ∈,其中k 是常数. (I ) 求1a 及n a ; (II )若对于任意的*m N ∈,m a ,2m a ,4m a 成等比数列,求k 的值.

6、设数列{}n a 的通项公式为(,0)n a pn q n N P *=+∈>. 数列{}n b 定义如下:对于正整数m , m b 是使得不等式n a m ≥成立的所有n 中的最小值. (Ⅰ)若11 ,23 p q = =-,求3b ; (Ⅱ)若2,1p q ==-,求数列{}m b 的前2m 项和公式; (Ⅲ)是否存在p 和q ,使得32()m b m m N *=+∈?如果存在,求p 和q 的取值范围;如果不存在,请说明理由. 7、等比数列{n a }的前n 项和为n S , 已知对任意的n N +∈ ,点(,)n n S ,均在函数 (0x y b r b =+>且1,,b b r ≠均为常数)的图像上. (1)求r 的值; (11)当b=2时,记 1 ()4n n n b n N a ++=∈ 求数列{}n b 的前n 项和n T 8、已知{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列 (1)若 31n a n =+,是否存在* ,m n N ∈,有1m m k a a a ++=?请说明理由; (2)若n n b aq =(a 、q 为常数,且aq ≠0)对任意m 存在k ,有1m m k b b b +?=,试求a 、q 满

高三第一轮复习《等比数列》教学设计

高三第一轮复习《等比数列》教学设计 教学目标:1.使学生理解等比数列的概念,掌握其通项公式,并能运 用定义及其通项公式解决一些简单的实际问题。 2.能在具体的问题情境中,发现数列的等比关系 3.用类比的方法研究等比数列 ,使学生对数列建立起一个知识体系, 培养用不完全归纳法去发现并解决问题的能力和计算能力,多让学生动手,让学生在解题中,体会成功的快乐 教学重点:1.等比数列的通项公式及其推导过程 2.等比数列性质的应用 教学难点:等比数列的实际应用问题或与其他知识交汇题的题目 教学方法:自主探究、合作学习 教学过程: 一、知识点的整理: 1.等比数列的定义: 2.等比数列的通项公式 设等比数列{a n }的首项为a 1, 公比为q ,则它的通项a n =11-n q a 3.等比中项:若xy G =2,那么 G 叫做x 与y 的等比中项. 4.等比数列的常用性质 5.等比数列的前n 项和公 式 二、典例分析 练习 (口答) 性质的应用 (1).在等比数列{a n }中,a 1+a 2=30,a 3+a 4=60,则a 7+a 8=________. (2).若互不相等的实数a 、b 、c 成等差数列,c 、a 、b 成等比数列,且a +3b +c =10,则a =________.

(3).在等比数列{a n }中,前n 项和为S n ,若S 3=7,S 6=63,则公比 q 的值是( ) A .2 B .-2 C .3 D .-3 (4).在数列{a n }中,a n +1=ca n (c 为非零常数),且前n 项和S n =3n +k ,则实数k =________. 例1 等比数列的基本量的运算 (1)已知等比数列{a n }中,a 1+a 2+a 3=7,a 1a 2a 3=8,求a n (2)在等比数列中,若.14321=a a a a ,816151413=a a a a ,求44434241a a a a 例2等比数列的判定与证明 已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1 (n ≥2),且a n +S n =n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式. 变式:设数列{a n }的前n 项和为S n ,已知a 1=1, S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式 课堂小结 通过本节课的学习,你对等比函数有什么认识?你有什么收获? 1.设计意图: 等比数列在高中数学中占有很重要的位置.这一节的难点是对公式的理解及灵活应用,如何突破这一难点,就要让学生理解公式的由来和涉及的数学思想,比如累乘法.然后讲一些典型题,易错易漏题.本节课,力图让学生从不同的角度去研究数列,对等比数列进行一个全方位的研究,并通过类比的方法,把研究等差数列的方法迁移过来. 本课的教学中我努力实践以下两点: (1).在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式. (2).在教学过程中努力做到生生对话、师生对话,并且在对话

2019年高考数学真题分类汇编专题18:数列

2019年高考数学真题分类汇编 专题18:数列(综合题) 1.(2019?江苏)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }()* n N ∈满足:245324,440a a a a a a =-+=,求证:数列{a n }为 “M-数列”; (2)已知数列{b n }满足: 111221,n n n b S b b +==- ,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式; ②设m 为正整数,若存在“M-数列”{c n }()* n N ∈ ,对任意正整数k , 当k ≤m 时,都有1k k k c b c +≤≤成立,求m 的最大值. 【答案】 (1)解:设等比数列{a n }的公比为q , 所以a 1≠0,q ≠0. 由 ,得 ,解得 . 因此数列 为“M—数列”. (2)解:①因为 ,所以 . 由 得 ,则 . 由 ,得 , 当 时,由 ,得 , 整理得 . 所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n . ②由①知,b k =k , . 因为数列{c n }为“M–数列”,设公比为q , 所以c 1=1,q >0. 因为c k ≤b k ≤c k +1 , 所以 ,其中k =1,2,3,…,m .

当k=1时,有q≥1; 当k=2,3,…,m时,有. 设f(x)= ,则. 令,得x=e.列表如下: x e(e,+∞) +0– f(x)极大值 因为,所以. 取,当k=1,2,3,4,5时,,即, 经检验知也成立. 因此所求m的最大值不小于5. 若m≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216,所以q不存在.因此所求m的最大值小于6. 综上,所求m的最大值为5. 【考点】导数在最大值、最小值问题中的应用,等比数列的通项公式,等差关系的确定 【解析】【分析】(1)利用已知条件结合等比数列的通项公式,用“M-数列”的定义证出数列{a n}为“M-数列”。(2)①利用与的关系式结合已知条件得出数列为等差数列,并利用等差数列通项公式求出数列的通项公式。②由①知,b k=k, .因为数列{c n}为“M–数列”,设公比为q,所以c1=1,q>0,因为c k≤b k≤c k+1,所以,其中k=1,2,3,…,m ,再利用分类讨论的方法结合求导的方法判断函数的单调性,从而求出函数的极值,进而求出函数的最值,从而求出m的最大值。

(完整版)高考等差等比数列知识点总结

高考数列知识点 等差数列 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式:* 11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --= ; 3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地()()()12121121212 n n n n a a S n a +++++= = + 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . (3) 数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4) 数列{}n a 是等差数列?2 n S An Bn =+,(其中A 、B 是常数) 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列 7.等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函 数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. (4)若{}n a 、{}n b 为等差数列,则{}{}12n n n a b a b λλλ++,都为等差数列 (5) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列 (6)求n S 的最值 法一:因等差数列前n 项和是关于n 的二次函数,故可转化为求二次函数的最值,但要 注意数列的特殊性 *n N ∈。 法二:(1)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和 即当,,001<>d a 由?? ?≤≥+0 1n n a a 可得n S 达到最大值时的n 值. (2) “首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。 即 当,,001>

相关文档
最新文档