2016年中考数学 微测试系列专题10 反比例函数图象和性质及应用(含解析)新人教版

合集下载

河北2016年中考说明分类试题之反比例函数与问题解决

河北2016年中考说明分类试题之反比例函数与问题解决

2 ( x<0) x
的图像于点 B,交函数 y (x>0) 的图像于点 C,过点 C 作 y 轴的平行线交 BO 的延长线于点 D。 (1)如果点 A 的坐标为(0,2) ,求线段 AB 与线段 CA 的长度之比; (2)如果点 A 的坐标为(0,a) ,求线段 AB 与线段 CA 的长度之比; (3)对于动点 A,求四边形 AODC 的面积。
7、如图,在直角坐标系中,Rt△ABC 位于第一象限,两条直角边 BC,BA 分别平行于 x 轴、y 轴, 点 A 的坐标为(1,1) ,AB=2,BC=4. (1)求点 C 的坐标和 AC 所在的直线的解析式. (2)若反比例函数 y= 求 m 是值; (3)若反比例函数 y=
m (x>0)的图象经过点 B, x m (x>0)的图象与 AC 边有 x
公共点,请直接写出 m 的取值范围.
第4题 AB 缩小,则过 A 点对应点的反比例函数的解析式为( A. y
第5题
5、在平面直角坐标系中有两点 A(6,2) 、B(6,0) ,以原点为位似中心,相似比为 1:3,把线段 )
4 x
B. y
4 3x 6 x
C. y
4 3x
D. y
18 x
6、 如图, 在平面直角坐标系中, A 为 y 轴正半轴上一点, 过点 A 作 x 轴的平行线, 交函数 y
反比例函数与问题解决
1、如图,点 A 位反比例函数 y 为 。
1 的图像上一点,点 B 在 x 轴上,且 OA=BA,则△AOB 的面积 x第1题Fra bibliotek第2题
第3题
2、如图,正比例函数与反比例函数的图像相交于 A、B 两点,点 A 坐标为(2,1) ,分别以 A、B 为 圆心的圆与 x 轴相切,则图中两个阴影部分面积的和为 。 3、如图,A、B 是双曲线 y 范围是 。

中考数学必考考点专题13反比例函数含解析

中考数学必考考点专题13反比例函数含解析

专题13 反比例函数1.反比例函数:形如y=xk(k为常数,k≠0)的函数称为反比例函数。

其他形式xy=k、1-=kxy。

2.图像:反比例函数的图像属于双曲线。

反比例函数的图象既是轴对称图形又是中心对称图形。

有两条对称轴:直线y=x和 y=-x。

对称中心是:原点。

它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

3.性质:(1)当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;(2)当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

5.反比例函数解析式的确定由于在反比例函数xky=中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

【例题1】(2019山东枣庄)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A.B分别在x 轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=1,则k的值为()A.1 B.C.D.2【答案】A专题知识回顾专题典型题考法及解析【解析】根据题意可以求得OA和AC的长,从而可以求得点C的坐标,进而求得k的值,本题得以解决.∵等腰直角三角形ABC的顶点A.B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,AB=1,∴∠BAC=∠BAO=45°,∴OA=OB=,AC=,∴点C的坐标为(,),∵点C在函数y=(x>0)的图象上,∴k==1故选:A.的图【例题2】(2019湖南郴州)如图,点A,C分别是正比例函数y=x的图象与反比例函数y=4x象的交点,过A点作AD⊥x轴于点D,过C点作CB⊥x轴于点B,则四边形ABCD的面积为.【答案】8【解析】∵A、C是两函数图象的交点,∴A、C关于原点对称,∵CD⊥x轴,AB⊥x轴,∴OA=OC,OB=OD,∴S△AOB=S△BOC=S△DOC=S△AOD,的图象上,又∵反比例函数y=4x∴S△AOB=S△BOC=S△DOC=S△AOD=1×4=2,2∴S四边形ABCD=4S△AOB=4×2=8,故答案为:8.【例题3】(2019江苏镇江)如图,点A(2,n)和点D是反比例函数y=mx(m>0,x>0)图像上的两点,一次函数y=kx+3(k≠0)的图像经过点A,与y轴交于点B,与x轴交于点C,过点D作DE ⊥x轴,垂足为E,连接OA、OD.已知△OAB与△ODE的面积满足S△OAB﹕S△ODE=3﹕4.(1)S△OAB=________,m=________;(2)已知点P(6,0)在线段OE上,当∠PDE=∠CBO时,求点D的坐标.【答案】见解析。

2016年中考数学复习方案_第3单元_反比例函数二次函数及其图象课件

2016年中考数学复习方案_第3单元_反比例函数二次函数及其图象课件

第14课时┃ 二次函数的图象与性质
考点2 二次函数的性质
函数
二次函数 y=ax2+bx+c(a、b、c 为常数,a≠0) a>0 a<0
图象
开口方向 对称轴 顶点坐标
抛物线开口向上, 抛物线开口向下,并向下无 并向上无限延伸. 限延伸. b 直线 x=- 2a
2 4 ac - b b - , 2a 4a
第14课时┃ 二次函数的图象与性质
考点4 二次函数与一元二次方程
关键点回顾 二次函数 y=ax2+bx+c(a≠0)的图象与 x 轴的交点的 二次 横坐标就是一元二次方程 ax2+bx+c=0(a≠0)的根. 函数 1.当 b2-4ac>0 时抛物线与 x 轴有________ 两个 交点, 与一 方程 ax2+bx+c=0(a≠0)有两个不相等的实数根; 元二次 2.当 b2-4ac=0 时抛物线与 x 轴有________ 一个 交点, 方程的 方程 ax2+bx+c=0(a≠0)有两个相等的实数根; 关系 3.当 b2-4ac<0 时抛物线与 x 轴__________ 交点, 没有 方程 ax2+bx+c=0(a≠0)没有实数根.
解 析
由反比例函数的增减性可知,当 x>0 时,y 随
x 的增大而减小,当 0<x1<x2 时,则 0<y2<y1.故选 C.
第13课时┃ 反比例函数
1 例2 [2012· 齐齐哈尔] 如图 11-3, 点 A 在双曲线 y=x上, 3 点 B 在双曲线 y=x上,且 AB∥x 轴,点 C、D 在 x 轴上,若四 边形 ABDC 为矩形,则它的面积为________ . 2
第14课时┃ 二次函数的图象与性质
变式题 [2012· 泰州] 如图 12-1, 在平面直角坐标系 xOy 中, 边长为 2 的正方形 OABC 的顶点 A、C 分别在 x 轴、y 轴的正半 2 2 轴上,二次函数 y=- x +bx+c 的图象经过 B、C 两点. 3 (1)求该二次函数的解析式; (2)结合函数的图象探索:当 y>0 时 x 的取值范围.

2024年中考数学一轮复习考点精讲课件—反比例函数的图象、性质及应用

2024年中考数学一轮复习考点精讲课件—反比例函数的图象、性质及应用

其中,两个变量之间的函数关系可以用如图所示的图象表示的是( )
A.①②
B.①③
C.②③
D.①②③
【详解】解:由函数图象可知,这两个变量之间成反比例函数关系,

①矩形的面积= ⋅ ,因此矩形的面积一定时,一边长y与它的邻边x可以用形如 = ≠ 0 的式子表
示,即满足所给的函数图象;
②耕地面积= ⋅ ,因此耕地面积一定时,该村人均耕地面积S与全村总人口n可以用形如 =
这个函数图象上的点是(
)A. 1,6
1
B. − 2 , 12 ,
C. −2, −3
2
D.
3
,4
2
6
【对点训练1】(2019·吉林长春·中考模拟)如图,函数y=(x>0)、y=(x>0)的图象将第一象限分成了A、
B、C三个部分.下列各点中,在B部分的是( )
即:反比例函数的图象关于直线y=±x成轴对称,关于原点成中心对称.
反比例 待定系数法求反比例函数解析式的一般步骤:
函数解
析式的
确定方

k
1)设反比例函数的解析式为y = (k为常数,k≠0);
x
2)把已知的一对x,y的值带入解析式,得到一个关于待定系数k的方程;
3)解方程求出待定系数k;
4)将所求的k值代入所设解析式中.
【例3】(2022上·山东枣庄·九年级校考期末)已知函数 = ( + 1)

【详解】∵函数 = ( + 1)

2 −5
2 −5
是关于的反比例函数,则的值
是关于的反比例函数,
∴ + 1 ≠ 0,2 − 5 = −1,
∴ = ±2,

2016年全国各地中考数学试题分类解析汇编专题26 反比例函数要点

2016年全国各地中考数学试题分类解析汇编专题26 反比例函数要点

2016年全国各地中考数学试题分类解析汇编专题26 反比例函数1.(2016•广州)一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320t B.v=C.v=20t D.v=2.(2016•遵义)已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b3.(2016•苏州)已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定4.(2016•大庆)已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1•x2<0 B.x1•x3<0 C.x2•x3<0 D.x1+x2<05.(2016•兰州)如图,A,B两点在反比例函数y=的图象上,C、D两点在反比例函数y=的图象上,AC⊥x轴于点E,BD⊥x轴于点F,AC=2,BD=3,EF=,则k2﹣k1=()A.4 B.C.D.66.(2016•新疆)已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.(2016•烟台)反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t<B.t>C.t≤D.t≥8.(2016•玉林)若一次函数y=mx+6的图象与反比例函数y=在第一象限的图象有公共点,则有()A.mn≥﹣9 B.﹣9≤mn≤0 C.mn≥﹣4 D.﹣4≤mn≤09.(2016•临沂)如图,直线y=﹣x+5与双曲线y=(x>0)相交于A,B两点,与x轴相交于C点,△BOC的面积是.若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线y=(x>0)的交点有()A.0个B.1个C.2个D.0个,或1个,或2个10.(2016•株洲)已知,如图一次函数y1=ax+b与反比例函数y2=的图象如图示,当y1<y2时,x的取值范围是()A.x<2 B.x>5 C.2<x<5 D.0<x<2或x>511.(2016•济宁)如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.4012.(2016•连云港)姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A.y=3x B.C.D.y=x213.(2016•河南)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△A OB=2,则k的值为()A.2 B.3 C.4 D.514.(2016•菏泽)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OA C﹣S△B A D为()A.36 B.12 C.6 D.315.(2016•沈阳)如图,在平面直角坐标系中,点P是反比例函数y=(x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为()A.3 B.﹣3 C.D.﹣16.(2016•贵州)如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4 B.4 C.﹣2 D.217.(2016•长春)如图,在平面直角坐标系中,点P(1,﹣4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小18.(2016•十堰)如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy 中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为()A.25B.18C.9D.919.(2016•哈尔滨)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)20.(2016•天津)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y32016年全国各地中考数学试题分类解析汇编专题26 反比例函数参考答案与试题解析1.(2016•广州)一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320t B.v=C.v=20t D.v=【解析】根据路程=速度×时间,利用路程相等列出方程即可解决问题.【解答】解:由题意vt=80×4,则v=.故选B.【点评】本题考查实际问题的反比例函数、路程、速度、时间之间的关系,解题的关键是构建方程解决问题,属于中考常考题型.2.(2016•遵义)已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b【解析】利用反比例函数的增减性可判断a和b的大小关系,可求得答案.【解答】解:∵k>0,∴当x>0时,反比例函数y随x的增大而减小,∵1<3,∴a>b,故选D.【点评】本题主要考查反比例函数的性质,掌握反比例函数在各象限内的增减性是解题的关键.3.(2016•苏州)已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【解析】直接利用反比例函数的增减性分析得出答案.【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,∴每个象限内,y随x的增大而增大,∴y1<y2,故选:B.【点评】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.4.(2016•大庆)已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1•x2<0 B.x1•x3<0 C.x2•x3<0 D.x1+x2<0【解析】根据反比例函数y=和x1<x2<x3,y2<y1<y3,可得点A,B在第三象限,点C在第一象限,得出x1<x2<0<x3,再选择即可.【解答】解:∵反比例函数y=中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2<0,故选A.【点评】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.5.(2016•兰州)如图,A,B两点在反比例函数y=的图象上,C、D两点在反比例函数y=的图象上,AC⊥x轴于点E,BD⊥x轴于点F,AC=2,BD=3,EF=,则k2﹣k1=()A.4 B.C.D.6【解析】设A(m,),B(n,)则C(m,),D(n,),根据题意列出方程组即可解决问题.【解答】解:设A(m,),B(n,)则C(m,),D(n,),由题意:解得k2﹣k1=4.故选A.【点评】本题考查反比例函数图象上的点的坐标特征,解题的关键是利用参数,构建方程组解决问题,属于中考常考题型.6.(2016•新疆)已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解析】首先根据x1<x2<0时,y1>y2,确定反比例函数y=(k≠0)中k的符号,然后再确定一次函数y=kx﹣k的图象所在象限.【解答】解:∵当x1<x2<0时,y1>y2,∴k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过第一、三、四象限,∴不经过第二象限,故选:B.【点评】此题主要考查了反比例函数图象上点的坐标特征以及一次函数图象与系数的关系,解决此题的关键是确定k的符号.7.(2016•烟台)反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t<B.t>C.t≤D.t≥【解析】将一次函数解析式代入到反比例函数解析式中,整理得出关于x的一元二次方程,由两函数图象有两个交点,且两交点横坐标的积为负数,结合根的判别式以及根与系数的关系即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:将y=﹣x+2代入到反比例函数y=中,得:﹣x+2=,整理,得:x2﹣2x+1﹣6t=0.∵反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,∴,解得:t>.故选B.【点评】本题考查了反比例函数与一次函数的交点问题、根的判别式以及根与系数的关系,解题的关键是得出关于k的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,由交点的个数结合根的判别式得出不等式(或不等式组)是关键.8.(2016•玉林)若一次函数y=mx+6的图象与反比例函数y=在第一象限的图象有公共点,则有()A.mn≥﹣9 B.﹣9≤mn≤0 C.mn≥﹣4 D.﹣4≤mn≤0【解析】依照题意画出图形,将一次函数解析式代入反比例函数解析式中,得出关于x的一元二次方程,由两者有交点,结合根的判别式即可得出结论.【解答】解:依照题意画出图形,如下图所示.将y=mx+6代入y=中,得:mx+6=,整理得:mx2+6x﹣n=0,∵二者有交点,∴△=62+4mn≥0,∴mn≥﹣9.故选A.【点评】本题考查了反比例函数与一次函数的交点问题以及根的判别式,解题的关键由根的判别式得出关于mn的不等式.本题属于基础题,难度不大,解决该题型题目时,画出图形,利用数形结合解决问题是关键.9.(2016•临沂)如图,直线y=﹣x+5与双曲线y=(x>0)相交于A,B两点,与x轴相交于C点,△BOC的面积是.若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线y=(x>0)的交点有()A.0个B.1个C.2个D.0个,或1个,或2个【解析】令直线y=﹣x+5与y轴的交点为点D,过点O作OE⊥直线AC于点E,过点B作BF⊥x轴于点F,通过令直线y=﹣x+5中x、y分别等于0,得出线段OD、OC的长度,根据正切的值即可得出∠DCO=45°,再结合做的两个垂直,可得出△OEC与△BFC都是等腰直角三角形,根据等腰直角三角形的性质结合面积公式即可得出线段BC的长,从而可得出BF、CF的长,根据线段间的关系可得出点B的坐标,根据反比例函数图象上点的坐标特征即可得出反比例函数系数k的值,根据平移的性质找出平移后的直线的解析式将其代入反比例函数解析式中,整理后根据根的判别式的正负即可得出结论.【解答】解:令直线y=﹣x+5与y轴的交点为点D,过点O作OE⊥直线AC于点E,过点B作BF⊥x轴于点F,如图所示.令直线y=﹣x+5中x=0,则y=5,即OD=5;令直线y=﹣x+5中y=0,则0=﹣x+5,解得:x=5,即OC=5.在Rt△COD中,∠COD=90°,OD=OC=5,∴tan∠DCO==1,∠DCO=45°.∵OE⊥AC,BF⊥x轴,∠DCO=45°,∴△OEC与△BFC都是等腰直角三角形,又∵OC=5,∴OE=.∵S△B OC=BC•OE=×BC=,∴BC=,∴BF=FC=BC=1,∵OF=OC﹣FC=5﹣1=4,BF=1,∴点B的坐标为(4,1),∴k=4×1=4,即双曲线解析式为y=.将直线y=﹣x+5向下平移1个单位得到的直线的解析式为y=﹣x+5﹣1=﹣x+4,将y=﹣x+4代入到y=中,得:﹣x+4=,整理得:x2﹣4x+4=0,∵△=(﹣4)2﹣4×4=0,∴平移后的直线与双曲线y=只有一个交点.故选B.【点评】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、特殊角的正切值、三角形的面积公式以及等腰直角三角形的性质,解题的关键是求出点B的坐标.本题属于中档题,难度不大,但稍显繁琐,解决该题型题目时,根据特殊角找出等腰直角三角形,再根据等腰直角三角形的性质求出点的坐标是关键.10.(2016•株洲)已知,如图一次函数y1=ax+b与反比例函数y2=的图象如图示,当y1<y2时,x的取值范围是()A.x<2 B.x>5 C.2<x<5 D.0<x<2或x>5【解析】根据图象得出两交点的横坐标,找出一次函数图象在反比例图象下方时x 的范围即可.【解答】解:根据题意得:当y1<y2时,x的取值范围是0<x<2或x>5.故选:D.【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,灵活运用数形结合思想是解本题的关键.11.(2016•济宁)如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40【解析】过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.【解答】解:过点A作A M⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.设OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM==a,∴点A的坐标为(a,a).∵点A在反比例函数y=的图象上,∴a×a==48,解得:a=10,或a=﹣10(舍去).∴AM=8,OM=6.∵四边形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=,∠BNF=90°,∴FN=BF•sin∠FBN=b,BN==b,∴点F的坐标为(10+b,b).∵点B在反比例函数y=的图象上,∴(10+b)×b=48,解得:b=,或b=(舍去).∴FN=,BN=﹣5,MN=OB+BN﹣OM=﹣1.S△A OF=S△A OM+S梯形A M NF﹣S△OFN=S梯形A M N F=(AM+FN)•MN=(8+)×(﹣1)=×(+1)×(﹣1)=40.故选D.【点评】本题考查了反比例函数与一次函数交点的问题、解直角三角形、梯形的面积公式以及反比例函数图象上点的坐标特征,解题的关键是求出S梯形A M NF.本题属于中档题,难度不大,但数据较繁琐,解决该题型题目时,通过分割图形求面积法找出所求三角形的面积与梯形面积相等是关键.12.(2016•连云港)姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A.y=3x B.C.D.y=x2【解析】可以分别写出选项中各个函数图象的特点,与题目描述相符的即为正确的,不符的就是错误的,本题得以解决.【解答】解:y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;的图象在二、四象限,故选项C错误;y=x2的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;故选B.【点评】本题考查反比例函数的性质、正比例函数的性质、二次函数的性质,解题的关键是明确它们各自图象的特点和性质.13.(2016•河南)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△A OB=2,则k的值为()A.2 B.3 C.4 D.5【解析】根据点A在反比例函数图象上结合反比例函数系数k的几何意义,即可得出关于k的含绝对值符号的一元一次方程,解方程求出k值,再结合反比例函数在第一象限内有图象即可确定k值.【解答】解:∵点A是反比例函数y=图象上一点,且AB⊥x轴于点B,∴S△A OB=|k|=2,解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选C.【点评】本题考查了反比例函数的性质以及反比例函数系数k的几何意义,解题的关键是找出关于k的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k的几何意义找出关于k的含绝对值符号的一元一次方程是关键.14.(2016•菏泽)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OA C﹣S△B A D为()A.36 B.12 C.6 D.3【解析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.【解答】解:设△OAC和△BAD的直角边长分别为a、b,则点B的坐标为(a+b,a﹣b).∵点B在反比例函数y=的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=6.∴S△OA C﹣S△B A D=a2﹣b2=(a2﹣b2)=×6=3.故选D.【点评】本题考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.本题属于基础题,难度不大,解决该题型题目时,设出等腰直角三角形的直角边,用其表示出反比例函数上点的坐标是关键.15.(2016•沈阳)如图,在平面直角坐标系中,点P是反比例函数y=(x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为()A.3 B.﹣3 C.D.﹣【解析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.再由函数图象所在的象限确定k的值即可.【解答】解:∵点P是反比例函数y=(x>0)图象上的一点,分别过点P作PA⊥x 轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,∴矩形OAPB的面积S=|k|=3,解得k=±3.又∵反比例函数的图象在第一象限,∴k=3.故选A.【点评】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.16.(2016•贵州)如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4 B.4 C.﹣2 D.2【解析】根据反比例函数系数k的几何意义:在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变,可计算出答案.【解答】解:△ABO的面积为:×|﹣4|=2,故选D.【点评】本题考查了反比例函数系数k的几何意义,关键是掌握比例系数k的几何意义:①在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.②在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.17.(2016•长春)如图,在平面直角坐标系中,点P(1,﹣4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小【解析】首先利用m和n表示出AC和AQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【解答】解:AC=m﹣1,CQ=n,则S四边形A CQE=AC•CQ=(m﹣1)n=mn﹣n.∵Q(m,n)在函数y=(x>0)的图象上,∴mn=k=﹣4(常数).∴S四边形A C QE=AC•CQ=(m﹣1)n=﹣4﹣n,∵当m>1时,n随m的增大而减小,∴S四边形A C QE=﹣4﹣n随m的增大而增大.故选B.【点评】本题考查了二次函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.18.(2016•十堰)如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy 中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为()A.25B.18C.9D.9【解析】过点A作AE⊥OB于点E,根据正三角形的性质以及三角形的边长可找出点A、B、E的坐标,再由CD⊥OB,AE⊥OB可找出CD∥AE,即得出,令该比例=n,根据比例关系找出点D、C的坐标,利用反比例函数图象上点的坐标特征即可得出关于k、n的二元一次方程组,解方程组即可得出结论.【解答】解:过点A作AE⊥OB于点E,如图所示.∵△OAB为边长为10的正三角形,∴点A的坐标为(10,0)、点B的坐标为(5,5),点E的坐标为(,).∵CD⊥OB,AE⊥OB,∴CD∥AE,∴.设=n(0<n<1),∴点D的坐标为(,),点C的坐标为(5+5n,5﹣5n).∵点C、D均在反比例函数y=图象上,∴,解得:.故选C.【点评】本题考查了反比例函数图象上点的坐标特征、平行线的性质以及等边三角形的性质,解题的关键是找出点D、C的坐标.本题属于中档题,稍显繁琐,解决该题型题目时,巧妙的借助了比例来表示点的坐标,根据反比例函数图象上点的坐标特征找出方程组是关键.19.(2016•哈尔滨)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【解析】由点(2,﹣4)在反比例函数图象上结合反比例函数图象上点的坐标特征,即可求出k值,再去验证四个选项中横纵坐标之积是否为k值,由此即可得出结论.【解答】解:∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选D.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数k.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用反比例函数图象上点的坐标特征求出k值是关键.20.(2016•天津)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3【解析】直接利用反比例函数图象的分布,结合增减性得出答案.【解答】解:∵点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,∴A,B点在第三象限,C点在第一象限,每个图象上y随x的增大减小,∴y3一定最大,y1>y2,∴y2<y1<y3.故选:D.【点评】此题主要考查了反比例函数图象上点的坐标特点,正确把握反比例函数增减性是解题关键.。

专题1.5 一次函数、反比例函数的图象和性质(练)-备战2016年中考数学二轮复习讲练测(原卷版)

专题1.5 一次函数、反比例函数的图象和性质(练)-备战2016年中考数学二轮复习讲练测(原卷版)

备战2016年中考二轮讲练测第一篇 专题整合篇专题05一次函数、反比例函数的图象和性质(练案)一练基础——基础掌握1.如图,点A 的坐标为(,0),点B 在直线y =x 上运动,当线段AB 最短时点B 的坐为( )A .(,)B .(12-,12-) C ., D .(0,0) 2.一次函数y=kx+b 与y=bx+k 在同一坐标系中的图象大致是( )3.如图是反比例函数y=xk (k 为常数,k ≠0)的图象,则一次函数y=kx ﹣k 的图象大致是( )A. B. C. D.4.如图,直线2y x =+与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转60°后得到△AO ′B ′,则点B ′的坐标是( )A .(4,B .(,4)C .,3)D .(2+,5.如图,点P 是第二象限内的一点,且在反比例函数k y x=的图象上,PA ⊥x 轴于点A , △PAO 的面积为3,则k 的值为( )A .3B .- 3C .6D .-66.如图,在函数y=-x3的图象上有三个点A 、B 、C ,过这三个点分别向x 轴、y 轴作垂线,过每一点所作的两条垂线段与x 轴、y 轴围成的矩形的面积分别为S 1、S 2、S 3,则( ).A .B .C .D .7.已知函数2)2(1+-=-m x m y 是关于x 的一次函数,则m= 。

8.如图,已知函数b x y +=2与函数3-=kx y 的图象交于点P ,则不等式b x kx +>-23的解是 .9.在平面直角坐标系中,已知一次函数y 2x 1=+的图像经过111P (x ,y ),222P (x ,y )两点,若12x x <,则1y 2y .(填”>”,”<”或”=”)10.如图,在平面直角坐标系xOy 中,直线l的表达式是y x =,点A 1坐标为(0,1),过点A 1作y 轴的垂线交直线l 于点B 1,以原点O 为圆心,OB 1长为半径画弧交y 轴于点A 2;再过点A 2作y 轴的垂线交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画弧交y 轴于点A 3,…,按此作法进行下去,点B 4的坐标为 ,OA 2015= .二练能力——综合运用1.P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数12y x =-图象上的两点,下列判断中,正确的是( ) A .y 1>y 2,B .y 1<y 2C .当x 1<x 2时,y 1<y 2D .当x 1<x 2时,y 1>y 22.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x < ax + 4的解集为( )3bA .23<xB .3<xC .23>x D .3>x 3.如图,一次函数y=k 1x+b 1的图象l 1与y=k 2x+b 2的图象l 2相交于点P ,则方程组的解是( )A. B. C. D.4.一台印刷机每年可印刷的书本数量y (万册)与它的使用时间x (年)成反比例关系,当x =2时,y =20.则y 与x 的函数图象大致是( )5.已知k 、b 是一元二次方程(21)(31)0x x +-=的两个根,且k >b ,则函数y kx b =+的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限6.下列图形中阴影部分的面积相等的是( )A .②③B .③④C .①②D .①④7.如图,已知双曲线(0)k y k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为( )DB AyxO CA .12B .9C .6D .48.已知y 是x 的反比例函数,当x >0时,y 随x 的增大而减小.请写出一个满足以上条件的函数表达式9.如图,过原点O 的直线AB 与反比例函数k y x=(0k >)的图象交于A 、B 两点,点B 坐标为(﹣2,m ),过点A 作AC ⊥y 轴于点C ,OA 的垂直平分线DE 交OC 于点D ,交AB 于点E .若△ACD 的周长为5,则k 的值为 .10.如图,直线1y=x 22-与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C 的纵坐标为﹣1 ,点D 在反比例函数k y=x 的图象上 ,CD 平行于y 轴,OCD 5S 2∆=,则k 的值为 .。

1.6 一次函数、反比例函数的应用(课时测试)-2016届九年级数学二轮复习(解析版)

初中数学中考二轮复习第一章专题整合第六节一次函数、反比例函数的应用(测)时间:30分钟,总分:100分班级:姓名:一、选择题(每小题5分,共30分)1.(2015重庆市)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度【答案】C.【解析】A.根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;B.根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B 正确;C.根据图象可知,小明在上述过程中所走的路程为3800米,故错误;D.小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;故选C.考点:一次函数的应用.2.(2015烟台)A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是()A.1B.2C.3D.4【答案】C.【解析】由函数图象可知,乙比甲晚出发1小时,故①正确;乙出发3﹣1=2小时后追上甲,故②错误;甲的速度为:12÷3=4(千米/小时),故③正确;乙的速度为:12÷(3﹣1)=6(千米/小时),则甲到达B地用的时间为:20÷4=5(小时),乙到达B地用的时间为:20÷6=133(小时),1133=143<5,∴乙先到达B地,故④正确;正确的有3个.故选C.考点:一次函数的应用.3.(2015朝阳区二模)某数学课外活动小组利用一个有进水管与出水管的容器模拟水池蓄水情况:从某时刻开始,5分钟内只进水不出水,在随后的10分钟内既进水又出水,每分钟的进水量和出水量是两个常数.容器内的蓄水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则第12分钟容器内的蓄水量为()A.22B.25C.27D.28【答案】C.【解析】当5≤x ≤15时,设y =kx +b ,把(5,20),(15,30)代入得:5201530k b k b +=⎧⎨+=⎩,解得:115k b =⎧⎨=⎩,∴y =x +15,当x =12时,y =12+15=27,故选C . 考点:一次函数的应用.4.(2015河北省)一台印刷机每年可印刷的书本数量y (万册)与它的使用时间x (年)成反比例关系,当x =2时,y =20.则y 与x 的函数图象大致是( )A .B .C .D . 【答案】C . 【解析】设k y x =(0k ≠),∵当x =2时,y =20,∴k =40,∴40y x=,则y 与x 的函数图象大致是C ,故选C . 考点:反比例函数的应用;反比例函数的图象.5.(2015临沂)已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t (单位:小时)关于小时速度v (单位:千米/小时)的函数关系式是( )A .20t v =B .20t v =C .20v t =D .10t v= 【答案】B .【解析】由题意得:vt =20,20t v=,故选B . 考点:根据实际问题列反比例函数关系式.6.某闭合电路中,电源的电压为定值,电流I (A )与电阻R (Ω)成反比例.如图所示的是该电路中电流I 与电阻R 之间的函数关系的图象,则用电阻R 表示电流I 的函数解析式为( )A .2I R =B .3I R =C .5I R =D .6I R= 【答案】D . 【解析】设反比例函数的解析式为k I R =(k ≠0),由图象可知,函数经过点B (3,2),∴23k =,得k =6,∴反比例函数解析式为6I R=.故选D . 考点:由实际问题列反比例函数关系式;跨学科.二、填空题(每小题5分,共30分)7.(2015广州)某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≤x ≤5)的函数关系式为 .【答案】0.36y x =+(05x ≤≤).【解析】根据题意可得:0.36y x =+(05x ≤≤),故答案为:0.36y x =+(05x ≤≤).考点:根据实际问题列一次函数关系式.8.若等腰三角形的周长是80cm ,则能反映这个等腰三角形的腰长ycm 与底边长xcm 的函数关系式是 . 【答案】1402y x =-+(0<x <40). 【解析】根据题意,x +2y =80,所以1402y x =-+,根据三角形的三边关系,x >y ﹣y =0,x <y +y =2y ,所以,x +x <80,解得x <40,所以,y 与x 的函数关系式为1402y x =-+(0<x <40).故答案为:1402y x =-+(0<x <40).考点:一次函数的应用;一次函数的图象;等腰三角形的性质.9.(2015平谷区二模改)如图,表示甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.甲、乙两人前往目的地所行驶的路程S (千米)随时间t (分)变化的函数图象,则每分钟乙比甲多行驶的路程是 .【答案】0.5千米.【解析】由甲的图象可知甲的速度为:12÷24=0.5千米/分,由乙的图象可知乙的速度为:12÷(18﹣6)=1千米/分,所以每分钟乙比甲多行驶的路程是0.5千米.故答案为:0.5千米.考点:一次函数的应用.10.若梯形的下底长为x ,上底长为下底长的13,高为y ,面积为20,则y 与x 的函数关系是 .(不考虑x 的取值范围) 【答案】30y x=. 【解析】∵梯形的下底长为x ,上底长为下底长的13,高为y ,面积为20,∴11()2023x x y +=,整理得:30y x =,∴y 与x 的函数关系是:30y x =.故答案为:30y x=. 考点:由实际问题列反比例函数关系式.11.(2015阜新)小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱数y (元)与练习本的个数x (本)之间的关系如图所示,那么在这个超市买10本以上的练习本优惠折扣是 折.【答案】七.【解析】打折前,每本练习本价格:20÷10=2元,打折后,每本练习本价格:(27﹣20)÷(15﹣10)=1.4元,1.4÷2=0.7,所以,在这个超市买10本以上的练习本优惠折扣是七折.故答案为:七.考点:一次函数的应用;分段函数.12.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.如果以此蓄电池为电源的用电器的限制不能超过12A,那么用电器的可变电阻应控制的范围是.【答案】R≥3W.【解析】由题意可得:I=UR,将(9,4)代入得:U=IR=36,∵以此蓄电池为电源的用电器的限制不能超过12A,∴36R≤12,解得:R≥3.故答案为:R≥3W.考点:反比例函数的应用.三、解答题(共40分)13.将油箱注满k升油后,轿车科行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系kSa=(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?【答案】(1)70Sa=;(2)875.【解析】(1)由题意得:a=0.1,s=700,代入反比例函数关系kSa=中,解得:k=sa=70,所以函数关系式为:70Sa =;(2)将a=0.08代入70Sa=得:70Sa==700.08=875千米,故该轿车可以行驶多875米.考点:反比例函数的应用.14.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x (分钟)的变化规律如下图所示(其中AB 、BC 分别为线段,CD 为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)第30分钟;(2)能.【解析】(1)设线段AB 所在的直线的解析式为120y kx =+,把B (10,40)代入得,k =2,∴1220y x =+.设C 、D 所在双曲线的解析式为2a y x =,把C (25,40)代入得,a =1000,∴21000y x =,当x =5时,1y =2×5+20=30,当30x =时,2100030y ==1003,∴12y y <,∴第30分钟注意力更集中; (2)令1y =36,∴36=2x +20,∴1x =8,令2y =36,∴2100036x =,∴2100027.836x =≈. ∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目. 考点:反比例函数的应用;一次函数的应用;应用题.15.(2015绵阳)南海地质勘探队在南沙群岛的一小岛发现很有价值的A ,B 两种矿石,A 矿石大约565吨,B 矿石大约500吨,上报公司,要一次性将两种矿石运往冶炼厂,需要不同型号的甲、乙两种货船共30艘,甲货船每艘运费1000元,乙货船每艘运费1200元.(1)设运送这些矿石的总费用为y 元,若使用甲货船x 艘,请写出y 和x 之间的函数关系式;(2)如果甲货船最多可装A 矿石20吨和B 矿石15吨,乙货船最多可装A 矿石15吨和B 矿石25吨,装矿石时按此要求安排甲、乙两种货船,共有几种安排方案?哪种安排方案运费最低并求出最低运费.【答案】(1)y =100x +1200(30-x ).(2)3种方案,甲货船25艘,乙货船5艘,最低费用为31000元.【解析】(1)根据题意得:y =1000x +1200(30﹣x )=36000﹣200x .(2)设安排甲货船x 艘,则安排乙货船30﹣x 艘,根据题意得:⎩⎨⎧≥-+≥-+500)30(2515565)30(1520x x x x ,化简得:⎩⎨⎧≤≥2523x x ,∴2523≤≤x ,∵x 为整数,∴x =23,24,25,方案一:甲货船23艘,则安排乙货船7艘,运费y =36000﹣200×23=31400元;方案二:甲货船24艘,则安排乙货船6艘,运费y =36000﹣200×24=31200元;方案三:甲货船25艘,则安排乙货船5艘,运费y =36000﹣200×25=31000元;经分析得方案三运费最低,为31000元.考点:一次函数的应用;一元一次不等式组的应用;方案型;最值问题.。

专题06函数的图象与性质(第04期)2016年中考数学试题(附解析)

一、选择题1.(2016年福建龙岩第7题)反比例函数xy 3-=的图象上有P 1(x 1,﹣2),P 2(x 2,﹣3)两点,则x 1与x 2的大小关系是( ) A .x 1>x 2 B .x 1=x 2 C .x 1<x 2 D .不确定 【答案】A.考点:反比例函数图像与性质.2.(2016海南省第9题)某村耕地总面积为50公顷,且该村人均耕地面积y (单位:公顷/人)与总人口x (单位:人)的函数图象如图所示,则下列说法正确的是( ) A .该村人均耕地面积随总人口的增多而增多 B .该村人均耕地面积y 与总人口x 成正比例 C .若该村人均耕地面积为2公顷,则总人口有100人 D .当该村总人口为50人时,人均耕地面积为1公顷【答案】D. 【解析】试题分析: 由图像可知,该村人均耕地面积随总人口的增多而减少,故A 错误;此函数为反比例函数,故B 错误;设y=k x ,把(50,1)代入,得k=50,∴y=50x ,当x=2时,y=25,故C 错误;由图可知当该村总人口为50人时,人均耕地面积为1公顷,故D 正确. 考点:反比例函数的应用.3.(2016年福建龙岩第10题)已知抛物线y=ax 2+bx+c 的图象如图所示,则|a ﹣b+c|+|2a+b|=( )A .a+bB .a ﹣2bC .a ﹣bD .3a 【答案】D. 【解析】试题分析:∵开口向上,∴a >0,∵对称轴120<-<ab,∴-2a <b <0,∵过原点,∴c=0.∴a-b+c=a-b >0,2a+b >0.∴原式=a-b+2a+b=3a.故选D. 考点:二次函数的性质.4.(2016黑龙江大庆第9题)已知A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)是反比例函数xy 2=上的三点,若x 1<x 2<x 3,y 2<y 1<y 3,则下列关系式不正确的是( ) A .x 1•x 2<0 B .x 1•x 3<0 C .x 2•x 3<0 D .x 1+x 2<0 【答案】A.考点:反比例函数图像与性质.5.(2016黑龙江哈尔滨第4题)点(2,﹣4)在反比例函数xky =的图象上,则下列各点在此函数图象上的是( )A .(2,4)B .(﹣1,﹣8)C .(﹣2,﹣4)D .(4,﹣2) 【答案】D. 【解析】试题分析:同一反比例函数图像上点的坐标满足:横纵坐标乘积相等.只有D :4×(-2)=2×(-4).故选D. 考点:反比例函数.6.(2016黑龙江哈尔滨第10题)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )A .300m 2B .150m 2C .330m 2D .450m 2 【答案】B.考点:一次函数.7.(2016辽宁沈阳第4题)如图,在平面直角坐标系中,点P 是反比例函数y=xk(x >0)图象上的一点,分别过点P 作PA ⊥x 轴于点A ,PB ⊥y 轴于点B .若四边形OAPB 的面积为3,则k 的值为( )A .3B .﹣3C .D .﹣ 【答案】A. 【解析】试题分析:已知点P 是反比例函数y=xk(x >0)图象上的一点,分别过点P 作PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,四边形OAPB 的面积为3,可得矩形OAPB 的面积S=|k|=3,所以k=±3.又因反比例函数的图象在第一象限,即可得k=3.故答案选A . 考点:反比例函数系数k 的几何意义.8.(2016辽宁沈阳第10题)在平面直角坐标系中,二次函数y=x 2+2x ﹣3的图象如图所示,点A (x 1,y 1),B (x 2,y 2)是该二次函数图象上的两点,其中﹣3≤x 1<x 2≤0,则下列结论正确的是( )A .y 1<y 2B .y 1>y 2C .y 的最小值是﹣3D .y 的最小值是﹣4 【答案】D.考点:二次函数图象上点的坐标特征;二次函数的最值.9.(2016湖南张家界第8题)在同一平面直角坐标系中,函数y=ax+b 与y=ax 2﹣bx 的图象可能是( )A .B .C .D .【答案】C. 【解析】试题分析:选项A :一次函数图像经过一、二、三象限,因此a >0,b >0,对于二次函数y=ax 2﹣bx 图像应该开口向上,对称轴在y 轴右侧,不合题意,此选项错误;选项B :一次函数图像经过一、二、四象限,因此a <0,b >0,对于二次函数y=ax 2﹣bx 图像应该开口向下,对称轴在y轴左侧,不合题意,此选项错误;选项C:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx 图像应该开口向上,对称轴在y轴右侧,符合题意,此选项正确;选项D:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx图像应该开口向上,对称轴在y轴右侧,不合题意,此选项错误.故选C.考点:1一次函数图像;2二次函数图像.10.(2016江苏苏州第6题)已知点A(2,y1)、B(4,y2)都在反比例函数y=kx(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定【答案】B.【解析】试题分析:∵当k<0时,y=kx在每个象限内,y随x的增大而增大,∴y1<y2,故选B.考点:反比例函数增减性.11.(2016新疆第6题)小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是()A.B.C.D.【答案】B.考点:函数图象.12.(2016新疆第7题)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小【答案】C.考点:二次函数图形性质.13.(2016内蒙古包头第11题)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)【答案】C.【解析】试题分析:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.直线y=x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(﹣3,2),点D(0,2).再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,2),D′(0,﹣2),所以,解得:,即可得直线CD′的解析式为y=﹣x﹣2.令y=﹣x﹣2中y=0,则0=﹣x﹣2,解得:x=﹣,所以点P的坐标为(﹣,0).故答案选C.考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.14.(2016湖北随州第10题)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个【答案】B.考点:二次函数图象与系数的关系.15.(2016湖北随州第14题)如图,直线y=x+4与双曲线y=(k≠0)相交于A(﹣1,a)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为.【答案】(0,5 2).考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.16.(2016广西桂林第8题)如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣3【答案】D.【解析】试题分析:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,已知直线y=ax+b 过B(﹣3,0),所以方程ax+b=0的解是x=﹣3,故答案选D.考点:一次函数与一元一次方程.17.(2016广西桂林第12题)已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x﹣)2+4上,能使△ABP为等腰三角形的点P的个数有()A.3个B.4个C.5个D.6个【答案】A.故答案选A.考点:二次函数图象上点的坐标特征;一次函数图象上点的坐标特征;等腰三角形的判定.18.(2016湖南常德第7题)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b <0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是()A .1B .2C .3D .4 【答案】C.考点:二次函数图象与系数的关系.19.(2016湖南衡阳第12题)如图,已知A ,B 是反比例函数y=xk(k >0,x >0)图象上的两点,BC ∥x 轴,交y 轴于点C ,动点P 从坐标原点O 出发,沿O →A →B →C (图中“→”所示路线)匀速运动,终点为C ,过P 作PM ⊥x 轴,垂足为M .设三角形OMP 的面积为S ,P 点运动时间为t ,则S 关于x 的函数图象大致为( )【答案】A. 【解析】试题分析::设∠AOM=α,点P 运动的速度为a ,当点P 从点O 运动到点A 的过程中,S=2)sin (cos αα⋅⋅⋅at at )(=21a2•cos α•sin α•t2,由于α及a 均为常量,从而可知图象本段应为抛物线,且S 随着t 的增大而增大;当点P 从A 运动到B 时,由反比例函数性质可知△OPM 的面积为21k ,保持不变,故本段图象应为与横轴平行的线段;当点P 从B 运动到C 过程中,OM 的长在减少,△OPM 的高与在B 点时相同,故本段图象应该为一段下降的线段;故答案选A . 考点:函数图像.20.(2016湖南湘西州第16题)一次函数y=﹣2x+3的图象不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】C .考点:一次函数的性质. 二、填空题1.(2016黑龙江大庆第18题)直线y=kx+b 与抛物线241x y =交于A (x 1,y 1)、B (x 2,y 2)两点,当OA ⊥OB 时,直线AB 恒过一个定点,该定点坐标为 . 【答案】(0,4). 【解析】试题分析:直线OA 的解析式为x x y y 11=,直线OB 的解析式为x x yy 22=,∵直线y=kx+b 与抛物线241x y =有交点,∴kx+b=41x 2,∴x 2﹣4kx ﹣4b=0,∴x 1+x 2=4k ,x 1⋅x 2=﹣4b.∵OA ⊥OB ,∴12211-=⋅x y x y , ∴14141212221-=⋅x x x x ,∴11621-=x x ,∴1164-=-b ,∴b=4. 即直线y=kx+4,故直线恒过顶点(0,4).考点:1一次函数图形性质;2二次函数;3一元二次方程根与系数的关系. 2.(2016黑龙江哈尔滨第12题)函数122-=x y 中,自变量x 的取值范围是 . 【答案】21≠x【解析】 试题分析:122-x 有意义只需满足2x-1≠0,即21≠x . 考点:函数自变量取值范围.3.(2016黑龙江哈尔滨第16题)二次函数y=2(x ﹣3)2﹣4的最小值为 . 【答案】-4. 【解析】试题分析:二次函数y=2(x ﹣3)2﹣4为顶点式,因此最小值为-4. 考点:二次函数极值.4.(2016辽宁沈阳第15题)在一条笔直的公路上有A ,B ,C 三地,C 地位于A ,B 两地之间,甲,乙两车分别从A ,B 两地出发,沿这条公路匀速行驶至C 地停止.从甲车出发至甲车到达C 地的过程,甲、乙两车各自与C 地的距离y (km )与甲车行驶时间t (h )之间的函数关系如图表示,当甲车出发 h 时,两车相距350km .【答案】23.考点:一次函数的应用.5.(2016山东潍坊第16题)已知反比例函数y=kx(k≠0)的图象经过(3,﹣1),则当1<y <3时,自变量x 的取值范围是 . 【答案】﹣3<x <﹣1.考点:反比例函数的性质.6.(2016湖南张家界第13题)如图,点P 是反比例函数y=kx (x <0)图象的一点,PA 垂直于y 轴,垂足为点A ,PB 垂直于x 轴,垂足为点B .若矩形PBOA 的面积为6,则k 的值为 .【答案】-6. 【解析】试题分析:设点P 坐标为(x ,k x ),则PB=k x ,PA=-x.S 矩形PBOA =PA ⋅PB=kx ⋅(-x )=-k=6,解得k=-6.考点:反比例函数.7.(2016湖北武汉第15题)将函数y =2x +b (b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =|2x +b |(b 为常数)的图象.若该图象在直线y =2下方的点的横坐标x 满足0<x <3,则b 的取值范围为_________. 【答案】-4≤b ≤-2. 【解析】试题分析:如图所示,根据题意:列出不等式b 032=0=22=3=2+6+2x y x b b x y x b b ⎧⎪⎪≥⎨⎪≥⎪⎩<-<代入--满足:-代入满足: ,解得-4≤b≤-2.考点:一次函数图形与几何变换.8.(2016内蒙古包头第19题)如图,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠AOB=30°,AB=BO,反比例函数y=(x<0)的图象经过点A,若S△ABO=,则k的值为.【答案】﹣3.考点:反比例函数系数k 的几何意义.9.(2016山东东营第15题)如图,直线y =x +b 与直线y =kx +6交于点P(3,5),则关于x 的不等式x +b >kx +6的解集是_____________.【答案】x >3.考点:一次函数与一元一次不等式.10.(2016湖南常德第12题)已知反比例函数y=xk的图象在每一个象限内y 随x 的增大而增大,请写一个符合条件的反比例函数解析式 .【答案】x y 2-=(答案不唯一,符合k <0即可)【解析】试题分析:已知反比例函数y=xk的图象在每一个象限内y 随x 的增大而增大,根据反比例函数的性质即可得出k <0,写出一个符合条件的解析式即可. 考点:反比例函数的性质. 三、解答题1.(2016海南省第24题)如图1,抛物线y=ax2﹣6x+c与x轴交于点A(﹣5,0)、B(﹣1,0),与y轴交于点C(0,﹣5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D.(1)求该抛物线所对应的函数解析式;(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.①若∠APE=∠CPE,求证:A EE C=37;②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.【答案】(1)y=﹣x2﹣6x﹣5;(2)15;(3)证明见解析;(4)能,P(﹣1,0)或(﹣2,3)或(2,﹣7﹣62).考点:1二次函数综合题;2平行线分线段成比例;3相似三角形;4一元二次方程. 2.(2016年福建龙岩第23题)某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x 天(x 为正整数)销售的相关信息,如表所示: 销售量n (件)n=50﹣x销售单价m (元/件)当1≤x≤20时,m=20+21x 当21≤x≤30时,m=10+x240(1)请计算第几天该商品单价为25元/件?(2)求网店销售该商品30天里所获利润y (元)关于x (天)的函数关系式; (3)这30天中第几天获得的利润最大?最大利润是多少?【答案】(1)10或28天;(2)()()⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤++-=30214202100020150015212x xx x x y ;(3)15天时,最大利润为612.5元.考点:1二次函数;2反比例函数;3一次函数. 3.(2016年福建龙岩第25题)已知抛物线c bx x y ++-=221与y 轴交于点C ,与x 轴的两个交点分别为A (﹣4,0),B (1,0). (1)求抛物线的解析式;(2)已知点P 在抛物线上,连接PC ,PB ,若△PBC 是以BC 为直角边的直角三角形,求点P 的坐标;(3)已知点E 在x 轴上,点F 在抛物线上,是否存在以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,请直接写出点E 的坐标;若不存在,请说明理由.【答案】(1)223212+--=x x y ;(2)P (-4,0)或(-5,-3);(3)E (-7,0)或(-1,0)或⎪⎪⎭⎫ ⎝⎛--2,2415或⎪⎪⎭⎫ ⎝⎛-+2,2415.考点:1二次函数;2勾股定理;3平行四边形;4平面直角坐标系点的坐标特征. 4.(2016黑龙江大庆第25题)如图,P 1、P 2是反比例函数xk y =(k >0)在第一象限图象上的两点,点A 1的坐标为(4,0).若△P 1OA 1与△P 2A 1A 2均为等腰直角三角形,其中点P 1、P 2为直角顶点.(1)求反比例函数的解析式.(2)①求P 2的坐标.②根据图象直接写出在第一象限内当x 满足什么条件时,经过点P 1、P 2的一次函数的函数值大于反比例函数xk y =的函数值.【答案】(1)x y 4=;(2)①()222,222-+,②2222+<<x .考点:1反比例函数;2一次函数;3等腰直角三角形.5.(2016黑龙江大庆第26题)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y 1(万m 3)与干旱持续时间x (天)的关系如图中线段l 1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y 2(万m 3)与时间x (天)的关系如图中线段l 2所示(不考虑其它因素).(1)求原有蓄水量y 1(万m 3)与时间x (天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y (万m 3)与时间x (天)的函数关系式(注明x的范围),若总蓄水量不多于900万m 3为严重干旱,直接写出发生严重干旱时x 的范围.【答案】(1)y1=﹣20x+1200,x=20时,y1=800;(2)当0≤x≤20时,y=﹣20x+1200,当20<x≤60时,y=5x+700.15≤x≤40.考点:1一次函数的应用;2二元一次方程组.6.(2016黑龙江大庆第28题)若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣2x2+4x+2与C2:u2=﹣x2+mx+n为“友好抛物线”.(1)求抛物线C2的解析式.(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ的最大值.(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.【答案】(1)u 2=﹣x 2+2x+3;(2)421;(3)M (1,2)或(1,5). 【解析】 试题分析:(1)先求出C 1顶点,再根据它们是“友好抛物线”,可直接得出C 2的顶点式,再化成一般式即可;(2)利用函数求最大值,令设A (a ,﹣a 2+2a+3).则OQ=x ,AQ=﹣a 2+2a+3,得到OQ+AQ 与a 的函数关系式,考点:1二次函数综合应用;2全等三角形;3勾股定理.7.(2016黑龙江哈尔滨第27题)如图,在平面直角坐标系中,O 为坐标原点,抛物线y=ax 2+2xa+c 经过A (﹣4,0),B (0,4)两点,与x 轴交于另一点C ,直线y=x+5与x 轴交于点D ,与y 轴交于点E .(1)求抛物线的解析式;(2)点P 是第二象限抛物线上的一个动点,连接EP ,过点E 作EP 的垂线l ,在l 上截取线段EF ,使EF=EP ,且点F 在第一象限,过点F 作FM ⊥x 轴于点M ,设点P 的横坐标为t ,线段FM 的长度为d ,求d 与t 之间的函数关系式(不要求写出自变量t 的取值范围); (3)在(2)的条件下,过点E 作EH ⊥ED 交MF 的延长线于点H ,连接DH ,点G 为DH 的中点,当直线PG 经过AC 的中点Q 时,求点F 的坐标.【答案】(1)4212+--=x x y ;(2)d=5+t ;(3)F ()65,64--.(3)如图,由直线DE 的解析式为:y=x+5,∵EH ⊥ED ,∴直线EH 的解析式为:y=﹣x+5, ∴FB ′=A ′E=5﹣(﹣21t 2﹣t+4)=21t 2+t+1,∴F (21t 2+t+1,5+t ),∴点H 的横坐标为:21t 2+t+1, y=﹣21t 2﹣t ﹣1+5=﹣21t 2﹣t+4,∴H (21t 2+t+1,﹣21t 2﹣t+4),∵G 是DH 的中点,∴G (2421,2121522+--+++-t t t t ),即G (41t 2+21t ﹣2,﹣41t 2﹣21t+2),∴PH ∥x 轴,∵DG=GH ,∴PG=GQ , ∴22141212-+=+-t t t ,解得t=6±,∵P 在第二象限,∴t <0,∴t=6-,∴F (()65,64--).考点:二次函数综合应用.8.(2016山东潍坊第23题)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?【答案】(1)每辆车的日租金至少应为25元;(2)当每辆车的日租金为175元时,每天的净收入最多是5025元.考点:二次函数的应用.9.(2016山东潍坊第25题)如图,已知抛物线y=13x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P时直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.【答案】(1)y=13x2+2x+1;(2)P(﹣92,﹣54);(3)(﹣4,1)或(3,1).(2)∵AC∥x轴,A(0,1)∴13x2+2x+1=1,∴x1=6,x2=0,∴点C的坐标(﹣6,1),∵点A (0,1).B (﹣9,10), ∴直线AB 的解析式为y=﹣x+1, 设点P (m ,13m 2+2m+1) ∴E (m ,﹣m+1) ∴PE=﹣m+1﹣(13m 2+2m+1)=﹣13m 2﹣3m , ∵AC ⊥EP ,AC=6, ∴S 四边形AECP=S △AEC +S △APC =21AC×EF+21AC×PF =21AC×(EF+PF ) =21AC×PE =21×6×(﹣13m 2﹣3m ) =﹣m 2﹣9m①当△CPQ∽△ABC时,∴,∴,∴t=﹣4,∴Q(﹣4,1)②当△CQP∽△ABC时,∴,∴,∴t=3,∴Q(3,1).考点:二次函数综合题.10.(2016湖南张家界第24题)已知抛物线y=a (x ﹣1)2﹣3(a≠0)的图象与y 轴交于点A (0,﹣2),顶点为B .(1)试确定a 的值,并写出B 点的坐标;(2)若一次函数的图象经过A 、B 两点,试写出一次函数的解析式; (3)试在x 轴上求一点P ,使得△PAB 的周长取最小值;(4)若将抛物线平移m (m≠0)个单位,所得新抛物线的顶点记作C ,与原抛物线的交点记作D ,问:点O 、C 、D 能否在同一条直线上?若能,请求出m 的值;若不能,请说明理由.【答案】(1)a=1,B (1,-3);(2)y=-x-2;(3)P (25,0);(4)能,m=2或-3.考点:1二次函数综合题;2一次函数;3一元二次方程;4轴对称.11.(2016江苏苏州第28题)如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).【答案】(1)y=﹣x 2+2x+3;(2)S=-12m 2+52m ,最大值为258;(3)①(52,74),②45°.考点:1二次函数综合题;2一次函数;3勾股定理;4圆.12.(2016江苏苏州第25题)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=mx(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.【答案】反比例函数解析式:y=8x,一次函数解析式:y=12x+3.考点:1反比例函数;2一次函数;3全等三角形.13.(2016新疆第21题)如图,直线y=2x+3与y轴交于A点,与反比例函数y=kx(x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0).(1)求反比例函数的解析式;(2)点D(a,1)是反比例函数y=kx(x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)y=5x;(2)P(133,0).PD'考点:1反比例函数;2一次函数;3轴对称.14.(2016新疆第23题)如图,对称轴为直线x=72的抛物线经过点A (6,0)和B (0,﹣4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.【答案】(1)y=-23x 2+143x-4,顶点坐标(72,256);(2)S=-2x 2+14x-12;(3)不能.E 点不存在,平行四边形OEAF 的面积为24时,平行四边形OEAF 不能为菱形.考点:1二次函数综合题;2菱形.15.(2016湖北武汉第24题)(本题12分)抛物线y =ax 2+c 与x 轴交于A 、B 两点,顶点为C ,点P 为抛物线上,且位于x 轴下方. (1)如图1,若P (1,-3)、B (4,0), ① 求该抛物线的解析式;② 若D 是抛物线上一点,满足∠DPO =∠POB ,求点D 的坐标;(2) 如图2,已知直线P A 、PB 与y 轴分别交于E 、F 两点.当点P 运动时,OCOFOE +是否为定值?若是,试求出该定值;若不是,请说明理由.【答案】(1)①y =15x 2-165;②点D 的坐标为(-1,-3)或(114,2716-);(2)是定值,等于2.∴OCOFOE 是定值,等于2.考点:二次函数的综合题.16.(2016湖北武汉第20题)(本题8分)已知反比例函数xy 4=. (1) 若该反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,求k 的值; (2) 如图,反比例函数xy 4=(1≤x ≤4)的图象记为曲线C 1,将C 1向左平移2个单位长度,得曲线C 2,请在图中画出C 2,并直接写出C 1平移至C 2处所扫过的面积.【答案】(1) k =-1;(2)面积为6.C 1平移至C 2处所扫过的面积为6.考点:反比例函数与一次函数的交点问题;平移的性质.17.(2016内蒙古包头第26题)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;(3)一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】(1)y=﹣(x﹣2)2+;(2).(3)﹣;(4)在x轴上方的抛物线上,存在点P,使得∠PBF被BA平分,P(,1 2).∴∴,∴抛物线解析式为y=﹣x2+x﹣2=﹣(x﹣2)2+;(2)如图1,(3)如图2,(4)存在点P,使∠PBF被BA平分,如图3,考点:二次函数综合题.18.(2016内蒙古包头第23题)一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.【答案】(1)y=﹣3x2+54x;(2)横彩条的宽度为3cm,竖彩条的宽度为2cm.【解析】试题分析:(1)由横、竖彩条的宽度比为3:2知横彩条的宽度为xcm,根据“三条彩条面积=横彩条面积+2条竖彩条面积﹣横竖彩条重叠矩形的面积”,列出函数关系式化简即可;(2)根据“三条彩条所占面积是图案面积的”,可列出关于x的一元二次方程,整理后求解即可.试题解析:(1)根据题意可知,横彩条的宽度为xcm , ∴y=20×x+2×12•x ﹣2×x•x=﹣3x 2+54x ,即y 与x 之间的函数关系式为y=﹣3x 2+54x ; (2)根据题意,得:﹣3x 2+54x=×20×12, 整理,得:x 2﹣18x+32=0,解得:x 1=2,x 2=16(舍),∴x=3,答:横彩条的宽度为3cm ,竖彩条的宽度为2cm .考点:根据实际问题列二次函数关系式;一元二次方程的应用.19.(2016山东东营第23题)如图,在平面直角坐标系中,直线AB 与x 轴交于点B ,与y 轴交于点A ,与反比例函数y =xm 的图象在第二象限交于点C ,CE ⊥x 轴,垂足为点E ,tan∠ABO =12,OB =4,OE =2.(1)求反比例函数的解析式;(2)若点D 是反比例函数图象在第四象限上的点,过点D 作DF ⊥y 轴,垂足为点F ,连接OD 、BF ,如果S △BAF =4S △DFO ,求点D 的坐标.【答案】(1)y =-6x ;(2)D (32,一4).考点:反比例函数的性质.20.(2016山东东营第25题)在平面直角坐标系中,平行四边形ABOC 如图放置,点A 、C 的坐标分别是(0,4)、(-1,0),将此平行四边形绕点O 顺时针旋转90°,得到平行四边形A ′B ′OC ′.(1)若抛物线过点C 、A 、A ′,求此抛物线的解析式;(2)点M 是第一象限内抛物线上的一动点,问:当点M 在何处时,△AMA ′的面积最大?最大面积是多少?并求出此时M 的坐标;(3)若P 为抛物线上的一动点,N 为x 轴上的一动点,点Q 坐标为(1,0),当P 、N 、B 、Q 构成平行四边形时,求点P 的坐标,当这个平行四边形为矩形时,求点N 的坐标.【答案】(1)y =-x 2+3x +4;(2)△AMA ′的面积最大S △AMA ′=8,M(2,6);(3)当P 1(0,4),P 2(3,4),P 3(3+412,-4),P 4(3-412,-4)时,P 、N 、B 、Q 构成平行四边形;当这个平行四边形为矩形时,N 1(0,0),N 2(3,0).。

2016初中中考数学真题难题-汇编--一次函数与反比例函数

第四章 一次函数与反比例函数第一节 一次函数 1. (2016)若一次函数的图像经过第一、二、四象限,则下列不等式中总是成立的是( ) A 、 B 、 C 、 D 、[难易] 较易[考点] 一次函数,不等式 [解析] 因为一次函数的图像经过第一、二、四象限,所以,所以,A 错;,B 错;,所以,所以C 正确;的大小不能确定[参考答案] C 2.(2016)如图,在平面直角坐标系中,直线与轴交于点,与直线交【难易】 中等【考点】 一次函数 相似【解析】 (1)首先设出一次函数解析式,将点A,D 代入即可求出一次函数解析式;(2)先写出OB,OD,BC 的长度,然后分两种情况讨论1:△BOD ∽△BCE;2:△BOD ∽△BEC. 【参考答案】(1)设直线AD 的解析式为y=kx+by =ax +b a2+b >0a -b >0a 2+b >0a +b >0y =ax +b a <0,b >0a <0,b >0a -b <0a 2>0a 2+b >0a +b 9xOy y =-x +3x C AD将点A 代入直线y=kx+b 中得:k+b= b=1解得: 直经AD 的解析式为: (2)设点E 的坐标为(m,m+1) 令得x=-2 点B 的坐标为(-2,0)令y=-x+3=0得x=3点C 的坐标为(3,0)OB=2, OD=1, BC=5, BD=1. 当△BOD ∽△BCE 时,如图(1)所示,过点C 作CE BC 交直线AB 于E :CE=m+1=,解得m=3 )1,0(),35,34(D 343521∴121+=x y 210121=+=x y ∴∴∴5212=+⊥CEODBC OB =∴CE 152=∴25∴2125此时E 点的坐标为(3,)2. △BOD ∽△BEC 时,如图(2)所示,过点E 作EF BC 于F 点,则:CE=BE= BE*CE=EF*BC EF=2 解得m=2 此时E 点的坐标为(2,2)当△BOD 与△BCE 相似时,满足条件的E 坐标(3,),(2,2).∴25⊥BCBDCE OD =∴551=CE∴5∴5252522=-=-CE BC ∴2121∴5552•=•EF ∴∴2121=+m ∴∴253.(2016)15.如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y=x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=x上,依次进行下去…,若点A的坐标是(0,1),点B 的坐标是(,1),则点A8的横坐标是6+6 .【考点】坐标与图形变化-旋转;一次函数图象与几何变换.【分析】先求出点A2,A4,A6…的横坐标,探究规律即可解决问题.【解答】解:由题意点A2的横坐标(+1),点A4的横坐标3(+1),点A6的横坐标(+1),点A8的横坐标6(+1).故答案为6+6.【点评】本题考查坐标与图形的变换﹣旋转,一次函数图形与几何变换等知识,解题的关键是学会从特殊到一般,探究规律,由规律解决问题,属于中考常考题型.4.(2016)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其它因素).(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x 的围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的围.【考点】一次函数的应用.【分析】(1)根据两点的坐标求y1(万m3)与时间x(天)的函数关系式,并把x=20代入计算;(2)分两种情况:①当0≤x≤20时,y=y1,②当20<x≤60时,y=y1+y2;并计算分段函数中y≤900时对应的x的取值.【解答】解:(1)设y1=kx+b,把(0,1200)和(60,0)代入到y1=kx+b得:解得,∴y1=﹣20x+1200当x=20时,y1=﹣20×20+1200=800,(2)设y2=kx+b,把(20,0)和(60,1000)代入到y2=kx+b中得:解得,∴y2=25x﹣500,当0≤x≤20时,y=﹣20x+1200,当20<x≤60时,y=y1+y2=﹣20x+1200+25x﹣500=5x+700,y≤900,则5x+700≤900,x≤40,当y 1=900时,900=﹣20x+1200, x=15,∴发生严重干旱时x 的围为:15≤x ≤40.【点评】本题考查了一次函数的应用,熟练掌握利用待定系数法求一次函数的解析式:设直线解析式为y=kx+b ,将直线上两点的坐标代入列二元一次方程组,求解;注意分段函数的实际意义,会观察图象.5.(2016)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果(千克),增种..果树(棵),它们之间的函数关系如图所示. (1)求与之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克? (3)当增种果树多少棵时,果园的总产量(千克)最大?最大产量是多少?解:(1)设函数的表达式为y =kx +b ,该一次函数过点(12,74),(28,66),根据题意,得解得,∴该函数的表达式为(2)根据题意,得,(-0.5x+80)(80+x )=6750 解这个方程得,x 1=10,x 2=70∵投入成本最低.∴x 2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克.y x y x w ⎩⎨⎧+=+=bk bk 28661274⎩⎨⎧=-=805.0b k 805.0+-=x y(3)根据题意,得w =(-0.5x+80)(80+ x )= -0.5 x 2+40 x +6400= -0.5(x -40)2+7200 ∵a = -0.5<0, 则抛物线开口向下,函数有最大值 ∴当x =40时,w 最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克.6.(2016襄阳)襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y (万件)关于售价x (元/件)的函数解析式为:(1)若企业销售该产品获得自睥利润为W (万元),请直接写出年利润W (万元)关于售价(元/件)的函数解析式;(2)当该产品的售价x (元/件)为多少时,企业销售该产品获得的年利润最大?最大年利 润是多少?(3)若企业销售该产品的年利澜不少于750万元,试确定该产品的售价x (元/件)的取值 围.解:(1) (2)由(1)知,当540≤x <60时,W =-2(x -50)2+800.∵-2<0,,∴当x =50时。

2016中考数学之反比例函数与几何综合

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题10 反比例函数图象和性质及应用
学校:___________姓名:___________班级:___________
1.【黑龙江哈尔滨2015年考数学试卷】点A(-1,1y),B(-2,2y)在反比例函数2yx的图象上,
则1y,2y的大小关系是( )
(A)1y>2y (B)1y=2y (C)1y<2y (D)不能确定
【答案】C
【解析】

考点:反比例函数的性质.
2.【辽宁辽阳2015年考数学试卷】如图,点A是双曲线在第二象限分支上的一个动点,连接AO并延长交
另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位
置也不断变化,但点C始终在双曲线上运动,则k的值为( )

A.1 B.2 C.3 D.4
【答案】B.
【解析】
试题分析:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于
点B,以AB为底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=30°,则∠AOD+∠COE=90°,∵∠DAO+
∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=tan60°=,则=3,∵点A是
双曲线在第二象限分支上的一个动点,∴=AD•DO=×6=3,∴k=EC×EO=1,则EC×EO=2.故选B.

考点:1.反比例函数图象上点的坐标特征;2.综合题.
3.【2015届山东省青岛市李沧区中考一模】函数ayx(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的
大致图象是( )

【答案】A.
【解析】

考点:1.反比例函数的图象;2.一次函数的图象.
4.【2015届河北省中考模拟二】如图,两双曲线y=kx与y=-3x分别位于第一、四象限,A是y轴上任意一
点,B是y=-3x上的点,C是y=kx上的点,线段BC⊥x轴于点 D,且4BD=3CD,则下列说法:①双曲线y=
k
x

在每个象限内,y随x的增大而减小;②若点B的横坐标为3,则点C的坐标为(3,-43);③k=4;④△ABC
的面积为定值7,正确的有( )
A.1个 B.2个 C.3个 D.4个
【答案】B.
【解析】

考点:1.反比例函数的性质;2.反比例函数系数k的几何意义;3.反比例函数图象上点的坐标特征.
5.【辽宁锦州2015年中考数学试题】如图,点A在双曲线kyx上,AB⊥x轴于点B,且△AOB的面积是2,
则k的值是 .

【答案】﹣4.
【解析】
试题分析:∵△AOB的面积是2,∴21|k|=2,∴|k|=4,解得k=±4,又∵双曲线y=xk的图象经过第二、四
象限,∴k=﹣4,即k的值是﹣4.故答案为:﹣4.
考点:反比例函数系数k的几何意义.
6.【辽宁抚顺2015年中考数学试题】如图,过原点O的直线AB与反比例函数kyx(0k)的图象交于
A、B两点,点B坐标为(﹣2,m),过点A作AC⊥y轴于点C,OA的垂直平分线DE交OC于点D,交AB

点E.若△ACD的周长为5,则k的值为 .

【答案】6.
【解析】

考点:1.反比例函数与一次函数的交点问题;2.线段垂直平分线的性质;3.综合题.
7.【2015届广西省南宁市西乡塘区中考二模】如图,在函数y=8x(x>0)的图象上有点P1、P2、P3…、Pn、
Pn+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、
Pn、Pn+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为
S1、S2、S3…、Sn,则Sn= .(用含n的代数式表示)

【答案】8(1)nn.
【解析】

考点:反比例函数系数k的几何意义.
8.【2015届山东省济南市历城区中考二模】如图,已知点A是双曲线2yx在第一象限的分支上的一个动
点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C
的位置也不断变化,但点C始终在双曲线kyx(k<0)上运动,则k的值是 .

【答案】﹣6.
【解析】
考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.相似三角形的判定与性质;4.特
殊角的三角函数值;5.动点型;6.综合题;7.压轴题.
9.【2015届江苏省无锡市江阴市要塞片中考二模】在复习《反比例函数》一课时,同桌的小明和小芳有一
个问题观点不一致.小明认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点P(m,n)的
横坐标,第二个数作为点P(m,n)的纵坐标,则点P(m,n)在反比例函数y=12x的图象上的概率一定大
于在反比例函数y=6x的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点?
(1)试用列表或画树状图的方法列举出所有点P(m,n)的情形;
(2)分别求出点P(m,n)在两个反比例函数的图象上的概率,并说明谁的观点正确.
【答案】(1)列举见解析;(2)19;小芳的观点正确.
【解析】
试题分析:(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回
实验还是不放回实验,此题属于放回实验;
(2)依据(1)分析求得所有等可能的出现结果,然后根据概率公式求出该事件的概率.
试题解析:(1)画树状图得:
考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.
10.【吉林省2015年中考数学试题】如图,点A(3,5)关于原点O的对称点为点C,分别过点A,C作
y

轴的平行线,与反比例函数kyx(0<k<15)的图象交于点B,D,连接AD,BC,AD与x轴交于点E(﹣
2,0).
(1)求k的值;
(2)直接写出阴影部分面积之和.

【答案】(1)3;(2)12.
【解析】
试题分析:(1)根据点A和点E的坐标求得直线AE的解析式,然后设出点D的纵坐标,代入直线AE的解
析式即可求得点D的坐标,从而求得k值;
(2)如图:
∵点A和点C关于原点对称,∴阴影部分的面积等于平行四边形CDGF的面积,∴S阴影=4×3=12.
考点:1.反比例函数与一次函数的交点问题;2.综合题.

相关文档
最新文档