立体几何垂直证明
高中立体几何证明线垂直的方法(学生)

PE D CB A高中立体几何证明线线垂直方法〔1〕通过“平移〞,根据假设αα平面则平面且⊥⊥a b b a ,,// 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB=21DC ,中点为PD E .求证:AE ⊥平面PDC.2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD ,∠PDA=45°,点E 为棱AB 的中点. 求证:平面PCE ⊥平面PCD ;3.如下图,在四棱锥P ABCD -中,AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高。
〔1〕证明:PH ABCD ⊥平面;〔2〕假设121PH AD FC ===,,,求三棱锥E BCF -的体积; 〔3〕证明:EF PAB ⊥平面.EF BA C DP〔第2题图〕4.如下图, 四棱锥P -ABCD 底面是直角梯形,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, PA =AD 。
证明: BE PDC ⊥平面;5.在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥.〔Ⅰ〕求证:PC AB ⊥;〔Ⅱ〕求二面角B AP C --的大小;6.如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 º 证明:AB ⊥PC〔3〕利用勾股定理7.如图,四棱锥P ABCD -的底面是边长为1的正方形,,1, 2.PA CD PA PD ⊥== 求证:PA ⊥平面ABCD ;_ D_ C_ B_ A_ PACBPCADBOE8.如图1,在直角梯形ABCD 中,CD AB //,AD AB ⊥,且121===CD AD AB .现以AD 为一边向形外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使平面ADEF 与平面ABCD 垂直,M 为ED 的中点,如图2.〔1〕求证:AM ∥平面BEC ; 〔2〕求证:⊥BC 平面BDE ;图1图29.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2, 2.CA CB CD BD AB AD ====== 〔1〕求证:AO ⊥平面BCD ;〔2〕求异面直线AB 与CD 所成角的大小;10.如图,四棱锥S-ABCD 中,BCAB ⊥,CD⊥BC ,侧面SAB 为等边三角形,2,1AB BC CD SD ====.〔Ⅰ〕证明:SAB 面⊥SD;〔Ⅱ〕求AB 与平面SBC 所成角的大小. M AFBCD E M E DC BAF〔4〕利用三角形全等或三角行相似11.正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点.求证:D1O⊥平面MAC.12.如图,正三棱柱ABC—A1B1C1的所有棱长都为2,D为CC1中点.求证:AB1⊥平面A1BD;13.如图,正四棱柱ABCD—A1B1C1D1中,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,求证:A1C⊥平面BDE;〔5〕利用直径所对的圆周角是直角14.如图,AB 是圆O 的直径,C 是圆周上一点,PA ⊥平面ABC . 〔1〕求证:平面PAC ⊥平面PBC ;〔2〕假设D 也是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.O AC BPD.15.如图5,在圆锥PO 中,PO =2,⊙O 的直径2AB =,C 是狐AB 的中点,D 为AC 的中点. 证明:平面POD ⊥平面PAC ;16.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD .以BD 的中点O 为球心、BD 为直径的球面交PD 于点M .求证:平面ABM ⊥平面PCD ;【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】OAPBM。
立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的.( )(2)平面的单位法向量是唯一确定的.( )(3)若两平面的法向量平行,则两平面平行.( )(4)若两直线的方向向量不平行,则两直线不平行.( )(5)若a ∥b ,则a 所在直线与b 所在直线平行.( )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( )1.下列各组向量中不平行的是( )A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.已知平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为______________.4.若A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(x ,y ,z ),则x ∶y ∶z =________.题型一 证明平行问题例1 (2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ;(2)是否存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.题型二证明垂直问题例2如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC—A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC =2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角.(1)求证:CM∥平面PAD;(2)求证:平面PAB⊥平面PAD.题型三解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.如图所示,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A 组 专项基础训练1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A .相交B .平行C .在平面D .平行或在平面3.已知A (4,1,3),B (2,-5,1),C (3,7,-5),则平行四边形ABCD 的顶点D 的坐标是( )A .(2,4,-1)B .(2,3,1)C .(-3,1,5)D .(5,13,-3)4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为( )A .60°B .45°C .90°D .以上都不正确6.已知平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1)B .(23,23,1)C .(22,22,1) D .(24,24,1) 12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,若α⊥β,则t 等于( )A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.14.如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.(1)求证:EF⊥CD;(2)在平面PAD求一点G,使GF⊥平面PCB,并证明你的结论.。
2017年__高二年级立体几何垂直证明题常见模型和方法

立体几何垂直证明题常见模型及方法垂直转化:线线垂直线面垂直面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。
例:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面A B C D 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A. 求证:'A D EF ⊥;类型二:线面垂直证明BE 'ADFG方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO BDE ⊥平面变式1:在正方体1111ABCD A BC D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =,6BC =C○2 利用面面垂直的性质定理 例3:在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。
高中数学知识点总结(第八章 立体几何 第五节 直线、平面垂直的判定与性质)

第五节 直线、平面垂直的判定与性质一、基础知识1.直线与平面垂直 (1)直线和平面垂直的定义:直线l 与平面α内的任意一条直线都垂直, 就说直线l 与平面α互相垂直.(2)直线与平面垂直的判定定理及性质定理:文字语言 图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫a ,b ⊂αa ∩b =Ol ⊥a l ⊥b⇒l ⊥α 性质定理 垂直于同一个平面的两条直线平行⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b⎣⎢⎡⎦⎥⎤❶如果一条直线与平面内再多(即无数条)的直线垂直,但这些直线不相交就不能说明这条直线与此平面垂直. 2.平面与平面垂直的判定定理与性质定理文字语言 图形语言符号语言判定定理一个平面过另一个平面的垂线❷,则这两个平面垂直⎭⎪⎬⎪⎫l ⊂βl ⊥α⇒α⊥β 性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl ⊂βα∩β=a l ⊥a ⇒l ⊥α[❷要求一平面只需过另一平面的垂线.]二、常用结论直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.考点一直线与平面垂直的判定与性质[典例]如图,在四棱锥PABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.[证明](1)在四棱锥PABCD中,∵P A⊥底面ABCD,CD⊂底面ABCD,∴P A⊥CD,又∵AC⊥CD,且P A∩AC=A,∴CD⊥平面P AC.∵AE⊂平面P AC,∴CD⊥AE.(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.∵PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,AB⊂底面ABCD,∴P A⊥AB.又∵AB⊥AD,且P A∩AD=A,∴AB⊥平面P AD,∵PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.[解题技法]证明线面垂直的4种方法(1)线面垂直的判定定理:l ⊥a ,l ⊥b ,a ⊂α,b ⊂α,a ∩b =P ⇒l ⊥α. (2)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. (3)性质:①a ∥b ,b ⊥α⇒a ⊥α,②α∥β,a ⊥β⇒a ⊥α. (4)α⊥γ,β⊥γ,α∩β=l ⇒l ⊥γ.(客观题可用) [口诀归纳]线面垂直的关键,定义来证最常见, 判定定理也常用,它的意义要记清. 平面之内两直线,两线相交于一点, 面外还有一直线,垂直两线是条件. [题组训练]1.(2019·安徽知名示范高中联考)如图,在直三棱柱ABC A 1B 1C 1中,AB =BC =BB 1,AB 1∩A 1B =E ,D 为AC 上的点,B 1C ∥平面A 1BD .(1)求证:BD ⊥平面A 1ACC 1;(2)若AB =1,且AC ·AD =1,求三棱锥A BCB 1的体积. 解: (1)证明:如图,连接ED ,∵平面AB 1C ∩平面A 1BD =ED ,B 1C ∥平面A 1BD , ∴B 1C ∥ED , ∵E 为AB 1的中点, ∴D 为AC 的中点, ∵AB =BC ,∴BD ⊥AC .∵A 1A ⊥平面ABC ,BD ⊂平面ABC ,∴A 1A ⊥BD . 又∵A 1A ,AC 是平面A 1ACC 1内的两条相交直线, ∴BD ⊥平面A 1ACC 1.(2)由AB =1,得BC =BB 1=1,由(1)知AD =12AC ,又AC ·AD =1,∴AC 2=2,∴AC 2=2=AB 2+BC 2,∴AB ⊥BC , ∴S △ABC =12AB ·BC =12,∴V A BCB 1=V B 1ABC =13S △ABC ·BB 1=13×12×1=16.2.如图,S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D,E分别为AC,AB的中点.∴DE∥BC,∴DE⊥AB,∵SA=SB,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,∵SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)∵AB=BC,∴BD⊥AC,由(1)可知,SD⊥平面ABC,又BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.考点二面面垂直的判定与性质[典例](2018·江苏高考)在平行六面体ABCDA1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.[证明](1)在平行六面体ABCDA1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCDA1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.[解题技法] 证明面面垂直的2种方法 定义法利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题定理法 利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决[题组训练]1.(2019·武汉调研)如图,三棱锥P ABC 中,底面ABC 是边长为2的正三角形,P A ⊥PC ,PB =2.求证:平面P AC ⊥平面ABC .证明:取AC 的中点O ,连接BO ,PO . 因为△ABC 是边长为2的正三角形, 所以BO ⊥AC ,BO = 3.因为P A ⊥PC ,所以PO =12AC =1.因为PB =2,所以OP 2+OB 2=PB 2,所以PO ⊥OB . 因为AC ∩OP =O , 所以BO ⊥平面P AC . 又OB ⊂平面ABC , 所以平面P AC ⊥平面ABC .2.(2018·安徽淮北一中模拟)如图,四棱锥P ABCD 的底面是矩形,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点,且P A =AD .求证:(1)AF ∥平面PEC ; (2)平面PEC ⊥平面PCD .证明:(1)取PC 的中点G ,连接FG ,EG , ∵F 为PD 的中点,G 为PC 的中点, ∴FG 为△CDP 的中位线, ∴FG ∥CD ,FG =12CD .∵四边形ABCD 为矩形,E 为AB 的中点, ∴AE ∥CD ,AE =12CD .∴FG =AE ,FG ∥AE , ∴四边形AEGF 是平行四边形,∴AF ∥EG ,又EG ⊂平面PEC ,AF ⊄平面PEC ,∴AF∥平面PEC.(2)∵P A=AD,F为PD中点,∴AF⊥PD,∵P A⊥平面ABCD,CD⊂平面ABCD,∴P A⊥CD,又∵CD⊥AD,AD∩P A=A,∴CD⊥平面P AD,∵AF⊂平面P AD,∴CD⊥AF.又PD∩CD=D,∴AF⊥平面PCD.由(1)知EG∥AF,∴EG⊥平面PCD,又EG⊂平面PEC,∴平面PEC⊥平面PCD.[课时跟踪检测]A级1.设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是() A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β解析:选C对于C项,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故选C.2.(2019·湘东五校联考)已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β.其中正确的命题是()A.①④B.③④C.①②D.①③解析:选A对于①,若α∥β,m⊥α,l⊂β,则m⊥l,故①正确,排除B.对于④,若m∥l,m⊥α,则l⊥α,又l⊂β,所以α⊥β.故④正确.故选A.3.已知P A垂直于以AB为直径的圆所在的平面,C为圆上异于A,B两点的任一点,则下列关系不正确的是()A.P A⊥BC B.BC⊥平面P ACC.AC⊥PB D.PC⊥BC解析:选C由P A⊥平面ACB⇒P A⊥BC,故A不符合题意;由BC⊥P A,BC⊥AC,P A∩AC=A,可得BC⊥平面P AC,所以BC⊥PC,故B、D不符合题意;AC⊥PB显然不成立,故C符合题意.4.如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么点D在平面ABC内的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:选A因为AB⊥AC,BD⊥AC,AB∩BD=B,所以AC⊥平央ABD,又AC⊂平面ABC,所以平面ABC⊥平面ABD,所以点D在平面ABC内的射影H必在直线AB上.5.如图,在正四面体PABC中,D,E,F分别是AB,BC,CA的中点,则下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面P AEC.平面PDF⊥平面P AED.平面PDE⊥平面ABC解析:选D因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确.在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,所以BC⊥平面P AE,又DF∥BC,则DF⊥平面P AE,从而平面PDF⊥平面P AE.因此选项B、C均正确.6.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中,与PC垂直的直线有________个;与AP垂直的直线有________个.解析:∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC.∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面P AC,又∵AP⊂平面P AC,∴AB⊥AP,与AP垂直的直线是AB.答案:317.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α∥β;②若α外的一条直线l与α内的一条直线平行,则l∥α;③设α∩β=l,若α内有一条直线垂直于l,则α⊥β;④直线l⊥α的充要条件是l与α内的两条直线垂直.其中所有的真命题的序号是________.解析:①正确;②正确;满足③的α与β不一定垂直,所以③错误;直线l⊥α的充要条件是l与α内的两条相交直线垂直,所以④错误.故所有的真命题的序号是①②.答案:①②8.在直三棱柱ABCA1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确命题的序号是________.解析:如图所示,因为AA1∥平面α,平面α∩平面AA1B1B=EH,所以AA1∥EH.同理AA1∥GF,所以EH∥GF,又ABCA1B1C1是直三棱柱,易知EH=GF=AA1,所以四边形EFGH是平行四边形,故①正确;若平面α∥平面BB1C1C,由平面α∩平面A1B1C1=GH,平面BCC1B1∩平面A1B1C1=B1C1,知GH∥B1C1,而GH∥B1C1不一定成立,故②错误;由AA1⊥平面BCFE,结合AA1∥EH知EH⊥平面BCFE,又EH⊂平面α,所以平面α⊥平面BCFE,故③正确.答案:①③9.(2019·太原模拟)如图,在四棱锥PABCD中,底面ABCD是菱形,∠BAD=60°,P A=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点.(1)求证:AD⊥平面PNB;(2)若平面P AD⊥平面ABCD,求三棱锥PNBM的体积.解:(1)证明:连接BD.∵P A=PD,N为AD的中点,∴PN⊥AD.又底面ABCD是菱形,∠BAD=60°,∴△ABD为等边三角形,∴BN⊥AD,又PN∩BN=N,∴AD⊥平面PNB.(2)∵P A=PD=AD=2,∴PN=NB= 3.又平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,PN⊥AD,∴PN⊥平面ABCD,∴PN⊥NB,∴S△PNB=12×3×3=32.∵AD⊥平面PNB,AD∥BC,∴BC ⊥平面PNB .又PM =2MC , ∴V P NBM =V M PNB =23V C PNB =23×13×32×2=23.10.如图,在直三棱柱ABC A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F .证明:(1)在直三棱柱ABC A 1B 1C 1中,AC ∥A 1C 1, 在△ABC 中,因为D ,E 分别为AB ,BC 的中点. 所以DE ∥AC ,于是DE ∥A 1C 1,又因为DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F , 所以直线DE ∥平面A 1C 1F .(2)在直三棱柱ABC A 1B 1C 1中,AA 1⊥平面A 1B 1C 1, 因为A 1C 1⊂平面A 1B 1C 1,所以AA 1⊥A 1C 1,又因为A 1C 1⊥A 1B 1,A 1B 1∩AA 1=A 1,AA 1⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1, 所以A 1C 1⊥平面ABB 1A 1, 因为B 1D ⊂平面ABB 1A 1, 所以A 1C 1⊥B 1D ,又因为B 1D ⊥A 1F ,A 1C 1∩A 1F =A 1,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F , 所以B 1D ⊥平面A 1C 1F , 因为直线B 1D ⊂平面B 1DE , 所以平面B 1DE ⊥平面A 1C 1F .B 级1.(2018·全国卷Ⅱ)如图,在三棱锥P ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离. 解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3. 连接OB , 因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为AC ∩OB =O ,所以PO ⊥平面ABC . (2)作CH ⊥OM ,垂足为H , 又由(1)可得OP ⊥CH , 所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.2.(2019·河南中原名校质量考评)如图,在四棱锥P ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E ,F 分别是CD ,PC 的中点.求证:(1)BE ∥平面P AD ; (2)平面BEF ⊥平面PCD .证明:(1)∵AB ∥CD ,CD =2AB ,E 是CD 的中点, ∴AB ∥DE 且AB =DE , ∴四边形ABED 为平行四边形,∴AD ∥BE ,又BE ⊄平面P AD ,AD ⊂平面P AD , ∴BE ∥平面P AD .(2)∵AB ⊥AD ,∴四边形ABED 为矩形, ∴BE ⊥CD ,AD ⊥CD ,∵平面P AD ⊥底面ABCD ,平面P AD ∩底面ABCD =AD ,P A ⊥AD , ∴P A ⊥底面ABCD , ∴P A ⊥CD ,又P A ∩AD =A , ∴CD ⊥平面P AD ,∴CD ⊥PD , ∵E ,F 分别是CD ,PC 的中点, ∴PD ∥EF ,∴CD ⊥EF ,又EF ∩BE =E , ∴CD ⊥平面BEF ,∵CD ⊂平面PCD ,∴平面BEF ⊥平面PCD .。
高中数学必修立体几何专题线面垂直方法总结

棱
柱
A
B
C
D-
A1
B1C
1
D
中
1
,
侧
棱
A
A1=
6,
底 面 A B C D 是 菱 形 , A B= 2, A B C= 60, P为 侧 棱
B B1上 的 动 点 .
1求 证 : D1P AC;
2 设 AC BD= O,
求 当 B1P 等 于 多 少 时 , PB
PO 平 面 D1AC ?
【 解 析 】1 证 明 :
因为E是PC的中点,所以AE⊥PC. 由(1)知,AE⊥CD,且PC∩CD=C, 所以AE⊥平面PCD. 而PD 平面PCD,所以AE⊥PD. 又因为PA⊥底面ABCD,所以PA⊥AB. 由已知得AB⊥AD,且PA∩AD=A,所以AB⊥ 平面PAD. 又PD 平面PAD,所以AB⊥PD. 因为AB∩AE=A,所以PD⊥平面ABE.
【证明】(1)连结AC,取其 中点O,连结NO、MO,并 延长MO交CD于R. 因为N为PC的中点, 所以NO为△PAC的中位线,所以NO∥PA. 而PA⊥平面ABCD,所以NO⊥平面ABCD,所 以NO⊥CD. 又四边形ABCD是矩形,M为AB的中点,O为 AC的中点,所以MO⊥CD. 而MO∩NO=O, 所以CD⊥平面MNO,所 以 CD⊥MN.
BB1C1C.
【
证
明
】
直
棱
柱
A
B
C
D-
A1 B 1C
1
D
中
1
,
BB1 平 面 ABC D, 所 以 BB1 AC .
又 因 为 B A D= A D C = 9 0 , A B
= 2AD= 2C D= 2,
立体几何中的向量方法(一)——证明平行与垂直

u· v=(-2,2,5)· (3,-2,2)=0⇒α⊥β.
当v=(4,-4,-10)时,v=-2u⇒α∥β.
1
2
3
4
5
6
解析
答案
3.[P105练习T2]如图所示,在正方体ABCD-A1B1C1D1中,O是底面正方 形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线ON,AM的
垂直 位置关系是________.
全国名校高考数学优质学案、专题汇编(附详解)
第八章 立体几何与空间向量
§8.6 立体几何中的向量方法(一)——证明平行与垂直
内容索引
基础知识
自主习
题型分类
课时作业
深度剖析
知识梳理 1.直线的方向向量与平面的法向量的确定 (1)直线的方向向量:在直线上任取一 非零 向量作为它的方向向量. (2)平面的法向量可利用方程组求出:设a,b是平面α内两不共线向量,n为 a=0, n · 平面α的法向量,则求法向量的方程组为 b=0. n · 2.用向量证明空间中的平行关系 (1)设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔ v1∥v2 . (2)设直线l的方向向量为v,与平面α共面的两个不共线向量v1和v2,则l∥α 或l⊂α⇔ 存在两个实数x,y,使v=xv1+yv2 .
(6)若空间向量a平行于平面α,则a所在直线与平面α平行.( × )
1 2 3 4 5 6
题组二 教材改编
2.[P105 练习T1(1)(2)]设 u ,v 分别是平面 α , β 的法向量, u = ( -2,2,5) ,
α⊥β 当v=(3,-2,2)时,α与β的位置关系为__________ ;当v=(4,-4, α∥β -10)时,α与β的位置关系为________. 解析 当v=(3,-2,2)时,
立体几何中的向量方法(一)证明平行与垂直
立体几何中的向量方法(一)证明平行与垂直【考点梳理】1.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔n·m=0 l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,m α∥βn∥m⇔n=λm α⊥βn⊥m⇔n·m=0【考点突破】考点一、利用空间向量证明平行问题【例1】如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD =22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.证明:PQ∥平面BCD.[解析]法一如图,取BD的中点O,以O为原点,OD,OP所在射线分别为y,z轴的正半轴,建立空间直角坐标系O-xyz.由题意知,A(0,2,2),B(0,-2,0),D(0,2,0).设点C的坐标为(x0,y0,0).因为AQ→=3QC →, 所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12,所以PQ→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0. 又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD , 所以PQ ∥平面BCD .法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0).∵CF→=14CD →,设点F 坐标为(x ,y ,0),则 (x -x 0,y -y 0,0)=14(-x 0,2-y 0,0), ∴⎩⎪⎨⎪⎧x =34x 0,y =24+34y 0,∴OF→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0 又由法一知PQ→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0, ∴OF→=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .【类题通法】1.恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.2.证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.【对点训练】如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG .[解析] ∵平面P AD ⊥平面ABCD ,且ABCD 为正方形, ∴AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).法一 ∴EF→=(0,1,0),EG →=(1,2,-1),设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EF →=0,n ·EG →=0,即⎩⎨⎧y =0,x +2y -z =0,令z =1,则n =(1,0,1)为平面EFG 的一个法向量,∵PB→=(2,0,-2), ∴PB→·n =0,∴n ⊥PB →, ∵PB ⊄面EFG , ∴PB ∥平面EFG .法二 PB→=(2,0,-2),FE →=(0,-1,0),FG→=(1,1,-1).设PB →=sFE →+tFG →, 即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎨⎧t =2,t -s =0,-t =-2,解得s =t =2. ∴PB→=2FE →+2FG →, 又∵FE→与FG →不共线, ∴PB→,FE →与FG →共面. ∵PB ⊄平面EFG , ∴PB ∥平面EFG .考点二、利用空间向量证明垂直问题【例2】如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .[解析] (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD→,∴P A ⊥BD . (2)取P A 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32.∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3),∴DM→·PB →=32×1+0×0+32×(-3)=0,∴DM→⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0, ∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,∴DM ⊥平面P AB . ∵DM ⊂平面P AD ,∴平面P AD ⊥平面P AB . 【类题通法】1.利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.2.用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.【对点训练】如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .[解析] 法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a ·c =0,b ·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c , m =λBA 1→+μBD →=⎝ ⎛⎭⎪⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫λ+12μa +μb +λc =4⎝ ⎛⎭⎪⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证.法二 如图所示,取BC 的中点O ,连接AO . 因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0). 设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0).因为n ⊥BA 1→,n ⊥BD →, 故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD .考点三、利用空间向量解决探索性问题【例3】如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1?若存在,求出点P 的位置;若不存在,请说明理由.[解析] (1)设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3,∴AO 2+A 1O 2=AA 21,∴A 1O ⊥AO . 由于平面AA 1C 1C ⊥平面ABCD , 平面AA 1C 1C ∩平面ABCD =AC , A 1O ⊂平面AA 1C 1C , ∴A 1O ⊥平面ABCD ,以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1. (2)假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3), 设n 3=(x 3,y 3,z 3),⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1,即点P 在C 1C 的延长线上,且C 1C =CP .【类题通法】向量法解决与垂直、平行有关的探索性问题1.根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论.2.假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.【对点训练】如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ ⊥平面PQMN ?若存在,求出实数λ的值;若不存在,说明理由.[解析] (1)以D 为坐标原点,建立如图所示的空间直角坐标系.由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),M (2,1,2),N (1,0,2),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0),MN→=(-1,-1,0),NP →=(-1,0,λ-2).当λ=1时,FP→=(-1,0,1),因为BC 1→=(-2,0,2), 所以BC 1→=2FP →, 即BC 1∥FP . 而FP ⊂平面EFPQ , 且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .(2)设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧FE →·n =0,FP →·n =0,可得⎩⎨⎧x +y =0,-x +λz =0.于是可取n =(λ,-λ,1).同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1). 则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0, 即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22. 故存在λ=1±22,使平面EFPQ ⊥平面PQMN .。
第3章3.2 立体几何中的向量方法(二)垂直关系
高考调研 ·新课标 ·数学选修2-1
授人以渔
第6页
高考调研 ·新课标 ·数学选修2-1
题型一 利用空间向量证明线线垂直 例 1 已知正三棱柱 ABC-A1B1C1 的各棱 长都为 1,M 是底面上 BC 边的中点,N 是侧棱 CC1 上的点,且 CN=14CC1.求证:AB1⊥MN.
第7页
第15页
高考调研 ·新课标 ·数学选修2-1
探究 2 如何利用向量法证明线面垂直? 用向量法证明线面垂直的方法步骤: (1)坐标法: ①建立空间直角坐标系,将直线的方向向量用坐标表示. ②求平面内任意两条相交直线的方向向量或平面的法向量. ③证明直线的方向向量与平面内两相交直线的方向向量垂 直或与平面的法向量平行.
高考调研 ·新课标 ·数学选修2-1
1.若两个不同平面 α,β 的法向量分别为 u=(2,1,-1),
v=(3,2,8),则( )
A.α ∥β
B.α ⊥β
C.α ,β 相交不垂直 答案 B
D.以上均不正确
解析 ∵v·u=6+2-8=0.
∴v⊥u,∴α⊥β.
第32页
高考调研 ·新课标 ·数学选修2-1
高考调研 ·新课标 ·数学选修2-1
【解析】 方法一:(基向量法) 设A→B=a,A→C=b,A→A1=c,则由已知条件和正三棱柱的性 质,得|a|=|b|=|c|=1,a·c=b·c=0. A→B1=a+c,A→M=12(a+b),A→N=b+14c, M→N=A→N-A→M=-12a+12b+14c, ∴A→B1·M→N=(a+c)·(-12a+12b+14c) =-12+12cos60°+14=0. ∴A→B1⊥M→N,∴AB1⊥MN.
a,0).
第23页
高中立体几何证明线垂直的方法学生
PEDCBA高中立体几何证明线线垂直方法(1)通过“平移”,根据若αα平面则平面且⊥⊥a b b a ,,//1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB=21DC ,中点为PD E .求证:AE ⊥平面PDC.2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD ,∠PDA=45°,点E 为棱AB 的中点.求证:平面PCE ⊥平面PCD ;3.如图所示,在四棱锥P ABCD -中,AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高。
(1)证明:PH ABCD ⊥平面;(2)若121PH AD FC ===,,,求三棱锥E BCF -的体积; (3)证明:EF PAB ⊥平面.E FBACDP(第2题4.如图所示, 四棱锥P -ABCD 底面是直角梯形,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, PA =AD 。
证明: BE PDC ⊥平面;5.在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥;(Ⅱ)求二面角B AP C --的大小;6.如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 o 证明:AB ⊥PC(3)利用勾股定理7.如图,四棱锥P ABCD -的底面是边长为1的正方形,,1, 2.PA CD PA PD ⊥==ACBPCADO求证:PA ⊥平面ABCD ;8.如图1,在直角梯形ABCD 中,CD AB //,AD AB ⊥,且121===CD AD AB .现以AD 为一边向形外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使平面ADEF 与平面ABCD 垂直,M 为ED 的中点,如图2.(1)求证:AM ∥平面BEC ; (2)求证:⊥BC 平面BDE ;图1图29.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2, 2.CA CB CD BD AB AD ======(1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的大小;10.如图,四棱锥S-ABCD 中,_D_C_B_A_PMAFBCD E M E CBC AB ⊥,CD ⊥BC ,侧面SAB 为等边三角形,2,1AB BC CD SD ====.(Ⅰ)证明:SAB 面⊥SD ;(Ⅱ)求AB 与平面SBC 所成角的大小.(4)利用三角形全等或三角行相似11.正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,M 为BB 1的中点. 求证:D 1O ⊥平面MAC.12.如图,正三棱柱ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1中点.求证:AB 1⊥平面A 1BD ;13.如图,已知正四棱柱ABCD —A 1B 1C 1D 1中,过点B 作B 1C 的垂线交侧棱CC 1于点E ,交B 1C 于点F ,求证:A 1C ⊥平面BDE ;(5)利用直径所对的圆周角是直角14.如图,AB 是圆O 的直径,C 是圆周上一点,PA ⊥平面ABC . (1)求证:平面PAC ⊥平面PBC ;(2)若D 也是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.O AC BP.15.如图5,在圆锥PO 中,已知PO =2,⊙O 的直径2AB =,C 是狐AB 的中点,D 为AC 的中点.证明:平面POD ⊥平面PAC ;16.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD .以BD 的中点O 为球心、BD 为直径的球面交PD 于点M .求证:平面ABM ⊥平面PCD ;OAPBM。
北师大版必修第二册第六章立体几何初步专题课:平面与平面垂直的证明技法课件
证明:取BC的中点D,连接AD,SD。由题意知
, 为等边三角形,所以 = ,易证 ⊥
。
因为 ∆是等腰直角三角形,所以 =SD,可得
2
2
2
2
2
2
+ = + = = 。
在 ∆中,由勾股定理的逆定理知 ⊥SD.由 ∩
B.垂直于同一条直线的两条直线互相平行
C.两个平面与第三个平面垂直,则这两个平面互相平行
D.两个平行平面中的一个平面与第三个平面垂直,则另一
个平面也与第三个平面垂直
分析:本题主要考查空间直线与直线,直线与平
面,平面与平面的位置关系。
解:对于A,平行于同一个平面的两条直线可能
的位置关系有相交、异面、平行,因此不一定是
互相平行。
对于B,垂直于同一条直线的两条直线的位置关
系有平行、相交、异面,因此不一定是互相平行。
对于C,如图3所示,平面ABC与平面ABE都垂直
平面BCE,但平面ABC与平面ABE相交 。D是正
确的。
说明
这种方法用的比较少,在理论中行得通,
在实践中,针对性的题比较少。
四、向量法
已知两个平面α,β,两个平面的法向量分别为
垂线在平面BDM内.
(1)如图所示,取EC的中点F,连接DF.
∵EC⊥平面ABC,
∴EC⊥BC,
又由已知,易得DF∥BC,
∴DF⊥EC.
在Rt△EFD和Rt△DBA中,EF=EC=BD,
且由已知,易得FD=BC=AB,
∴Rt△DFE≌Rt△ABD,故ED=DA.
(2)取CA的中点N,连接MN,BN,
则MN∥EC,又BD∥CE,且MN=EC,又BD=CE
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【教师寄语:人生其实很简单,学习、成长和改变!】 立体几何垂直证明题常见模型及方法 证明空间线面垂直需注意以下几点: ①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。 ②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。 ③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。 垂直转化:线线垂直 线面垂直 面面垂直; 基础篇 类型一:线线垂直证明(共面垂直、异面垂直) (1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)
○1 等腰(等边)三角形中的中线
○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中
○
5 利用相似或全等证明直角。
例:在正方体1111ABCDABCD中,O为底面ABCD的中心,E为1CC,求证:1AOOE
(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD中,求证ACBD
变式1 如图,在四棱锥ABCDP中,底面ABCD是矩形,已知60,22,2,2,3PABPDPAADAB.
证明:ADPB; 变式2如图,在三棱锥PABC中,⊿PAB是等边三角形,∠PAC=∠PBC=90 º证明:AB⊥PC
类型二:线面垂直证明 方法○1 利用线面垂直的判断定理 例2:在正方体1111ABCDABCD中,O为底面ABCD的中心,E为1CC,求证:1AOBDE平面
变式1:在正方体1111ABCDABCD中,,求证:11ACBDC平面 变式2:如图:直三棱柱ABC-A1B1C1中, AC=BC=AA1=2,∠ACB=90.E为BB1的中点,D点在AB上且DE=3 . 求证:CD⊥平面A1ABB1; P C B
A D E
变式3:如图,在四面体ABCD中,O、E分别是BD、BC的中点,2,2.CACBCDBDABAD 求证:AO平面BCD;
变式4 如图,在底面为直角梯形的四棱锥PABCD中, ADBC∥,90ABC°,PA平面ABCD.3PA,2AD,23AB,6BC 1求证:BD平面PAC
○2 利用面面垂直的性质定理
例3:在三棱锥P-ABC中,PAABC底面,PACPBC面面,BCPAC求证:面。
方法点拨:此种情形,条件中含有面面垂直。
D A C O B E 变式1, 在四棱锥PABCD,底面ABCD是正方形,侧面PAB是等腰三角形,且PABABCD面底面,求证:BCPAB面
变式2:
类型3:面面垂直的证明。(本质上是证明线面垂直) 例1 如图,已知AB平面ACD,DE平面ACD,△ACD为等边三角形, 2ADDEAB,F为CD的中点.
(1) 求证://AF平面BCE; (2) 求证:平面BCE平面CDE;
例2 如图,在四棱锥PABCD中,PA底面ABCD,60ABADACCDABC,,°,PAABBC,E是PC的中点.
(1)证明CDAE; (2)证明PD平面ABE;
变式1已知直四棱柱ABCD—A′B′C′D′的底面是菱形,60ABC,E、F分别是棱CC′与BB′上的点,且EC=BC=2FB=2. (1)求证:平面AEF⊥平面AA′C′C;
A B C D E
F
A B C D
P E 举一反三 1.设M表示平面,a、b表示直线,给出下列四个命题:
①MbMaba// ②baMbMa// ③baMab∥M ④baMa//b⊥M. 其中正确的命题是 ( ) A.①② B.①②③ C.②③④ D.①②④ 2.下列命题中正确的是 ( ) A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面 B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面 C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线 D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面 3.如图所示,在正方形ABCD中,E、F分别是AB、BC的中点.现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.那么,在四面体P—DEF中,必有 ( )
A.DP⊥平面PEF B.DM⊥平面PEF C.PM⊥平面DEF D.PF⊥平面DEF 4.设a、b是异面直线,下列命题正确的是 ( ) A.过不在a、b上的一点P一定可以作一条直线和a、b都相交 B.过不在a、b上的一点P一定可以作一个平面和a、b都垂直 C.过a一定可以作一个平面与b垂直 D.过a一定可以作一个平面与b平行 5.如果直线l,m与平面α,β,γ满足:l=β∩γ,l∥α,mα和m⊥γ,那么必有 ( ) A.α⊥γ且l⊥m B.α⊥γ且m∥β C.m∥β且l⊥m D.α∥β且α⊥γ 6.AB是圆的直径,C是圆周上一点,PC垂直于圆所在平面,若BC=1,AC=2,PC=1,则P到AB的距离为 ( )
A.1 B.2 C.552 D.553 7.有三个命题: ①垂直于同一个平面的两条直线平行; ②过平面α的一条斜线l有且仅有一个平面与α垂直; ③异面直线a、b不垂直,那么过a的任一个平面与b都不垂直 其中正确命题的个数为 ( ) A.0 B.1 C.2 D.3 8.d是异面直线a、b的公垂线,平面α、β满足a⊥α,b⊥β,则下面正确的结论是 ( ) A.α与β必相交且交线m∥d或m与d重合
第3题图 B.α与β必相交且交线m∥d但m与d不重合 C.α与β必相交且交线m与d一定不平行 D.α与β不一定相交 9.设l、m为直线,α为平面,且l⊥α,给出下列命题 ① 若m⊥α,则m∥l;②若m⊥l,则m∥α;③若m∥α,则m⊥l;④若m∥l,则m⊥α, 其中真命题...的序号是 ( )
A.①②③ B.①②④ C.②③④ D.①③④ 10.已知直线l⊥平面α,直线m平面β,给出下列四个命题: ①若α∥β,则l⊥m;②若α⊥β,则l∥m;③若l∥m,则α⊥β;④若l⊥m,则α∥β. 其中正确的命题是 ( ) A.③与④ B.①与③ C.②与④ D.①与② 二、能力提高 14.如图所示,三棱锥V-ABC中,AH⊥侧面VBC,且H是△VBC的垂心,BE是VC边上的高. (1)求证:VC⊥AB; (2)若二面角E—AB—C的大小为30°,求VC与平面ABC 所成角的大小.
15.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点. (1)求证:MN∥平面PAD. (2)求证:MN⊥CD. (3)若∠PDA=45°,求证:MN⊥平面PCD.
16.如图所示,在四棱锥P—ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD
第14题图
第15题图 =2,侧棱PB=15,PD=3. (1)求证:BD⊥平面PAD. (2)若PD与底面ABCD成60°的角,试求二面角P—BC—A的大小.
17.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.
18.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P. (1)求证:NP⊥平面ABCD. (2)求平面PNC与平面CC′D′D所成的角. (3)求点C到平面D′MB的距离.
第16题图
第18题图 第4课 线面垂直习题解答 1.A 两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行. 2.C 由线面垂直的性质定理可知. 3.A 折后DP⊥PE,DP⊥PF,PE⊥PF. 4.D 过a上任一点作直线b′∥b,则a,b′确定的平面与直线b平行. 5.A依题意,m⊥γ且mα,则必有α⊥γ,又因为l=β∩γ则有lγ,而m⊥γ则l⊥m,故选A.
6.D过P作PD⊥AB于D,连CD,则CD⊥AB,AB=522BCAC,52ABBCACCD,
∴PD=55354122CDPC. 7.D 由定理及性质知三个命题均正确. 8.A 显然α与β不平行. 9.D 垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直. 10.B ∵α∥β,l⊥α,∴l⊥m
11.23cm2 设正三角A′B′C′的边长为a. ∴AC2=a2+1,BC2=a2+1,AB2=a2+4, 又AC2+BC2=AB2,∴a2=2.
S△A′B′C′=23432acm2. 12.在直四棱柱A1B1C1D1—ABCD中当底面四边形ABCD满足条件AC⊥BD(或任何能推导出这个条件的其它条件,例如ABCD是正方形,菱形等)时,有A1C⊥B1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).
点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线定