三角形全等角平分线线课件

合集下载

《“边角边”判定三角形全等》PPT课件

《“边角边”判定三角形全等》PPT课件

思考:已知一个三角形的两条边和一个角,那么这两条边
与这一个角的位置上有几种可能性呢?
A
A
B
C
图一
在图一中, ∠A
是AB和AC的夹角,
符合图一的条件,它 可称为“两边和它们 的夹角”。
B
图二
C
符合图二的条件, 通常 说成“两边和其中一边的对角”两边源自它们的夹角夹角 CA
BD
F E
验证猜想 归纳结论
B
把画好的△A′B′C′剪下来,放到△ABC上, 它们全等吗?反映了什么规律?
验证猜想 归纳结论
探究3反映的规律是:
两边和它们的夹角分别相等的两个三角形全等
(简写成“边角边”或“SAS”)
数学符号语言:
∵在△ABC和△A′B′C ′中
AB=A′B′
C
C′
∠A=∠A′
AC=A′C′
A
B A′
B′
∴ △ABC≌△A′B′C ′(SAS)
∵在△ABF和△ DCE中 AB=DC
∠B= ∠C
A BE
BF=CE ∴ △ABF≌△DCE (SAS)
∴ ∠A=∠D
D FC
验证猜想 归纳结论
把一长一短的两根木棍的一端固定在一起,摆出△ABC 。 固定住长木棍,转动短木棍,得到△ABD。这个实验说 明了什么?
A 说明:△ABC与△ABD不全等
B
解: 相等,理由如下
B
∵在△ABC和△ABD中 AB=AB
∠BAC= ∠BAD=90°
AC=AD
DA C
∴ △ABC≌△ABD (SAS)
∴ BC=BD
巩固练习 拓展提高
如图:点E、F在BC上,BE=CF,AB=DC, ∠B= ∠C.

全等三角形ppt课件

全等三角形ppt课件

三、概念剖析
为了方便书写,我们可以用符号表示两个三角形的全等.
例如△ABC与△DEF是全等的,
A
D
可以记作:“△ABC ≌△DEF”,
读作:“△ABC 全等于△DEF”. B
CE
F
注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应位置上.
例如,△ABC与△DEF全等,点A 与点D、点B 与点E、点C 与点F为对应
三、概念剖析
猜想:全等三角形对应边和对应角有什么关系呢? 全等三角形的性质:全等三角形的对应边相等,对应角相等.
应用格式 ∵△ABC≌△DEF,
A
D
∴AB=DE,BC=EF,AC=DF
∠A=∠D,∠B=∠E,∠C=∠F B
CE
F
四、典型例题
例1.如图△OCA≌△OBD,点C和点B,点A和点D是对应点.
在我们的周围,经常可以看到形状、大小完全相同的图形, 这样的图形叫做全等形.研究全等形的性质和判定两个图形全等 的方法,是几何学的一个重要内容,本章将以三角形为例,对这 些问题进行研究.
同一种剪纸
风扇的叶片
上一章我们通过推理论证得到了三角形内角和定理等重要结 论.本章中,推理论证将发挥更大的作用.我们将通过证明三角 形全等来证明线段或角相等,利用全等三角形证明角的平分线的 性质.通过本章学习,你对三角形的认识会更加深入,推理论证 能力会进一步提高.
新知一览
全等三角形
“边边边”


三角形全等
“边角边”

的判定
“角边角”“角角边”

“斜边、直角边”
形 角平分线的性质
角平分线的性质
角平分线的判定
第十二章 全等三角形

全等三角形+第7讲+角平分线的处理方法+专项训练++2024-2025学年人教版数学八年级上册

全等三角形+第7讲+角平分线的处理方法+专项训练++2024-2025学年人教版数学八年级上册

第7讲角平分线的处理方法板块一角平分线的性质条件:OC 平分∠AOB. PD⊥OA 于点D,PE⊥OB 于点E.结论:PD=PE.典例精讲题型一知两垂【例1】如图,AD 是△ABC 的角平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,BD=CD.求证:BE=CF.题型二作一垂【例2】如图,在四边形 ABCD 中,∠B=∠C=90°,E 为 BC 上一点,且 AE 平分∠BAD,D E 平分∠ADC.求证:BE=CE.题型三作两垂【例3】如图,在四边形 ABCD 中,∠ABC=90°,BD 平分∠ABC,AD=CD.求证:AD⊥CD.实战演练如图,在四边形ABCD中,∠BAC=∠BDC=36°,∠ADB=72°.求证:AB=AC.类型判定旁心图隐角平分线图形条件PD⊥OA,PE⊥OB,PD=PE.OP 平分∠AOB,AP 平分∠BAD,PD⊥OA,PE⊥OB,PF⊥AB.OP 平分∠AOB,∠OAP+∠BAP=180°.结论OC 平分∠AOB.PB平分∠ABE.①PA 平分∠BAD;②PB平分∠ABE.典例精讲题型一直接用判定【例1】如图,在△ABC 中,AC=BC,E 为△ABC 外一点,且∠CAE=∠CBE.求证:CE 平分△ABE 的外角.题型二旁心【例2】如图,在△ABC中,AP 平分∠BAC,BP 平分∠CBD.(1)求证:CP 平分∠BCE;(2)设∠BAC=α,则∠BPC= (用含α的式子表示).实战演练题型三隐角平分线如图,在四边形 AEDC 中,∠EAC+∠EAD=180°,且 CE 平分∠ACD.若∠EAD=α,求∠DEC 的度数.板块三角平分线与面积法类型1 内心向三边作垂类型2 面积比与边长比条件:I 是△ABC 三条角平分线的交点.方法:过点 I 分别向三边作垂线段.结论:①ID=IE=IF;②S△IBC+S△IAC+S△IAB=S△ABC;③ID=2S△ABC÷(AB+BC+AC).条件:AD 是△ABC的角平分线.方法:过点 D 分别作DE⊥AB,DF⊥AC.结论:①DE=DF;②S△ABD:S△ACD=AB:AC=BD:CD.典例精讲题型一面积法求线段长【例1】如图,在△ABC 中,∠ABC=90°,I 为△ABC 各内角平分线的交点,过点I 作AC 的垂线,垂足为H.若BC=3,AB=4,AC=5,求IH 的长.题型二面积法证线段比【例2】如图,AD 是△ABC 的角平分线.求证:BDCD =ABAC.题型三构全等转化面积【例3】如图,△ABC的角平分线BD,CE 交于点P,∠A=60°,△ABC的面积为 16,四边形AEPD 的面积为5,求△BPC 的面积.实战演练1.如图,在△ABC 中,∠C=90°,O是∠CAB,∠ABC 平分线的交点,且E BC=8cm,AC=6cm6 cm,AB=10cm,求S△AOB.2.如图,在△ABC中,.S ABC=21,∠BAC的角平分线AD 交 BC 于点D,E 为AD 的中点.连接BE,的值.F 为BE 上一点,且 BF=2EF.若S△DEF=2,求ABAC3.如图,在△ABC中,AB=3,AC=4,BC=5,∠BAC=90°,AD平分∠BAC.BAC.求 DC 的长.4.如图,在△ABC中,∠BAC=90°,AB=AC,BD 是△ABC的角平分线,若BD=8,求△BDC1的面积.类型梯形图互补图内心图图形典 例 精 讲题型一 直角梯形遇角平分线【例】如图,在四边形ABCD 中,∠A=∠B=90°,E 为AB 上一点,ED 平分∠ADC,EC 平分∠BCD.(1)求证:DE⊥CE; (2)求证:AE=BE; (3)求证:AD+BC=CD;(4)若AB=12,CD=13,求 S△CDE.实 战 演 练题型二 对角互补遇角平分线1.如图,在四边形ABCD 中,∠ABC+∠D=180°,AC 平分∠BAD,求证:CB=CD.D题型三 内心作垂构对称型全等2.如图,在△ABC 中,AB>AC,AK,BK,CK 分别平分∠BAC,∠ABC,∠ACB,KD⊥BC 于点D.求证:AB-AC=BD-CD.。

角平分线的性质ppt课件

角平分线的性质ppt课件
B
P D●
C●
O
A
34
知识拓展
如图,在△ABC中,
A
AC=BC,∠C=90°,
AD是△ABC的角平分线,
DE⊥AB,垂足为E。
(1)已知CD=4cm,求 AC的长;
E
(2)求证:AB=AC+CD C
D
B
35
36
·D
何作图角度怎么画?

7
试一试
由上面的探究可以得出作已知角的平分线的方法
已知:∠AOB.
求作:∠AOB的平分线.
A
作法:
⑴以O为圆心,任意长为半径作 弧,交OA于M,交OB于N. ⑵分别以M,N为圆心,大于 1 MN 的长为半径作弧,两弧在 2 ∠AOB的内部交于点C.
⑶作射线OC,
射线OC即为所求.
F
E
C
D
B
26
3、如图,△ABC中,∠C=90°,AC=CB, AD为∠BAC的平分线,DE⊥AB于点E。 求证:△DBE的周长等于AB。
C
D
A
EB
27
思考:
如图所示OC是∠AOB 的平分线,P 是OC上任意 一点,问PE=PD?为什么? O
EA PC
D
B
PD,PE没有垂直OA,OB,它们不是角 平分线上任一点这个角两边的距离, 所以不一定相等.
M C


0
温馨提示: 作角平分线是最基本的
尺规作图,大家一定要掌握噢! 8
探究2---做一做
• 将∠ AOB对折,再折出一个直角三角形(使 第一条折痕为斜边),然后展开,观察两次折 叠形成的三条折痕,你能得到什么结论? A
A

《全等三角形》ppt课件

《全等三角形》ppt课件

《全等三角形》ppt课件•全等三角形基本概念与性质•判定全等三角形方法探讨•辅助线在证明全等过程中作用•相似三角形与全等三角形关系探讨目录•生活中全等三角形应用举例•总结回顾与拓展延伸全等三角形基本概念与性质全等三角形定义及判定方法定义SSS(边边边)SAS(边角边)HL(斜边、直角边)ASA(角边角)AAS(角角边)对应边相等对应角相等对应关系确定030201对应边、对应角关系全等三角形性质总结判定全等三角形方法探讨SSS判定法定义应用举例注意事项应用举例SAS判定法定义在证明两个三角形全等时,若已知两边及夹角相等,则可直接应用SAS判定法。

注意事项ASA判定法定义AAS判定法定义比较分析案例分析01020304ASA和AAS判定法比较与案例分析辅助线在证明全等过程中作用构造辅助线策略与技巧分享观察图形特征在证明全等三角形时,首先要仔细观察图形,分析已知条件和目标结论,从而确定需要构造的辅助线类型。

利用基本图形熟悉并掌握一些基本图形(如角平分线、中线、高线等)的性质,可以帮助我们更快地构造出合适的辅助线。

构造平行线或垂直线根据题目条件,有时需要构造平行线或垂直线来利用相关性质进行证明。

典型辅助线构造方法剖析角平分线法01中线法02高线法03复杂图形中辅助线应用实例在复杂图形中,有时需要综合运用多种辅助线构造方法才能解决问题。

例如,可以先构造角平分线,再利用中线或高线的性质进行证明。

在一些特殊情况下,可能需要构造多条辅助线才能找到解决问题的突破口。

这时需要仔细分析图形特点,灵活运用所学知识进行构造和证明。

通过学习和掌握典型辅助线的构造方法和应用实例,可以提高学生的几何思维能力和解决问题的能力,为后续的数学学习打下坚实的基础。

相似三角形与全等三角形关系探讨性质面积比等于相似比的平方。

定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。

周长比等于相似比;010203040506相似三角形定义及性质回顾相似三角形判定方法简介预备定理判定定理1判定定理2判定定理3相似三角形与全等三角形联系和区别联系区别全等三角形的性质在相似三角形中同全等三角形的性质更为严格和具体,而相似三角形的性质相对较为宽松和生活中全等三角形应用举例建筑设计中全等三角形应用稳定性美学效果美术创作中全等三角形构图技巧平衡感动态感其他领域(如工程、测量)中全等三角形应用工程测量机械设计地图制作总结回顾与拓展延伸全等三角形的判定方法熟练掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。

初中数学《角平分线》课件-完美版【北师大版】2

初中数学《角平分线》课件-完美版【北师大版】2
解:如图,过点 O 作 OE⊥AB 于 E,OF⊥AC 于 F, 连接 OA. ∵点 O 是∠ABC, ∠ACB 的平分线的交点, ∴OE=OD,OF=OD,即 OE=OF=OD=3.
∴S△ABC=S△ABO+S△BCO+S△ACO = AB·OE+ BC·OD+ AC·OF = ×3×(AB+BC+AC) = ×3×20 =30.
14. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC, DE⊥AB 于点 E,点 F 在 AC 上,且 BD=DF. (1)求证:CF=EB; (2)请你判断 AE、AF 与 BE 之间的数量关
系,并说明理由.
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
三级拓展延伸练
13. 如图所示,若 AB∥CD,AP,CP 分别平分 ∠BAC 和∠ACD,PE⊥AC 于点 E,且 PE=3 cm, 求 AB 与 CD 之间的距离.
(2)请你判断 AE、AF 与 BE 之间的数量关
系,并说明理由.
(2)AF+BE=AE.理由如下: ∵在Rt△ACD和Rt△AED中,
∴Rt△ACD≌Rt△AED(HL). ∴AC=AE. ∴AF+FC=AE,即AF+BE=AE.
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)

角平分线的性质定理教学课件


逆定理推导过程
3. 连接AD。由于DE=DF(已 知),AD=AD(公共边),且 ∠AED=∠AFD=90°。
4. 根据HL全等条件, △AED≌△AFD,所以 ∠EAD=∠FAD。
5. 因此,AD是∠BAC的平分线 ,即点D在∠BAC的平分线上 。
02
典型例题解析与思路拓展
已知条件求解问题类型
留下悬念,激发下节课兴趣
我们已经学习了角平分线的性质 定理,那么它的逆定理是否成立
呢?
如果角平分线的性质定理的逆定 理成立,那么它在几何问题中又
有何应用呢?
在下节课中,我们将继续探索角 平分线的奥秘,敬请期待!
THANK YOU
感谢聆听
已知角平分线和一个 角,求另一个角的大 小
已知角平分线和两边, 判断三角形的形状
已知角平分线和一边, 求另一边的长度
构造辅助线进行证明方法
通过角平分线构造等腰三角形,利用等腰三角形的 性质进行证明
通过角平分线构造平行线,利用平行线的性质进行 证明
通过角平分线构造相似三角形,利用相似三角形的 性质进行证明
教师总结
教师对全班探究活动进行总结 ,强调角平分线性质定理的重 要性和应用广泛性,鼓励学生 继续深入探究。
04
练习题精选与答案解析
基础练习题
题目1
已知△ABC中,AD是∠BAC的平 分线,交BC于点D,若AB =
8cm,AC = 6cm,则S△ABD: S△ACD = _______.
题目2
在△ABC中,AD平分∠BAC, DE⊥AB于点E,DF⊥AC于点F, 若S△ABC = 18cm²,AB = 6cm, AC = 4cm,则DE = _______.
若射线AD是∠BAC的平分线,则 点D到∠BAC的两边AB和AC的距 离相等。

2022秋八年级数学上册 第1章 全等三角形1.4用尺规作图作角平分线、垂线课件(新版)苏科版

第1章
全等三角形
1.4 用尺规作图作角平分线、垂线
习题链接
温馨提示:点击 进入讲评
1B 2B 3B 4C
5 6B 7C 8
答案呈现
9B 10 D 11 12
习题链接
温馨提示:,已知∠ABC,用尺规作它的平分线. 如图②,步骤如下, 第一步:以B为圆心,以a为半径画弧,分别交射线BA、BC 于点D、E; 第二步:分别以D、E为圆心,以b为半径画弧,两弧在 ∠ABC内部交于点P; 第三步:画射线BP.射线BP即为所求.
下列正确的是( B ) A.a、b均无限制 B.a>0,b>DE的长 C.a有最小限制,b无限制 D.a≥0,b<DE的长
2 如图,用尺规作图作已知角∠AOB的平分线OC,其根据 是构造两个三角形全等,它所用到的识别方法是( B ) A.SAS B.SSS C.ASA D.AAS
3 如图,在△ABC中,AB=AC.在AB、AC上分别截取 AP、AQ,使AP=AQ.再分别以点P、Q为圆心,以 大于PQ的长为半径作弧,两弧在∠BAC内交于点R, 作 射 线 AR, 交 BC于点 D.若 BC=6 ,则 BD的长为
试回答下列问题: (1)在作图①中OC为什么是直线AB的垂线?
解:连接CH,CM,易知OH=OM, CH=CM,又∵CO是公共边, ∴△CHO≌△CMO, ∴∠AOC=∠BOC=90°,∴OC⊥AB. 即OC是直线AB的垂线.
(2)在作图②中,求证:直线m⊥AB.
证明:连接CE,CF,DE,DF. 由作图过程可得CE=CF,DE=DF, 又∵CD是公共边, ∴△CDE≌△CDF, ∴∠ECD=∠FCD,即直线m平分∠ECF, 易得△COE≌△COF, ∴∠EOC=∠FOC=90°,∴直线m⊥AB.

《角平分线》PPT课件2


∠PDO= ∠PEO3)验证猜想:
OP=OP (公共边) ∴ △PDO ≌ △PEO(AAS)
∴PD=PE(全等三角形的对应边相等
活动 5
角平分线上 的点到角两 边的距离相
等。
A E
4.实践与应用
P
O
FB
判断正误,并说明理由:
图1
A
(1)如图1,P在射线OC上,PE⊥OA,
A
E
F
B
D
C
十.小结与评价
这节课我们学到了什么? 共同归纳本节课所学主要知识:
(1)用尺规作角的平分线. (2)角平分线的性质定理: 角平分线上的点到这个角的两边距离相等. (3)角平分线的判定定理:
到角的两边距离相等的点在角的平分线上.
生活中有很多数学问题:小明家 居住在一栋居民楼的一楼,刚好位 于一条自来水管和天然气管道所成 角的平分线上的P点,要从P点建两 条管道,分别与自来水管道和天然 气管道相连. 问题1:怎样修建管道最短? 问题2:新修的两条管道长度有什么 关系,画来看看.
五.角平分线的判定定理
判定定理 :在角的内部,到角的两边距离相等的点, 在这个角的平分线上.
用符号语言表示为: A
∵ PD ⊥OA ,PE ⊥OB, PD=PE, D
∴ 点P在∠AOB的平分线上 . O
C
1
P
2
EB
六.试一试
已知:如图,△ABC中,AB=AC,AD是
∠BAC的平分线,DE⊥AB,DF⊥AC,垂
活 探动究角5平分线的性质
已知:如图,OC平分∠AOB,点P在OC上,
PD⊥OA于点D,PE⊥OB于点E
A 求证: PD=PE
D
证明:∵OC平分∠ AOB (已知)

华师大版八年级数学上册第13章第5节《角平分线》优质课件


一个货物中转站,要求它到三条公路的距
离相等,则可供选择的地址有:( )
A.一处
B.两处
C.三处
D.四处
分析:由于没有限制在 何处选址,故要求的地 址共有四处。
P2
P1 P3
l3
l1
P4
l2
3、如图,O是三条角平分线的交点,
OD⊥BC于D,OD=3, △ABC的
周长为15,求S△ABC
A
N
M
O
B
C
GD
下课了!
小结
这节课我们学到了什么?
①掌握了角平分线的性质定理及其 逆定理. ②利用角平分线性质定理证明两条 线段相等.
∴BD = DC
(
角的平分线上的点到角的两边 的距离相等。
)
B
A
D
C
随堂练习
如图,在Rt△ABC 中,BD是角平分线 ,
DE⊥AB,垂足为E,DE与DC 相等吗?
为什么? 答: DE=DC。
∵ BD是∠ABC的平分线
B
且DE⊥BA, DC⊥BC,
∴ DE=DC。
EA D C
思考
做完本题后,你对角平分线,又增加了什么认
识?
角平分线的性质,为我们证明两条线段 相等 又提供了新的方法与途径。
角平分线上的点 逆命题 角的内部到角两边的距
到角两边的距离
离相等的点在角的平分
相等。
线上.
已知:如图,PD⊥OA,PE⊥OB, 点D、E为垂足,PD=PE.
题设∵PD=PE
PD⊥OA,
PE⊥OB
求证:点P在∠AOB的平分线上.结论 ∴ OC平分 ∠AOB
∴ △PDO ≌ △PEO(A.A.S.)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


比例尺1:20000
如何作 一个角 的平分 线?
下列两图中,能表示直线l1上一点P到直线l2的距 图1 离的是( )
l1 P
P
l1
A l2
B
l2
图1
图2
下列两图中,能表示角的平分线上的一点P到角 图1 的边上的距离的是( )
N
M
P A
P A
问题探究
已知:如图,OC是的∠AOB的平分线,点P在OC 上,PD⊥OA,PE⊥OB,垂足分别是D,E。 求证:PD=PE 证明:∵ PD⊥OA,PE⊥OB(已知) ∴∠PDO=∠PEO=90°(垂直的定义) 在△PDO和△PEO中 ∠ PDO= ∠ PEO ∠ AOC= ∠ BOC OP=OP ∴ △ PDO≌ △ PEO(AAS)

BD = CD ,( 在角的平分线上的点到这 )
个角的两边的距离相等。
A B C
(×)
D
不必再证全等
∵ AD平分∠BAC, DC⊥AC,DB⊥AB (已知)

DB = DC ,( 角的平分线上的点到角的两 )
边的距离相等。
B

A
D
C
例 △ABC中, ∠C=900,AD平分∠ CAB,且 BC=8,BD=5,求点D到AB的距离是多少?
①要证什么 ②已有什么 ③还缺什么 ④创造条件
①如图,已知△ABC中,AE为角平分线,D 为AE上一点,且∠BDE=∠CDE,求证:AB=AC ②若把①中的“AE为角平分线”改为“AE为 高线”,其它条件不变,结论还成立吗?如 果结论成立,请予以说明。
1
A
D
问题引入
如图,河南区一个工厂,在公路西侧,到 公路的距离与到河岸的距离相等,并且与河上 公路桥较近桥头的距离为300米。在图上标出工 厂的位置,并说明理由。
O
A
D
P
C
E
B
∴ PD=PE(全等三角形的对应边相等)
问题探究
角平分线性质
定理1 角的平分线上的点到角 的两边的距离相等。

强化巩固
∵ 如图,AD平分∠BAC(已知)

BD = CD ,( 在角的平分线上的点到这 )
个角的两边的距离相等。
(×)
A
B D C
∵ 如图, DC⊥AC,DB⊥AB (已知)
知识点 1、全等三角形的定义:
能够完全重合的两个三角形叫做全等三角形 2、全等三角形的性质:
全等三角形的对应边相等,对应角相等。 3、三角形全等的条件: SSS SAS ASA AAS
4、应用:
利用全等三角形性质证明两条线段或两个角相等。
例题一:
已知:如图∠B=∠DEF,BC=EF,补充条件求证:ΔABC≌ ΔDEF A D
(点D到AB的距离是3)
C
D
A
E
B
例.如图,在△ABC中,∠C=90°,AC=BC, AD是∠BAC的平分线,DE⊥AB于E。求证: △DBE的周长等于AB的长。
课堂练习
1 已知:如图, ∠ C= ∠ D=90° , BC=BD 。 求证:(1)∠BAC= ∠BAD (2) AC=AD A
D B
例3已知:如图,P是BD上的任意一点
AB=CB,AD=CD.
A
求证: PA=PC
①要证明PA=PC可将其 放在ΔAPB和ΔCPB 或ΔAPD和ΔCPD考虑
D
=
P B
_
分 析:
C
②已有两条边对应相等 (其中一条是公共边) ③还缺一组夹角对 应相等 若能使∠ABP=∠CBP 或∠ADP=∠CDP 即可。
C
2 如图,DE⊥AB,DF⊥BC,垂足 分别是E,F, DE =DF, ∠EDB= 60°,则 ∠EBF= 60 度,
A在△ABC中,∠C=90°,DE⊥AB, ∠1=∠2,且AC=6cm,那么AE+DE= 6cm 。
如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分 线交BC于D,BC=15,且CD:DB=1:2,则点D到AB的 距离为_________。
=
_
创造条件
例3已知:P是BD上的任意一点AB=CB,AD=CD. 求证PA=PC
证明:在△ABD和△CBD中 AB=CB
A
AD=CD
BD=BD ∴ △ABD≌△CBD(SSS)
D
=
P B
_
∴∠ABD=∠CBD
=
C
_ 在△ABP和△CBP中
AB=BC
∠ABP=∠CBP BP=BP ∴ △ABP ≌ △CBP(SAS) ∴PA=PC
E C F (1)若要以“SAS”为依据,还缺条件AB=DE _____; (2) 若要以“ASA”为依据,还缺条件____; ∠ACB= ∠DFE (3) 若要以“AAS”为依据,还缺条件____ ∠A= ∠D _ AB=DE (4)若要以“SSS” 为依据,还缺条件___ AC=DF
B
证明题的分析思路:
相关文档
最新文档