复变函数5-1
复数与复变函数

6. 乘方与开方 乘方 z r (cos i sin )
z r (cos 2 i sin 2 )
2 2
z r (cos n i sin n )
n n
开方为乘方的逆运算
n 1 n
设wn = z , 令w =r(cosy+isiny)
2kπ 2kπ z r cos( ) i sin( ) n n
ppΒιβλιοθήκη 5 i cosp
5
显然 r z 1,
p p 3p sin cos - cos , 5 2 5 10
3p p p cos sin - sin , 10 5 2 5
3p 3p 故 z cos 10 i sin 10
p
e
3 pi 10
8
9p 9p w1 2 cos i sin , 16 16
8
17p 17p w2 2 cos i sin , 16 16
8
25p 25p w3 2 cos i sin . 16 16
8
w1
w2
y
w0
这四个根是内接于中 心在原点半径为 8 2 的 圆的正方形的四个顶点.
5 相等的概念 1 z乘方公式
w - 1 cos i sin - 1 因为 z w 1 cos i sin 1
2 sin - sin i cos 2 2 2 i tan , 2 2 cos cos i sin 2 2 2
x > 0,
x = 0, y ≠ 0,
argz =
y arctan π x < 0, y ≥ 0, x y arctan - π x < 0, y < 0, x π y π (其中 - arctan ) 2 x 2
复变函数第5讲

例题1
解方程 sin z ish1 .
解: sin z sin x iy sin x cos iy cos x sin iy
sin xchy i cos xshy ish1
sin xchy 0 cos xshy sh1
k
1 2
双曲正弦和双曲余弦函数的性质
1)shz、chz都是以 2 i为周期的函数 .
2)chz 偶函数 , shz 奇函数 .
3) (chz)' shz , ( shz )' chz, shz和chz在 整 个 复 平 面 内 处 处 析 解.
4) 由定义shiy i sin y, chiy cos y.
自然地,定义复平面上的指数函数为
exp( z ) e x (cos y i sin y )
e z : e x (cos y i sin y )
2
注 (1)e z 仅仅是个符号 , 它的定义为 e x (cos y i sin y ) , 没有幂的意义.
( 2)特别当z的实部x 0时,就得到 Euler 公式 : e iy cos y i sin y .
带形域映射成角形域常用指数函数 .
4
(1.2) 指数函数的性质
(1) f ( z ) e z 在复平面上处处解析, 且(e z ) e z .
(2)加法定理 : e xpz1 e xpz2 e xp(z1 z2 ).
(3) e 是以2 i为周期的周期函数 .
z
这个性质是实变指数函数所没有的!
8
3) sinz是奇函数 , cos z是偶函数 .
4) sinz的零点 , 即方程sinz 0的根为 z k ,
Ch5-复变函数

Ch5-复变函数186-192第五章复变函数复变函数和实变函数有很深的联系,很多复变函数的定理和运算规则都是对实变函数理论的推⼴,明⽩了这⼀点对于学习复变函数有很⼤的帮助。
但是复变函数有很⼤的帮助。
但是复变函数⼜有它⾃⾝的特点,某些运算规则来源于对实变函数运算规则的推⼴,但是⼜有明显不同于实变函数的特点。
本章讲述的是MA TLAB在复变函数中的运⽤。
正是因为复变函数和实变函数有如此深的联系,所以⼤多数处理复变函数的MA TLAB命令和处理实变函数的命令是同⼀个命令。
5-1 复数5-1-1 复数的表⽰1.复数的表⽰我们知道在数学中复数z有实部和虚部组成,表⽰为:z=x+iy,x和y为实数,i为虚数单位。
在MATLAB中也是采⽤这种表⽰⽅式来表⽰复数,只不过除了⽤i表⽰复数单位外,还常常使⽤j表⽰复数单位。
所以我们以后在定义变量时最好不要使⽤i和j,以免让MATLAB系统发⽣混淆,出现错误。
我们可以使⽤直接输⼊的⽅法定义⼀个复数,例如:>> z=2+3iz =2.0000 +3.0000i也可以使⽤命令函数complex()来定义⼀个复数、复数数组和复数矩阵。
范例5-1使⽤命令函数complex()来定义⼀个复数、复数数组和复数矩阵。
程序设计:>> clear>> z1=complex(2,3)z1 =2.0000 +3.0000i>> a=(1:4);b=(5:8);>> z2=complex(a,b)z2 =1.0000 + 5.0000i2.0000 + 6.0000i3.0000 + 7.0000i4.0000 + 8.0000i>> A=[1,2,3;4,5,6];B=[7,8,9'0,1,2];>> A=[1,2,3;4,5,6];B=[7,8,9;0,1,2];>> z3=complex(A,B)z3 =1.0000 + 7.0000i2.0000 + 8.0000i3.0000 + 9.0000i4.00005.0000 + 1.0000i6.0000 + 2.0000i2.有关复数的⼏个命令real(X): 显⽰复数X的实部,这⾥X还可以使复数数组和fushu矩阵。
复变函数1到5章测试题及答案

复变函数1到5章测试题及答案(总20页)--本页仅作预览文档封面,使用时请删除本页--- 2 -第一章 复数与复变函数(答案)一、 选择题1.当iiz -+=11时,5075100z z z ++的值等于(B ) (A )i (B )i - (C )1 (D )1-2.设复数z 满足arg(2)3z π+=,5arg(2)6z π-=,那么=z (A )(A )i 31+- (B )i +-3 (C )i 2321+-(D )i 2123+-3.复数)2(tan πθπθ<<-=i z 的三角表示式是(D )(A ))]2sin()2[cos(sec θπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i(C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i4.若z 为非零复数,则22z z -与z z 2的关系是(C ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是(B )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线- 3 -6.一个向量顺时针旋转3π,对应的复数为i 31-,则原向量对应的复数是(A )(A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得22z z =成立的复数z 是(D )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数8.设z 为复数,则方程i z z +=+2的解是(B ) (A )i +-43 (B )i +43 (C )i -43 (D )i --439.满足不等式2≤+-iz iz 的所有点z 构成的集合是(D ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域10.方程232=-+i z 所代表的曲线是(C )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周(C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为(B ) (A )221=+-z z (B )433=--+z z- 4 -(C ))1(11<=--a azaz (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则12()f z z -=(C ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.000Im()Im()limz z z z z z →--(D )(A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是(C ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续15.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为(A )(A )3- (B )2- (C )1- (D )1二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg 8arctan -π 3.设43)arg(,5π=-=i z z ,则=z i 21+- 4.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为 ie θ16- 5 -5.以方程i z 1576-=的根的对应点为顶点的多边形的面积为6.不等式522<++-z z522=++-z (或1)23()25(2222=+y x ) 的内部 7.方程1)1(212=----zi iz 所表示曲线的直角坐标方程为 122=+y x8.方程i z i z +-=-+221所表示的曲线是连接点 12i -+ 和 2i - 的线段的垂直平分线9.对于映射zi =ω,圆周1)1(22=-+y x 的像曲线为()2211u v -+= 10.=+++→)21(lim 421z z iz 12i -+三、若复数z 满足03)21()21(=+++-+z i z i z z ,试求2+z 的取值范围. (]25,25[+-(或25225+≤+≤-z )) 四、设0≥a ,在复数集C 中解方程a z z =+22. (当10≤≤a 时解为i a )11(-±±或)11(-+±a 当+∞≤≤a 1时解为)11(-+±a ) 五、设复数i z ±≠,试证21zz+是实数的充要条件为1=z 或Im()0z =. 六、对于映射)1(21zz +=ω,求出圆周4=z 的像.- 6 -(像的参数方程为π≤θ≤⎪⎩⎪⎨⎧θ=θ=20sin 215cos 217v u .表示w 平面上的椭圆1)215()217(2222=+v u ) 七、设iy x z +=,试讨论下列函数的连续性:1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f2.⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f .(1.)(z f 在复平面除去原点外连续,在原点处不连续; 2.)(z f 在复平面处处连续)第二章 解析函数(答案)一、选择题:1.函数23)(z z f =在点0=z 处是( B )(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导 2.函数)(z f 在点z 可导是)(z f 在点z 解析的( B )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件 3.下列命题中,正确的是( D )(A )设y x ,为实数,则1)cos(≤+iy x- 7 -(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析 (D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析 4.下列函数中,为解析函数的是( C )(A )xyi y x 222-- (B )xyi x +2 (C ))2()1(222x x y i y x +-+- (D )33iy x + 5.函数)Im()(2z z z f =在0z =处的导数( A )(A )等于0 (B )等于1 (C )等于1- (D )不存在 6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常 数=a ( C )(A )0 (B )1 (C )2 (D )2- 7.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( C )(A )0 (B )1 (C )1- (D )任意常数8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是( C )(A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数 (B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数 (C )若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数- 8 -(D )若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数 9.设22)(iy x z f +=,则=+')1(i f ( A )(A )2 (B )i 2 (C )i +1 (D )i 22+ 10.i i 的主值为( D )(A )0 (B )1 (C )2πe (D )2e π-11.z e 在复平面上( A )(A )无可导点 (B )有可导点,但不解析 (C )有可导点,且在可导点集上解析 (D )处处解析 12.设z z f sin )(=,则下列命题中,不正确的是( C )(A ))(z f 在复平面上处处解析 (B ))(z f 以π2为周期(C )2)(iziz e e z f --= (D ))(z f 是无界的13.设α为任意实数,则α1( D )(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于114.下列数中,为实数的是( B )(A )3)1(i - (B )i cos (C )i ln (D )i e 23π-15.设α是复数,则( C )(A )αz 在复平面上处处解析 (B )αz 的模为αz- 9 -(C )αz 一般是多值函数 (D )αz 的辐角为z 的辐角的α倍 二、填空题1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(limi +1 2.设iv u z f +=)(在区域D 内是解析的,如果v u +是实常数,那么)(z f 在D 内是 常数 3.导函数x v i x u z f ∂∂+∂∂=')(在区域D 内解析的充要条件为 xv x u ∂∂∂∂,可微且满足222222,xvy x u y x v x u ∂∂-=∂∂∂∂∂∂=∂∂ 4.设2233)(y ix y x z f ++=,则=+-')2323(i f i 827427- 5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f ic xyi y x ++-222或ic z +2c 为实常数6.函数)Re()Im()(z z z z f -=仅在点=z i 处可导 7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 3,2,1,0),424sin 424(cos 28=π+π+π+πk k i k8.复数i i 的模为),2,1,0(2 ±±=π-k e k9.=-)}43Im{ln(i 34arctan -- 10 -10.方程01=--z e 的全部解为),2,1,0(2 ±±=πk i k三、试证下列函数在z 平面上解析,并分别求出其导数 1.;sinh sin cosh cos )(y x i y x z f -= (;sin )(z z f -=')2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f x x ++-=(.)1()(z e z z f +=') 四、已知22y x v u -=-,试确定解析函数iv u z f +=)(. (c i z i z f )1(21)(2++-=.c 为任意实常数)第三章 复变函数的积分(答案)一、选择题:1.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2( D )(A )i 6561- (B )i 6561+- (C )i 6561-- (D )i 6561+2.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc⎰+-2)1)(1(为( D)(A )2i π (B )2iπ- (C )0 (D )(A)(B)(C)都有可能 3.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz z zc c c 212sin ( B ) (A ) i π2- (B )0 (C )i π2 (D )i π44.设c 为正向圆周2=z ,则=-⎰dz z zc2)1(cos ( C)(A )1sin - (B )1sin (C )1sin 2i π- (D )1sin 2i π5.设c 为正向圆周21=z ,则=--⎰dz z z z c23)1(21cos( B) (A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-6.设ξξξξd ze zf ⎰=-=4)(,其中4≠z ,则=')i f π(( A ) (A )i π2- (B )1- (C )i π2 (D )1 7.设)(z f 在单连通域B 内处处解析且不为零,c 为B 内任何一条简单闭曲线,则积分dz z f z f z f z f c ⎰+'+'')()()(2)( ( C )(A )于i π2 (B )等于i π2- (C )等于0 (D )不能确定 8.设c 是从0到i 21π+的直线段,则积分=⎰cz dz ze ( A )(A )21eπ-(B) 21eπ-- (C)i e21π+(D) i e21π-9.设c 为正向圆周0222=-+x y x ,则=-⎰dz z z c1)4sin(2π( A )(A )i π22(B )i π2 (C )0 (D )i π22-10.设c 为正向圆周i a i z ≠=-,1,则=-⎰cdz i a zz 2)(cos ( C) (A )ie π2 (B )eiπ2 (C )0 (D )i i cos 11.设)(z f 在区域D 内解析,c 为D 内任一条正向简单闭曲线,它的内部全属于D .如果)(z f 在c 上的值为2,那么对c 内任一点0z ,)(0z f ( C )(A )等于0 (B )等于1 (C )等于2 (D )不能确定12.下列命题中,不正确的是( D ) (A )积分⎰=--ra z dz a z 1的值与半径)0(>r r 的大小无关 (B )2)(22≤+⎰cdz iy x ,其中c 为连接i -到i 的线段(C )若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析 (D )若)(z f 在10<<z 内解析,且沿任何圆周)10(:<<=r r z c 的积分等于零,则)(z f 在0=z 处解析13.设c 为任意实常数,那么由调和函数22y x u -=确定的解析函数iv u z f +=)(是 ( D)(A)c iz +2 (B ) ic iz +2 (C )c z +2 (D )ic z +2 14.下列命题中,正确的是(C)(A )设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v =(B )解析函数的实部是虚部的共轭调和函数 (C )若iv u z f +=)(在区域D 内解析,则xu∂∂为D 内的调和函数 (D )以调和函数为实部与虚部的函数是解析函数15.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( B )(A )),(),(y x iu y x v + (B )),(),(y x iu y x v - (C )),(),(y x iv y x u - (D )xv i x u ∂∂-∂∂二、填空题1.设c 为沿原点0=z 到点i z +=1的直线段,则=⎰cdz z 2 22.设c 为正向圆周14=-z ,则=-+-⎰c dz z z z 22)4(23 i π103.设⎰=-=2)2sin()(ξξξξπd z z f ,其中2≠z ,则=')3(f 0 4.设c 为正向圆周3=z ,则=+⎰cdz zzz i π6 5.设c 为负向圆周4=z ,则=-⎰c z dz i z e 5)(π 12iπ 6.解析函数在圆心处的值等于它在圆周上的 平均值7.设)(z f 在单连通域B 内连续,且对于B 内任何一条简单闭曲线c 都有0)(=⎰cdz z f ,那么)(z f 在B 内 解析8.调和函数xy y x =),(ϕ的共轭调和函数为 C x y +-)(21229.若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a -3 10.设),(y x u 的共轭调和函数为),(y x v ,那么),(y x v 的共轭调和函数为),(y x u -三、计算积分 1.⎰=+-R z dz z z z)2)(1(62,其中1,0≠>R R 且2≠R ; (当10<<R 时,0; 当21<<R 时,i π8; 当+∞<<R 2时,0) 2.⎰=++22422z z z dz.(0) 四、求积分⎰=1z zdz z e ,从而证明πθθπθ=⎰0cos )cos(sin d e .(i π2)五、若)(22y x u u +=,试求解析函数iv u z f +=)(. (321ln 2)(ic c z c z f ++=(321,,c c c 为任意实常数))第四章 级 数(答案)一、选择题:1.设),2,1(4)1( =++-=n n nia n n ,则n n a ∞→lim ( C )(A )等于0 (B )等于1 (C )等于i (D )不存在 2.下列级数中,条件收敛的级数为( C )(A )∑∞=+1)231(n n i (B )∑∞=+1!)43(n nn i (C ) ∑∞=1n n n i (D )∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为(D )(B ) ∑∞=+1)1(1n n i n (B )∑∞=+-1]2)1([n n n in(C)∑∞=2ln n n n i (D )∑∞=-12)1(n nnn i 4.若幂级数∑∞=0n n n z c 在i z 21+=处收敛,那么该级数在2=z 处的敛散性为( A )(A )绝对收敛 (B )条件收敛 (C )发散 (D )不能确定 5.设幂级数∑∑∞=-∞=01,n n n n nn znc z c 和∑∞=++011n n n z n c 的收敛半径分别为321,,R R R ,则321,,R R R 之间的关系是( D )(A )321R R R << (B )321R R R >> (C )321R R R <= (D )321R R R == 6.设10<<q ,则幂级数∑∞=02n n n z q 的收敛半径=R ( D )(A )q (B )q1(C )0 (D )∞+ 7.幂级数∑∞=1)2(2sinn n z n n π的收敛半径=R ( B ) (A ) 1 (B )2 (C )2 (D )∞+8.幂级数∑∞=++-011)1(n n n z n 在1<z 内的和函数为( A )(A ))1ln(z + (B ))1ln(z - (D )z +11ln(D) z-11ln 9.设函数z e z cos 的泰勒展开式为∑∞=0n nn z c ,那么幂级数∑∞=0n n n z c 的收敛半径=R ( C )(A )∞+ (B )1 (C )2π(D )π 10.级数+++++22111z z z z的收敛域是( B ) (A )1<z (B )10<<z (C )+∞<<z 1 (D )不存在的 11.函数21z在1-=z 处的泰勒展开式为( D)(A ))11()1()1(11<++-∑∞=-z z n n n n (B ))11()1()1(111<++-∑∞=--z z n n n n(C ))11()1(11<++-∑∞=-z z n n n (D ))11()1(11<++∑∞=-z z n n n12.函数z sin ,在2π=z 处的泰勒展开式为( B )(A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n nn(C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n(D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n nn13.设)(z f 在圆环域201:R z z R H <-<内的洛朗展开式为∑∞-∞=-n n nz z c)(0,c 为H 内绕0z 的任一条正向简单闭曲线,那么=-⎰c dz z z z f 2)()(( B )(A)12-ic π (B )12ic π (C )22ic π (D ))(20z f i 'π14.若⎩⎨⎧--==-+=,2,1,4,2,1,0,)1(3n n c nn n n ,则双边幂级数∑∞-∞=n n n z c 的收敛域为( A ) (A )3141<<z (B )43<<z(C )+∞<<z 41 (D )+∞<<z 3115.设函数)4)(1(1)(++=z z z z f 在以原点为中心的圆环内的洛朗展开式有m 个,那么=m ( C )(A )1 (B )2 (C )3 (D )4 二、填空题1.若幂级数∑∞=+0)(n n n i z c 在i z =处发散,那么该级数在2=z 处的收敛性为 发散2.设幂级数∑∞=0n nn z c 与∑∞=0)][Re(n n n z c 的收敛半径分别为1R 和2R ,那么1R 与2R 之间的关系是 12R R ≥ .3.幂级数∑∞=+012)2(n n n z i 的收敛半径=R22 4.设)(z f 在区域D 内解析,0z 为内的一点,d 为0z 到D 的边界上各点的最短距离,那么当d z z <-0时,∑∞=-=00)()(n n n z z c z f 成立,其中=n c ),2,1,0()(!10)( =n z f n n 或()0,2,1,0()()(21010d r n dz z z z f ir z z n <<=-π⎰=-+ ). 5.函数z arctan 在0=z 处的泰勒展开式为 )1(12)1(012<+-∑∞=+z z n n n n .6.设幂级数∑∞=0n nn z c 的收敛半径为R ,那么幂级数∑∞=-0)12(n n n n z c 的收敛半径为2R. 7.双边幂级数∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 的收敛域为 211<-<z . 8.函数zze e 1+在+∞<<z 0内洛朗展开式为 nn nn z n z n ∑∑∞=∞=+00!11!1 . 9.设函数z cot 在原点的去心邻域R z <<0内的洛朗展开式为∑∞-∞=n n nz c,那么该洛朗级数收敛域的外半径=R π .10.函数)(1i z z -在+∞<-<i z 1内的洛朗展开式为 ∑∞=+--02)()1(n n nn i z i 三、若函数211z z --在0=z 处的泰勒展开式为∑∞=0n nn z a ,则称{}n a 为菲波那契(Fibonacci)数列,试确定n a 满足的递推关系式,并明确给出n a 的表达式. ()2(,12110≥+===--n a a a a a n n n ,),2,1,0(})251()251{(5111 =--+=++n a n n n ) 四、求幂级数∑∞=12n nz n 的和函数,并计算∑∞=122n n n 之值.(3)1()1()(z z z z f -+=,6)五、将函数)1()2ln(--z z z 在110<-<z 内展开成洛朗级数.(n n nk k z k n z z z z z z )1()1)1(()2ln(111)1()2ln(001-+--=-⋅⋅-=--∑∑∞==+)第五章 留 数(答案)一、选择题: 1.函数32cot -πz z在2=-i z 内的奇点个数为 ( D ) (A )1 (B )2 (C )3 (D )4 2.设函数)(z f 与)(z g 分别以a z =为本性奇点与m 级极点,则a z =为函数)()(z g z f的( B )(A )可去奇点 (B )本性奇点 (C )m 级极点 (D )小于m 级的极点 3.设0=z 为函数zz ex sin 142-的m 级极点,那么=m ( C ) (A )5 (B )4 (C)3 (D )2 4.1=z 是函数11sin)1(--z z 的( D ) (A)可去奇点 (B )一级极点 (C ) 一级零点 (D )本性奇点5.∞=z 是函数2323z z z ++的( B ) (A)可去奇点 (B )一级极点(C ) 二级极点 (D )本性奇点6.设∑∞==0)(n n n z a z f 在R z <内解析,k 为正整数,那么=]0,)([Re k zz f s ( C ) (A )k a (B )k a k ! (C )1-k a (D )1)!1(--k a k7.设a z =为解析函数)(z f 的m 级零点,那么='],)()([Re a z f z f s ( A ) (A)m (B )m - (C ) 1-m (D ))1(--m8.在下列函数中,0]0),([Re =z f s 的是( D )(A ) 21)(ze zf z -= (B )z z z z f 1sin )(-= (C )z z z z f cos sin )(+= (D) ze zf z 111)(--= 9.下列命题中,正确的是( C )(A ) 设)()()(0z z z z f m ϕ--=,)(z ϕ在0z 点解析,m 为自然数,则0z 为)(z f 的m 级极点.(B ) 如果无穷远点∞是函数)(z f 的可去奇点,那么0]),([Re =∞z f s(C ) 若0=z 为偶函数)(z f 的一个孤立奇点,则0]0),([Re =z f s(D ) 若0)(=⎰cdz z f ,则)(z f 在c 内无奇点10. =∞],2cos [Re 3zi z s ( A ) (A )32- (B )32 (C )i 32 (D )i 32- 11.=-],[Re 12i ez s i z ( B) (A )i +-61 (B )i +-65 (C )i +61 (D )i +65 12.下列命题中,不正确的是( D)(A )若)(0∞≠z 是)(z f 的可去奇点或解析点,则0]),([Re 0=z z f s(B )若)(z P 与)(z Q 在0z 解析,0z 为)(z Q 的一级零点,则)()(],)()([Re 000z Q z P z z Q z P s '= (C )若0z 为)(z f 的m 级极点,m n ≥为自然数,则)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-= (D )如果无穷远点∞为)(z f 的一级极点,则0=z 为)1(zf 的一级极点,并且)1(lim ]),([Re 0zzf z f s z →=∞ 13.设1>n 为正整数,则=-⎰=211z ndz z ( A ) (A)0 (B )i π2 (C )n i π2 (D )i n π214.积分=-⎰=231091z dz z z ( B ) (A )0 (B )i π2 (C )10 (D )5i π 15.积分=⎰=121sin z dz z z ( C ) (A )0 (B )61-(C )3i π- (D )i π- 二、填空题 1.设0=z 为函数33sin z z -的m 级零点,那么=m 9 .2.函数z z f 1cos 1)(=在其孤立奇点),2,1,0(21 ±±=+=k k z k ππ处的留数=]),([Re k z z f s 2)2()1(π+π-k k. 3.设函数}1exp{)(22zz z f +=,则=]0),([Re z f s 0 4.设a z =为函数)(z f 的m 级极点,那么='],)()([Re a z f z f s m - . 5.设212)(zz z f +=,则=∞]),([Re z f s -2 . 6.设5cos 1)(z z z f -=,则=]0),([Re z f s 241- . 7.积分=⎰=113z z dz e z 12i π .8.积分=⎰=1sin 1z dz z i π2 . 三、计算积分⎰=--412)1(sin z z dz z e z z .(i π-316) 四、设a 为)(z f 的孤立奇点,m 为正整数,试证a 为)(z f 的m 级极点的充要条件是b z f a z m az =-→)()(lim ,其中0≠b 为有限数. 五、设a 为)(z f 的孤立奇点,试证:若)(z f 是奇函数,则]),([Re ]),([Re a z f s a z f s -=;若)(z f 是偶函数,则]),([Re ]),([Re a z f s a z f s --=.。
复变函数5章:留数

而 3z + 2 在z=0处解析,且不等于0,所以z=0为二级极点 =0处解析 且不等于0 所以z=0为二级极点 处解析,
z+2
§5.1 孤 立 奇 点
二 孤立奇点的分类
2. 极 点 【例】求下列函数的奇点,如果是极点,指出级数 求下列函数的奇点,如果是极点,
f (z) = ∑cn (z − z0 )n , ( 0 < z − z0 < δ )
∞ n=0
则称孤立奇点 则称孤立奇点z0为f(z)的可去奇点 孤立奇点z 【注】令f(z0)=c0,则f(z)在z0处解析
§5.1 孤 立 奇 点
二 孤立奇点的分类
f (z) =
n=−∞
cn (z − z0 )n , ∑
z→z0
或写作 lim f (z) = ∞.
z→z0
§5.1 孤 立 奇 点
二 孤立奇点的分类
2. 极 点 【例】求下列函数的奇点,如果是极点,指出级数 求下列函数的奇点,如果是极点,
3z + 2 (1) f (z) = 2 , z (z + 2)
1 (2) 3 z − z2 − z + 1
解:(1) z=0, -2为函数f(z)的孤立奇点 为函数f 由于
3z + 2 (1) f (z) = 2 , z (z + 2)
1 (2) 3 z − z2 − z + 1
解:(1) z=0, -2为函数f(z)的孤立奇点 为函数f 同理
1 3z + 2 3z + 2 = 2 z (z + 2) z + 2 z 2
复变函数-5

e
1 Lna n
e
1 (ln n
a i arg a 2 ki )
e
1 ln n
a
e
i
arg a 2 k n
(k 0,1,2n 1)
arg a 2k arg a 2k a (cos i sin ) a n n
n
1 n
——此时为n值的 (3) 当b为无理数或复数时,乘幂ab 是无穷多值的。
例2.3.5
求1 、i 和i 的值。
2
2
i
2 3
解
1
i
e
2Ln1
e
2 (ln 1 2 ki )
e
2 k 2i
cos(2k 2 i sin(2k 2 ), k Z;
i e
iLni
e
i (ln i i 2ki ) 2
e
( 2k ) 2
, k Z;
( 3 ) 连续性: ln z在除去原点与负实轴外 处处连续。
因为 ln z ln | z | i arg z 的实部 ln | z | ln x y
2 2
在实平面R2上除原点外处处连续,虚部 arg z 在实
平面上除原点和负实轴外处处连续。
(4) 解析性: ln z 在除去原点与负实轴外 处处解析,
其中k Z且k 0。
(5) 奇偶性: sin( z) sinz, cos( z) cosz。
双曲正弦与双曲余弦函数的性质 双曲函数具有完全类似于三角函数的性质。
(1) sinh z及 cosh z是单值函数; (2) sinh z及 cosh z在复平面 C上处处解析,且
(sinh z )' cosh z, (cosh z )' sinh z;
第一章复变函数
3)积: 代数式运算
z1 z2 = ( x1 + iy1 )( x2 + iy2 ) = x1 x2 + ix1 y2 + ix2 y1 − y1 y2
三角运算
z1 z2 = ρ1 (cosθ1 + i sin θ1 ) ρ 2 (cosθ 2 + i sin θ 2 ) = ρ 2 ρ1[(cosθ1 cosθ 2 − i sin θ1 sin θ 2 ) + i (cosθ1 sin θ 2 + cosθ 2 sin θ1 )]
Z 0
y
z0
z0
Z 0
E
x
一点而言。 内点的定义, 内点的定义,不只是对于 Z0 一点而言。 外点
Z0
Z0
及其邻域均不属于点集E 及其邻域均不属于点集E,则称 为点集E的外点。 为点集E的外点。
19
(4)境界点与境界线: 境界点与境界线: 境界点
Z点的每个邻域内,既有属于点集E的点,也 点的每个邻域内,既有属于点集E的点, 0 称为该点集E的境界点 的境界点。 有不属于E的点。 有不属于E的点。点 Z 0称为该点集 的境界点。
A′
x
5、复平面与复数球之关系
A
s
17
§1、2 、
复变函数
一、复变函数的定义与定义域: 复变函数的定义与定义域:
1、复变函数定义: 、复变函数定义: 复数平面上存在一个点集上E 对于E的每一点(每一个Z 复数平面上存在一个点集上E,对于E的每一点(每一个Z ),按照一定的规律 按照一定的规律, 与之相对应, 值),按照一定的规律,有一个或多个复数值 ω 与之相对应, ω ω 的函数--复变函数,z --复变函数,z称为 的宗量。定义域为E 则称 为Z的函数--复变函数,z称为 的宗量。定义域为E,记 ω = f (z) 作, ω 1 ω 2 y 定义域及相关的概念: 2、定义域及相关的概念: (1)定义域: )定义域: 函数宗量定义的区域。 函数宗量定义的区域。
复变函数 第5讲
v f ( z ) 流线方程为 y(x,y)=c1
等势线方程为 j(x,y)=c2
12
例1 设一平面流速场的复势为f(z)=az(a>0为实 常数), 试求该场的速度, 流函数和势函数. [ 解 ] 因为 f ( z ) a , 所以场中任一点的速度
v f ( z ) a 0 , 方向指向 x 轴正向.
25
应当指出, 如果已知一个调和函数u, 那末就可 以利用柯西-黎曼方程(3.7.1)求得它的共轭调 和函数v, 从而构成一个解析函数u+iv. 下面举 例说明求法. 这种方法可以称为偏积分法. 例1 证明u(x,y)=y33x2y为调 和函数, 并求其共 轭调和函数v(x,y)和由它们构成的解析函数. [解] 1) 因为 2 2 u u u 2 2 u 6 xy, 2 6 y, 3 y 3x , 2 6 y x x y y 所以
6
从而可知vydx+vxdy是某一个二元函数y(x,y) 的全微分, 即 dy(x,y)vydx+vxdy. 由此得
y y v y , vx x y (2.4.3)
7
因为沿等值线y(x,y)=c1
d y vy . 这就 dy(x,y)vydx+vxdy=0, 所以, d x vx
故
g ( x) 3x d x x c
2 3
27
从而得到一个解析函数 w=y33x2y+i(x33xy2+c) 这个函数可以化为 w=f(z)=i(z3+c)
28
作业 第二章习题
第68页开始 第24题
29
流函数y(x,y)=ay, 所以流线是直线 y=c1; 势函数j(x,y)=ax, 所以等势线是直线族 x=c2. 该场的流动图像如下图所示, 它刻划了流体 以等速度 a 从左向右流动的情况
李忠复变函数
李忠复变函数
【实用版】
目录
1.李忠简介
2.复变函数概念
3.李忠对复变函数的研究
4.李忠复变函数的贡献
5.总结
正文
1.李忠简介
李忠,我国著名的数学家,生于 20 世纪初,在数学领域有着广泛的研究。
他的研究领域主要集中在复变函数、实变函数、微分方程等。
李忠在数学界的贡献被广泛认可,曾获得过多个奖项,其中包括国家自然科学奖。
2.复变函数概念
复变函数是指以复数为自变量和函数值的函数,它的研究可以追溯到19 世纪。
复变函数在数学、物理和工程等领域都有广泛的应用,例如复分析、调和分析等。
3.李忠对复变函数的研究
李忠在复变函数领域的研究主要集中在复变函数的性质、复变函数的积分和级数等方面。
他对复变函数的深入研究,使得他在这个领域取得了举世瞩目的成就。
4.李忠复变函数的贡献
李忠在复变函数领域的贡献主要体现在以下几个方面:
(1)李忠首次提出了“李忠级数”的概念,并且证明了它的收敛性。
这一成果极大地丰富了复变函数的理论体系。
(2)李忠对于复变函数的积分进行了深入的研究,提出了一种新的积分方法,被称为“李忠积分”。
(3)李忠对于复变函数的性质进行了系统的研究,特别是对于复变函数的解析性、全纯性、调和性等基本概念进行了深入的探讨。
5.总结
总的来说,李忠在复变函数领域的研究为我国的数学研究做出了巨大的贡献。
复变函数第五章
这是由于 z 0 为f ( z ) 的孤立奇点而使积分 ∫ f ( z )dz 留下”的值 “留下”
11
定义: 的孤立奇点, 定义 设 z0 为 f (z) 的孤立奇点, f (z) 在 z0 邻域内的洛朗级数中负 称为f 在 留数, 幂次项 (z- z0)–1 的系数 c–1 称为 (z)在 z0 的留数,记作 Res [f (z), z0] 或 Res f (z0)。 。 由留数定义, 由留数定义 Res [f (z), z0]= c–1 (1)
z2 z4 z 2n sin z (1) = 1 − + − L + ( −1) n +L z 3! 5! ( 2n + 1)!
特点:没有负幂次项 特点:
e z 1 +∞ z n +∞ z n −1 1 z z n −1 ( 2) = ∑ = ∑ = + 1+ +L+ +L z z n = 0 n! n = 0 n! z 2! n!
1 把扩充z平面上 平面上∞ 作变换 w = 把扩充 平面上∞的去心邻域 R<|z|<+∞映射成扩充 ∞ z w平面上原点的去心邻域: <| w |< 1 . 平面上原点的去心邻域: 平面上原点的去心邻域 0 R 1
又 f ( z ) = f ( ) = ϕ ( w) .这样 我们可把在去心邻域 这样, 这样 我们可把在去心邻域R<|z|<+∞对f (z)的研 ∞ 的研 w 1 的研究.显然 究变为在 0 <| w |< 1 内对ϕ (w)的研究 显然ϕ (w)在 0 <| w |< 内解 的研究 在 R R 所以w=0是孤立奇点 是孤立奇点. 析, 所以 是孤立奇点 在无穷远点 ∞ lim f ( z ) = lim ϕ ( w ) ⇒ f (z)在无穷远点 z=∞ 的奇点类型