一级倒立摆课程设计--倒立摆PID控制及其Matlab仿真
基于Matlab的一级倒立摆模型的仿真

基于Matlab的一级倒立摆模型的仿真一.倒立摆模型的研究意义倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想的实验平台。
对倒立摆系统的研究能有效的反应控制中的典型问题:如非线性问题、鲁莽性问题、镇定问题等。
通过对倒立摆的控制,用来检测新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
二.倒立摆模型的数学建模质量为m的小球固结于长度为L的细杆上(细杆质量不计),细杆和质量为M的小车铰链相接分析过程如下:如图所示,设细杆摆沿顺时针方向转东伟正方向,水平向右为水平方向上的正方向。
当细杆白顺时针想要运动时水平方向施加的里应该是水平相应。
对方程组进行拉普拉斯变化,得到摆杆角度和小车位移的传递函数:摆杆角度和小车加速度之间的传递函数:摆杆角度和小车加速度之间的传递函数:位移X对外力F的传递函数:三.在Matlab中输入得到的反馈矩阵:采用MATLAB/Simulink构造单级倒立摆状态反馈控制系统的仿真模型,如下图所示。
首先,在M A T L A B的Command Window中输入各个矩阵的值,并且在模型中的积分器中设置非零初值(这里我们设置为[0 0 0.1 0]。
然后运行仿真程序。
得到的仿真曲线从仿真结果可以看出,可以将倒立摆的杆子与竖直方向的偏角控制在θ=0(即小球和杆子被控制保持在竖直倒立状态),另外说明下黄线代表位移,紫线代表角度。
四.总结由实验中可知,倒立摆系统是一个非线性的较复杂的不稳定系统,故要满足故要满足稳定性要求,就得对系统进行线性化近似和稳定控制。
当然我们调节出来的只是一个理想模型,在实际中会更加复杂,稳定性也会更难获得。
在这次实验中掌握了倒立摆仿真的整个过程,熟悉了MATLAB仿真软件Simulingk的使用,也对系统有了更好的理解。
一级倒立摆系统仿真及分析

一级倒立摆系统仿真及分析1.摘要本次课程设计,我们小组选择一级倒立摆系统作为物理模型,首先通过物理分析建立数学模型,得到系统的传递函数,通过对传递函数的极点,根轨迹,单位阶跃响应来分析系统稳定性。
建立状态空间模型,利用matlab进行能控能观性分析,输入阶跃信号,分析系统输出响应。
通过设定初始条件,查看系统稳定性,利用simulink绘制系统状态图。
再对系统进行极点配置,进行状态反馈,使得系统在初始状态下处于稳定状态,并绘制系统状态图。
2.课程设计目的倒立摆系统是一个经典的快速、多变量、非线性、绝对不稳定系统,是用来检验某种控制理论或方法的典型方案。
倒立摆控制理论产生的方法和技术在半导体及精密仪器加工、机器人技术、导弹拦截控制系统和航空器对接控制技术等方面具有广阔的开发利用前景。
因此研究倒立摆系统具有重要的实践意义。
3.课程设计题目描述和要求本次课程设计我们小组选择环节项目三:系统状态响应、输出响应的测量。
环节目的:1.利用MATLAB分析线性定常系统。
2.利用SIMULINK进行系统状态空间控制模型仿真,求取系统的状态响应及输出响应。
环节内容、方法:1.给定系统状态空间方程,对系统进行可控性、可观性分析。
并利用SIMULINK 绘制系统的状态图,求取给定系统输入信号和初始状态时的状态响应及输出响应。
2.给定两个系统的状态空间模型,分别求两个系统的特征值;将两个系统的系统矩阵化为标准型;求出给定系统初始状态时,状态的零输入响应;求两个系统的传递函数并分析仿真结果。
4.课程设计报告内容4.1 数学模型的建立及分析对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。
但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。
下面我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。
在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图1所示图l 直线一级倒立摆系统我们不妨做以下假设:M小车质量、m摆杆质量、b小车摩擦系数、l摆杆转动轴心到杆质心的长度、I 摆杆惯、F加在小车上的力、x 小车位置、φ摆杆与垂直向上方向的夹角、θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)。
matlab仿真毕设--倒立摆现代控制理论研究

内蒙古科技大学本科生毕业设计说明书(毕业论文)题目:倒立摆现代控制理论研究倒立摆现代控制理论研究摘要倒立摆系统是一个复杂的非线性、强耦合、多变量和自不稳定系统。
在控制工程中,它能有效地反映诸如可镇定性、鲁棒性、随动性以及跟踪性等许多控制中的关键问题,是检验各种控制方法的理想工具。
理论是工程的先导,它对倒立摆系统的控制研究具有重要的工程背景,单级倒立摆与火箭的飞行有关,二级倒立摆与双足机器人的行走有相似性,日常生活中的任何重心在上,支点在下的问题都与倒立摆的控制有极大的相似性,所以对倒立摆的稳定控制有重大的现实意义。
迄今,人们已经利用古典控制理论、现代控制理论及多重智能控制理论实现了多种倒立摆系统的稳定控制[5]。
倒立摆的控制方法有很多,如状态反馈控制,经典PID控制,神经网络控制,遗传算法控制,自适应控制,模糊控制等。
其控制方法已经在军工、航天、机器人和一般工业过程等领域得到了应用。
因此对倒立摆系统的控制研究具有重要的理论和现实意义,成为控制领域中经久不衰的研究课题。
本文是应用线性系统理论中的极点配置、线性二次型最优(LQR)和状态观测器等知识,设计了倒立摆系统线性化模型的控制器,通过MA TLAB仿真,研究其正确性和有效性。
通过分析仿真结果,我们知道了,状态反馈控制可以使倒立摆系统很好的控制在稳定状态,并具有良好的鲁棒性。
关键词:倒立摆;现代控制;Matlab仿真;Modern Control Theory Of Inverted PendulumAbstractInverted pendulum system is a complex nonlinear and strongly coupled,multi-variable and unstable system since.In control engineering,it can effectively reflect such stabilization,robustness,with the mobility of control and tracking,and many other key issue,It is the test ideal for a variety of control methods.Theory is the project leader,inverted pendulum control system also has important engineering research background,inverted pendulum with single-stage related torocket for the flight,Inverted pendulum and biped walking robot similar nature in any life in the center of gravity,the fulcrum in the next issue with the inverted pendulum control has a great similarity,so the stability control of inverted pendulum significant practical significance.So far,it has been the use of classical control theory,modern control theory and control theory of multiple intelligence to achieve a variety of inverted pendulum system stability control[5].Inverted pendulum control methods there are many,such as the state feedback control,the classic PID control,neural network control,genetic algorithm control,adaptive control,fuzzy control.The control method has been in military,aerospace,robotics and general industrial processes and other areas have been intended use.Therefore,the control of inverted pendulum system research has important theoretical and practical significance,of becoming enduring research topics in the field.This is the application of the theory of linear systems pole placement,linear quadratic optimal (LQR) and the state observer of such knowledge,the design of the linear inverted pendulum model of the controller,through simulation to study the correctness and effective sex.By analyzing the results of MATLAB simulation,state feedback control can make a goodcontrol of inverted pendulum system in a stable state,and has good robustness,stability control features.Key words: Inverted pendulum;Modern control;Matlab simulation;目录摘要 (I)Abstract (II)第一章绪论 (1)1.1倒立摆系统模型简介 (1)1.2倒立摆研究的背景与意义 (2)1.3国内外研究现状、水平和发展趋势 (3)1.3.1倒立摆和控制理论的发展 (3)1.3.2倒立摆的控制方法 (4)1.3.3倒立摆的发展趋势 (5)1.4本论文的主要工作介绍 (6)第二章一级倒立摆的数学模型建立及其性能分析 (7)2.1 系统的组成 (7)2.2 一级倒立摆数学模型的建立 (8)2.2.1 数学模型的建立 (8)2.2.2 系统的结构参数 (9)2.2.3 用牛顿力学方法来建立系统的数学模型 (9)2.2.4 一级倒立摆的性能分析[7] (13)2.3 本章小结 (15)第三章现代控制理论在倒立摆控制中的应用 (16)3.1 自动控制理论的发展历程 (16)3.2 经典控制理论 (18)3.2.1 PID控制现状 (18)3.2.2 PID控制的基本原理 (18)3.2.3 常用PID数字控制系统 (20)3.3 现代控制理论 (21)3.3.1 极点配置[11] (22)3.3.2 线性二次型最优的控制理论[7,8] (24)3.3.3 加权矩阵的选取 (26)3.3.4 状态观测器[7] (26)3.4 本章小结 (29)第四章MA TLAB仿真技术 (30)4.1 仿真软件——Matlab简介 (30)4.1.1 MA TLAB的优势 (30)4.2 Simulink简介 (32)4.3 S-函数简介 (33)4.3.1 用M文件创建S-函数 (34)4.4 倒立摆仿真模块的建立 (36)4.5 本章小结 (37)第五章一级倒立摆线性模型系统的仿真 (38)5.1 倒立摆控制器结构选择 (38)5.2 一级倒立摆线性模型系统仿真 (38)5.2.1 Simulink仿真 (42)5.3 本章小结 (46)结束语 (48)参考文献 (49)附录A (51)致谢 (53)第一章绪论1.1倒立摆系统模型简介倒立摆控制系统是一个复杂的、不稳定的、非线性的系统,是进行控制理论教学及开展各种控制实验的理想实验平台,但它并不是我们想象的那样抽象,其实在我们日常生活中就有很多这样的例子。
一阶直线倒立摆双闭环PID控制仿真报告

目录摘要 (2)一、一阶倒立摆系统建模 (3)1、对象模型 (3)2、电动机、驱动器及机械传动装置的模型 (4)二、双闭环PID控制器设计 (5)1、仿真验证 (6)2、内环控制器的设计 (9)3、系统外环控制器设计 (12)三、仿真实验 (15)1、绘图子程序 (15)2、仿真结果 (16)四、结论 (18)摘要本报告旨在借助Matlab 仿真软件,设计基于双闭环PID 控制的一阶倒立摆控制系统。
在如图0.1所示的“一阶倒立摆控制系统”中,通过检测小车的位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC )完成。
图0.1 一阶倒立摆控制系统分析工作原理,可以得出一阶倒立摆系统原理方框图:图0.2 一阶倒立摆控制系统动态结构图本报告将借助于“Simulink 封装技术——子系统”,在模型验证的基础上,采用双闭环PID 控制方案,实现倒立摆位置伺服控制的数字仿真实验。
一、一阶倒立摆系统建模1、对象模型如图1.1所示,设小车的质量为m 0,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向的力为F ,O 1为摆角质心。
θxyOFF xF x F yF yllxO 1图1.1 一阶倒立摆的物理模型根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其中心的转动方程为θθθcos sin y l F l F J x-= (1-1) 2)摆杆重心的水平运动可描述为)sin (22x θl x dtd m F += (1-2)3)摆杆重心在垂直方向上的运动可描述为)cos (22y θl dtd m mg F =- (1-3)4)小车水平方向上的运动可描述为220dtxd m F F x =- (1-4)由式(1-2)和式(1-4)得F ml x m m =⋅-⋅++)sin (cos )(20θθθθ (1-5) 由式(1-1)、(式1-2)和式(1-3)得θθθsin g cos 2ml x ml ml J =⋅++ )( (1-6) 整理式(1-5)和式(1-6),得⎪⎪⎩⎪⎪⎨⎧++-+-⋅+⋅=-++-⋅+++=))((cos sin )(cos sin cos cos ))((cos sin sin )()(x 2022202222220222222m l J m m l m m l m m l m F m l l m m m m l J g l m m l J lm F m l J θθθθθθθθθθθθ(1-7) 以上式1-7为一阶倒立摆精确模型。
pid控制倒立摆

PID控制倒立摆前言直线一级倒立摆,是由沿直线导轨运动的小车以及一端固定于小车的匀质长杆组成的非线性的、不稳定的系统。
本文主要讲了采用机理建模的方法得到一阶倒立摆的数学模型,并采用PID 双闭环控制的方式来控制它,从而使其成为稳定的系统,并对整个过程进行了matlab仿真分析。
AbstractFirst-order linear inverted pendulum is composed of a trolley, moved along the linear guides, and a homogeneous pole, one end of which is fixed at the car. However, this system is non-linear and unstable.This article stresses the use of modeling approach to the mechanism of first-order mathematical model of the inverted pendulum, and the use of double-loop PID control to control it, making it a stable system, and the whole process simulation analysis with MATLAB.倒立摆系统是一个非线性自然不稳定系统,是进行控制理论教学及开展各种控制实验的理想实验平台.许多抽象的控制概念,如控制系统的稳定性、可控性、系统抗干扰能力等,都可以通过倒立摆系统直观地表现出来.除教学用途外,倒立摆系统的高阶次、不稳定、多变量、非性和强耦合等特性,使得许多现代控制理论的研究人员一直将它视为研究对象.他们不断从研究倒立摆控制方法中发掘出新的控制方法,并将其应用于航天科技和机器人学等高新科技领域.倒立摆系统是典型的机电一体化系统,其机械部分遵循牛顿的力学定律,其电气部分遵守电磁学的基本定理.因此,可以通过机理建模方法得到较为准确的系统数学模型,通过实际测量和实验来获取系统模型参数.无论哪种类型的倒立摆系统,都具有3个特性,即:不确定性、耦合性、开环不稳定性.直线型倒立摆系统,是由沿直线导轨运动的小车以及一端固定于小车上的匀质长杆组成的系统.小车可以通过传动装置由交流伺服电机驱动.小车导轨般有固定的行程,因而小车的运动范围是受到限制的.设计目的及意义1)、理论联系实际,加强对自动控制理论的理解。
基于Matlab的一级倒立摆模型的仿真

-s2 s4+-20 .58 s2 Transfer Fcn
Pulse Generator
由于未加进控制环节,故系统输出发散
2、加进控制环节,实现时域的稳定控制
0 Constant
-K Gain
1 Gain 1
1 s
Integrator
-40 Gain 3
du /dt Derivative
二、倒立摆模型的数学建模 质量为 m 的小球固结于长度为 L 的细杆(可忽略杆的质量)上,细杆又和质量 为 M 的小车铰接相连。由经验知:通过控制施加在小车上的力 F(包括大小和 方向)能够使细杆处于θ=0 的稳定倒立状态。在忽略其他零件的质量以及各种 摩擦和阻尼的条件下,推导小车倒立摆系统的数学模型
甲方(用人单位): 名称: 法定代表人: 地址: 经济类型: 联系电话:
乙方(职工): 姓名: 身份证号码: 现住址:
联系电话:
根据(中华人民共和国劳动法》和国家及省的有关规定,甲乙双方按照平等自愿、协商一致的原则订立
本合同。
一、合同期限
(一)合同期限
双方同意按以下第
种方式确定本合同期限:
1、有固定期限:从
(a)
=m(x’+lcosθθ’)’
= mx’’+mlcosθθ’’-mlsinθ(θ’)^2
(b)
由(a)、(b)两式得 F= (M+m)x’’ +mlcosθθ’’-mlsinθ(θ’)^2
<1>
小球垂直方向上位移为 lcosθ
故受力为
F’cosθ -mg=m(lcosθ)’’
=-mlθ’’sinθ-mlcosθ(θ’)^2
天,每周至少休息一天。 2、不定时工作制,即经劳动保障部门审批,乙方所在岗位实行不定时工作制。 3、综合计算工时工作制,即经劳动保障部门审批,乙方所在岗位实行以 为周期,总工时 小 时的综合计算工时工作制。 (二)甲方因生产(工作)需要,经与工会和乙方协商后可以延长工作时间。除(劳动法)第四十二条规定 的情形外,一般每日不得超过一小时,因特殊原因最长每日不得超过三小时,每月不得超过三十六小时。 四,工资待遇 (一)乙方正常工作时间的工资按下列第( )种形式执行,不得低于当地最低工资标准。 1、乙方试用期工资 元/月;试用期满工资
PID控制的一阶倒立摆控制系统设计

基于双闭环PID控制的一阶倒立摆控制系统设计一、设计目的倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。
设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统。
二、设计要求倒立摆的设计要求是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。
当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。
实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用MATLAB进行仿真,并用simulink对相应的模块进行仿真。
三、设计原理倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。
计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡。
四、设计步骤首先画出一阶倒立摆控制系统的原理方框图一阶倒立摆控制系统示意图如图所示:分析工作原理,可以得出一阶倒立摆系统原理方框图:一阶倒立摆控制系统动态结构图下面的工作是根据结构框图,分析和解决各个环节的传递函数!1.一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中: M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为(2) 摆杆重心的运动方程为得sin cos ..........(1)y x J F l F l θθθ=-2222(sin ) (2)(cos ) (3)x y d F m x l d td F mg m l d t θθ=+=-(3)小车水平方向上的运动为22..........(4)x d xF F M d t-=联列上述4个方程,可以得出一阶倒立精确气模型:()()()()()()()2222222222222222sin .sin cos cos cos .sin cos .lg sin cos J ml F ml J ml m l g x J ml M m m l ml F m l M m m m l M m J ml θθθθθθθθθθθθ⎧+++-⎪=++-⎪⎨+-+⎪=⎪-++⎩式中J 为摆杆的转动惯量:32ml J =若只考虑θ在其工作点附近θ0=0附近(︒︒≤≤-1010θ)的细微变化,则可以近似认为:⎪⎩⎪⎨⎧≈≈≈1cos sin 02θθθθ ⎪⎪⎩⎪⎪⎨⎧++-+=++-+=2..2222..)(lg )()()(Mml m M J mlF m m M Mml m M J g l m F ml J x θθθ 若取小车质量M=2kg,摆杆质量m=1kg,摆杆长度2 l =1m,重力加速度取g=2/10s m ,则可以得 一阶倒立摆简化模型:....0.44 3.330.412x F F θθθ⎧=-⎪⎨⎪=-+⎩即 G 1(s)= ; G 2(s)=一阶倒立摆环节问题解决!2.电动机驱动器选用日本松下电工MSMA021型小惯量交流伺服电动机,其有关参数如下:222()0.4()12() 1.110()s F s s x s s s s θθ-⎧=⎪-⎪⎨-+⎪=⎪⎩驱动电压:U=0~100V 额定功率:PN=200W 额定转速:n=3000r/min 转动惯量:J=3×10-6kg.m2 额定转矩:TN=0.64Nm 最大转矩:TM=1.91Nm 电磁时间常数:Tl=0.001s 电机时间常数:TM=0.003s经传动机构变速后输出的拖动力为:F=0~16N ;与其配套的驱动器为:MSDA021A1A ,控制电压:UDA=0~±10V 。
基于adams和matlab的一级倒立摆联合仿真

基于adams和matlab的一级倒立摆联合仿真————————————————————————————————作者:————————————————————————————————日期:基于PRO/E,ADAMS和MATLAB/SIMULINK 的双回路PID控制一级倒立摆联合仿真目录一、倒立摆简介1、概述2、倒立摆分类3、倒立摆控制方法二、联合仿真流程三、基于PRO/E的一级倒立摆三维建模四、基于ADAMS的一级倒立摆模型设计五、ADAMS和MATLAB/SIMULINK的联合仿真六、一级倒立摆的双回路PID控制策略1、一级倒立摆的角度控制2、一级倒立摆的双闭环控制3、一级倒立摆摆杆长度参数对控制策略的影响七、问题总结参考文献一、倒立摆简介1、概述倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。
倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自由连接(即无电动机或其他驱动设备)。
倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。
当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。
图1.1 一级倒立摆2、倒立摆分类(1)直线型倒立摆它是最常见倒立摆系统,也称车摆装置,根据目前的研究它又分为1,2,3,4级车摆,典型结构图如图11.2所示,图中以三级车摆为例,它是由可以沿直线导轨运动的小车以及一端固定于小车之上的匀质长杆组成的系统,小车可以通过转动装置由力矩电机、步进电机、直流电机或者交流伺服电机驱动,车的导轨一般有固定的行程,因而小车的运动范围都是受到限制的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一级倒立摆课程设计--倒立摆PID控制及其Matlab仿真倒立摆PID控制及其Matlab仿真学生姓名:学院:电气信息工程学院专业班级:专业课程:控制系统的MATLAB仿真与设计任课教师:2014 年 6 月 5 日倒立摆PID控制及其Matlab仿真Inverted Pendulum PID Control and ItsMatlab Simulation摘要倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,对倒立摆的控制研究无论在理论上和方法上都有深远的意义。
本论文以实验室原有的直线一级倒立摆实验装置为平台,重点研究其PID 控制方法,设计出相应的PID控制器,并将控制过程在MATLAB上加以仿真。
本文主要研究内容是:首先概述自动控制的发展和倒立摆系统研究的现状;介绍倒立摆系统硬件组成,对单级倒立摆模型进行建模,并分析其稳定性;研究倒立摆系统的几种控制策略,分别设计了相应的控制器,以MATLAB为基础,做了大量的仿真研究,比较了各种控制方法的效果;借助固高科技MATLAB实时控制软件实验平台;利用设计的控制方法对单级倒立摆系统进行实时控制,通过在线调整参数和突加干扰等,研究其实时性和抗千扰等性能;对本论文进行总结,对下一步研究作一些展望。
关键词:倒立摆;PID控制器;MATLAB仿真设计报告正文1.简述一级倒立摆系统的工作原理;倒立摆是一个数字式的闭环控制系统,其工作原理为:角度、位移信号检测电路获取后,由微分电路获取相应的微分信号。
这些信号经A/D转换器送入计算机,经过计算及内部的控制算法解算后得到相应的控制信号,该信号经过D/A变换、再经功率放大由执行电机带动皮带卷拖动小车在轨道上做往复运动,从而实现小车位移和倒立摆角位移的控制。
2.依据相关物理定理,列写倒立摆系统的运动方程;2lO1小车质量为M ,倒立摆的质量为m ,摆长为2l ,小车的位置为x ,摆的角度为θ,作用在小车水平方向上的力为F ,1O 为摆杆的质心。
摆杆绕其重心的转动方程 θθθcos sin l F l F J xy -= 摆杆重心的水平运动方程 )sin (22θl x dtd m F x +=摆杆重心的垂直运动方程 )cos (22θl dtd m mg F y =-小车水平方向运动方程 22dt xd M F F x =-一级倒立摆系统的动力学模型⎪⎪⎩⎪⎪⎨⎧++-+-⋅+⋅=-++-⋅+++=))((cos sin lg )(cos sin cos cos ))((cos sin sin )()(2222222222222222m M l m J l m m m M l m F ml l m m M ml J g l m ml J lm F ml J x θθθθθθθθθθθθ&&&&32ml J =对系统进行线性化 1cos ,sin ,02≈≈≈θθθθ系统的简化模型 ⎪⎪⎩⎪⎪⎨⎧++-+=-+-+=22222)(lg )()()(mMl m M J mlFm m M mMl m M J g l m F ml J x θθθ3. 根据倒立摆的运动方程搭建被控对象在Simulink 环境下的仿真模型;一级摆立摆系统Simulink 仿真结构图Subsystem 仿真结构图Fcn 和Fcn1的函数表达式为:Fcn :]2[*6]1[*8.0u u - Fcn1:]1[*0.2]2[*40u u - 则系统的Simulink 仿真程序如下: clear allload xy.matt=signals(1,:);f=signals(2,:);x=signals(3,:);q=signals(4,:);xx=signal s(5,:);qq=signals(6,:); figure(1)hf=stairs(t,f(:));grid onaxis([0 1 0 0.12]);xlabel('时间(s)');ylabel('控制力(N)');axet=axes('Position',get(gca,'Position'),'XAxisLocation','bottom',...'YAxisLocation','right','color','None','XColor','k','YColor','k');ht=line(t,x,'color','r','parent',axet);ht=line(t,xx,'color','b','pare nt',axet);axis([0 1 0 0.1]);ylabel('x位置的变化(m)')title('f(t)=0.1N和x''的脉冲响应曲线')gtext('\leftarrow f(t)'),gtext('x(t)\rightarrow'),gtext('\leftarrow x''(t)')figure(2)hf=stairs(t,f(:));grid on;axis([0 1 0 0.12]); xlabel('时间(s)');ylabel('控制力(N)')axet=axes('Position',get(gca,'Position'),'XAxisLocation','bottom',...'YAxisLocation','right','color','None','XColor','k','YColor','k');ht=line(t,q,'color','r','parent',axet);ht=line(t,qq,'color','b','pare nt',axet);axis([0 1 -0.3 0]) ;ylabel('角度变化(弧度)')title(' f(t)=0.1N时\theta(t)ºÍ\theta''(t)的脉冲响应曲线')gtext('\leftarrowf(t)'),gtext('\theta(t)\rightarrow'),gtext('\leftarrow \theta''(t)')仿真结果如下图所示,从中可以看出,在0.1N的冲击力作用下,摆杆倒下( 由0逐渐增大),小车位移逐渐增加,因此在一定程度上可以认为“一阶倒立摆系统”的数学模型是有效的。
f(t)=0.1N时x和x’的脉冲响应曲线f(t)=0.1N时θ和θ’的脉冲响应曲线4. 结合单位反馈控制系统的控制原理,为被控对象设计PID 控制器。
(1) 双闭环PID 控制器设计一级倒立摆系统位置伺服控制系统方框图(2) 内环控制器的设计内环采用反馈校正进行控制1()D s 2()D s 1.61()G s 220.410s s -+2240s --()X s ()s θ2()G s 2'()D s 1'()D s ()F s ()r X s --一级倒立摆内环外环反馈校正采用PD 控制器,设其传递函数为2'12()D s K s K =+,为了抑制干扰,在前向通道上加上一个比例环节2()D s K=。
1) 控制器参数的整定设2()D s 的增益20K =-,则内环控制系统的闭环传递函数为:40646464)()(1)()(212'2222-++=+=K s K s s D s G KK s G KK s W S S令7.0=ξ⎪⎩⎪⎨⎧⨯⨯==-647.026464406412K K⎪⎩⎪⎨⎧==625.1175.021K K内环控制器的传递函数为:625.1175.0)('2+=s s D内环控制系统的闭环传递函数为:642.1164)(22++=s s s W2) 外环控制器的设计外环系统前向通道的传递函数为:)642.11()104.0(64)()(22212+++-=s s s s s G s W外环系统结构图对外环模型进行降阶处理,若忽略2()W s 的高次项,则近似为一阶传递函数为:642.1164)(2+≈s s W对模型1()G s 进行近似处理,则1()G s 的传递函数为:2110)(s s G ≈外环控制器采用PD 形式,其传递函数为:)1()(31+=s K s D τ采用单位反馈构成外环反馈通道,即1'()1D s =,则系统的开环传递函数为()D s)1()57(57)()()()(32112++==s K s s s D s G s W s W τ采用基于Bode 图法的希望特性设计方法,得30.12,0.877K τ==,取1τ=,则外环控制器的传递函数为:)1(12.0)(1+=s s D一级倒立摆双闭环控制系统的方框图(3) 系统仿真对一级倒立摆双闭环控制系统进行仿真。
一级倒立摆双闭环控制系统Simulink 仿真结构图运行如下MATLAB 程序,得到如下图所示仿真曲线clear all load PID.mat0.12(1)s + 1.6()W s ()X s ()s θ()F s ()r X s --一级倒立摆-200.175 1.625s +X 调节器θ调节器t=signals(1,:);q=signals(2,:);x=signals(3 ,:);figure(1)ht=line(t,q(:));grid on;xlabel('时间(s)');ylabel('摆角变化(rad)');axis([0,10,-0.3,1.2]);axet=axes('Position',get(gca,'Position'), 'XAxisLocation','bottom',...'YAxisLocation','right','color','None' ,'XColor','k','YColor','k');ht=line(t,x,'color','r','parent',axet); ylabel('x位置变化(m)');axis([0,10,-0.3,1.2]);title('\Theta(t) 和x(t)的阶跃响应曲线') gtext('\leftarrowx(t)'),gtext('\Theta(t)\uparrow');5.分析综述比例P、积分I、微分D三个调节参数对系统控制性能的影响。