哈工程研制成功DP3动力定位系统

哈工程研制成功DP3动力定位系统
哈工程研制成功DP3动力定位系统

哈工程研制成功DP3动力定位系统

2014-10-21 08:42:57

来源:国际船舶网

3500KW级大功率的调距型全回转舵桨装置工程样机

我国最高级别船舶动力定位系统

日前,国家高技术船舶科研专项重点项目“DP3动力定位系统研制”项目在哈尔滨通过工信部验收。由中国工程院多位院士及国内相关领域著名专家组成的专家组对项目取得的成果给予了高度评价。

在项目验收会上,中国工程院多位院士及专家认为,这套系统在我国最高级别船舶动力定位系统领域取得重大工程化突破,打破国外垄断,填补了国内船舶动力定位系统领域空白,实现了“零的突破”。是我国在最高级别动力定位系统领域取得的重大工程化突破,为DP3动力定位系统打破国际垄断、走向产品化和产业化奠定坚实基础。

该项目是由哈尔滨工程大学作为总体设计、技术主体和系统集成的牵头单位,海洋石油工程股份公司作为海上实船试验的责任单位,中国船舶工业集团第708研究所作为DP船设计单位,武汉船用机械有限公司作为大功率全回转推进器(产品库求购供应)研制单位,中国船级社(位置联系)作为认证机构,组成“国家队”开展研制工作,历时4年协同创新取得的重大成果。

此前,国内工程作业船舶除安装的DP1级动力定位系统可以实现国产化以外,DP2级动力定位系统和DP3级动力定位系统产品主要被国外品牌所垄断。我国DP3动力定位系统的研制成功,是我国走向深海、打破西方垄断不可或缺的核心关键装备,为我国该技术领域

DP2、DP3动力定位控制系统(产品库求购供应)国产化和产业化打下了坚实的技术基础,同时也将为我国海洋工程向深海进军提供坚实的技术保障。

负责研发整个系统的“大脑”

DP是动态位置保持系统(Dynamic Positioning System)的简称,根据定位需求与效果的不同,可分为DP1、DP2、DP3三个级别,DP3级是国际海事组织的最高动力定位级别,其精度最准,抗风险能力最强,效果最好。

动力定位系统的主要原理是利用计算机对采集来的环境参数(风、浪、流),根据位置参照系统提供的位置,自动地进行计算,控制各个推力器的推力大小,使船舶保持艏向和船位的“雷打不动”。这是一套复杂的综合控制系统,包括控制系统、推进器系统、动力系统、测量系统等四大部分。其中控制系统居于核心地位,相当于整个系统的“大脑”,在“DP3动力定位系统”项目中,哈尔滨工程大学负责研发的包括这一部分。

2013年8月2日,这套系统在南海海试中国船级社验船师检验时,正赶上台风“海燕”过境的第二天。海面上浪疾风高、波涛汹涌。在风速6—9级、海流大于1节的海况条件下,试验结果表明,系统实现了船舶高精度和高可靠的定位,达到国际同类产品的先进水平。过后,看到其他参试人员照的“海燕”引起的海况照片,海上试验负责人夏国清教授才发现自己对刚刚距试验船几海里之外的通天接海的龙卷风竟浑然不觉。系统的高稳定性和高可靠性可见一斑。

船舶动力定位系统

1982年成立研究所打造“北飒”团队

在30多年的研究中,哈尔滨工程大学教授边信黔团队和这个项目一同成长。这支科研团队来自“海洋装置与控制技术研究所”。1982年,研究所成立时,哈尔滨工程大学自动化(产品库求购供应)学院教授、控制理论与控制工程学科带头人、博士生导师边信黔给它起了个英姿飒爽的名字———北飒,既是“Best Sea Assembly Institude(BSA)”“最好的海洋装备研究所”的英文音译,又有“在北国英姿飒爽”的意译。

1983年,团队在国内率先着手研发船舶动力定位技术,首次在国内建立起风浪流作用下、船舶在动力定位状态下的运动数学模型等关键问题,掌握了动力定位技术基本原理,成为国内首家具(产品库求购供应)备生产一级(DP1)动力定位系统产品的研发基地,为我国在船舶动力定位技术研究领域的发展奠定了坚实基础。

30余年过去了,团队坚定于自己的研究方向,一直从事海洋运载器的控制理论和工程应用研究,即使在上个世纪80年代,科研项目较少时,也耐得住寂寞,坐住了冷板凳。多年后,在这厚厚的积淀上孕育出创新的果实,也就变得理所当然。如今,哈尔滨工程大学在动力定位系统领域已成为我国海军和海洋工程领域无可替代的重要的技术依托力量。

组成“国家队”协同创新合力制胜

该项目以自主研制DP3级最高级别的动力定位控制系统工程样机为核心目标,在控制系统、推进系统(产品库求购供应)等方面取得重大突破,掌握了该系统的设计、工程样机研制、集成和海上试验技术,开发出具有自主知识产权的DP3控制系统工程样机。这是哈尔滨工程大学作为总体设计、技术主体和系统集成的牵头单位,海洋石油工程股份公司作为海上实船试验的责任单位,中国船舶工业集团第708研究所作为试验船设计单位,武汉船用机械有限公司作为大功率全回转推进器研制单位,中国船级社作为认证机构,组成“国家队”开展研制工作,历时4年协同创新取得的重大成果。

“高端装备的国产化研发,必须组织优势互补的国家队开展协同创新来实现。”该项目总指挥、哈尔滨工程大学副校长夏桂华教授说:“没有项目成员长期合作基础和联合推动,这个制约我国高端海工装备的瓶颈技术很难突破;没有协同企业的重视和支持,专用试验船舶等研制条件很难到位;没有深海工程与高技术船舶协同创新中心联通创新链条,这项技术将长期处于实验室样机阶段,无法向产业化迈进。”

取得多项关键性技术“零的突破”

项目负责人边信黔教授与团队成员一起为这个集体营造出一种文化,将其凝炼成“敢想、敢为、敢赢,求真、求实、求严”的“十二字箴言”。这种求真求实求创新的精神,使涉及众多学科,技术复杂、难度高的“DP3动力定位系统”取得了多项关键性技术突破。

——国内首套满足国际海事组织对三级动力定位设备配置和功能要求的DP3控制系统工程样机,获中国船级社颁发的“船用产品证书”和系泊(产品库求购供应)、航行及故障模式与影响分析试验的“检验证明”,在国内实现了零的突破,填补了国内空白。

——在国内首次提出三级动力定位冗余功能所需的同步表决、仲裁逻辑、无缝切换等方法,研制出DP3系统的仲裁单元和冗余控制器,实船故障模式与影响分析试验证明了系统出现故障时,可实现三冗余、双冗余、单模之间的自动切换,可满足海洋工程作业极高可靠性要求。

——在国内首次提出多传感器(产品库求购供应)时空信息融合算法,基于状态自适应估计器的非线性模型预测动力定位控制算法,基于监督和切换的推力分配优化算法,开发了相应的实船应用软件(产品库求购供应)。实船试验证明,该DP3系统实现了高精度和高可靠定位功能。

此外,该系统还提出了基于扩展卡尔曼滤波(EKF)的最优状态估计方法、设计制造调距型大功率全回转舵桨、DP3级动力定位系统实船区域控位技术、陆基模拟船舶海上六自由度运动特性的DP3系统调试新方法、大功率高精度等高锥齿轮传动机构的国产化设计与研制、大型全回转舵桨装置水下维护与健康状态实时监测(产品库求购供应)等十余项填补国内空白的关键技术和方法。

动力定位系统产业化缓慢

1998年,哈工程大研制成功我国首套动力定位系统,现在应用较多的DP2、DP3都没有产品推出。目前,我国的动力定位系统主要依靠进口,价格大概为50万欧元/套。

动力定位系统包括的三大分系统中,我国在推进系统方面的产业化基础最好,国内设计生产的推进系统已经应用到不同类型的船舶上,未来主要的工作是针对海工项目的特殊需求,开发出新型推进装置(产品库求购供应);DP2和DP3控制系统的研制尚处于起步阶段,技术难点体现在海况数据库不完整;位置测量系统中位置传感器领域还是空白,特别是高精度的位置传感器,主要原因是投入大、见效慢,企业缺乏进入该领域的动力。

据了解,在DP推进系统领域,我国不少企业已具备一定的产业化能力。武汉船机在该系统的集成方面早已实现产业化,推进系统集成包括主机(产品库求购供应)、齿轮箱(产品库求购供应)、主推调距桨(产品库求购供应)装置、全回转推进装置、艏艉侧推(产品库求购供应)、发电机(产品库求购供应)组、舵系等,应用项目包括78米三用工作船(船型船厂买卖)、300吨起重铺管船(船型船厂买卖)以及5万吨半潜船(船型船厂买卖)等海工船舶动力定位系统的集成。目前,武汉船机作为责任单位,正在开展国家发展和改革委员会海洋工程装备研发及产业化专项——“3000米深水钻井船(船型船厂买卖)动力定位系统技术研发

及产业化”,以推进系统为载体进行动力定位系统的集成设计和配套。此外,苏州动力系统股份有限公司、南京船用设备有限公司、上海振华重工有限公司等也具备为船舶和海洋工程提供各类型推进产品的能力。

在DP3控制系统方面,哈工程大、七〇八所、中国海洋石油工程股份有限公司研制的HDP3控制系统已经通过海试,海试结果理想,全部项目满足中国船级社规范要求。。

位置测量系统方面,我国则主要依赖进口。

动力定位系统是船舶、海洋石油平台建造领域的核心技术,其产业属于资金技术密集型产业,产业关联度高,带动性强。全球船舶动力定位系统市场规模约为40亿美元,而且还在以每年20%以上的速度不断扩大。动力定位系统(DP3)国内每年有约20亿元人民币的市场需求,潜在DP船舶需求超过200艘。目前,国内动力定位系统市场主要为挪威KONGSBERG等国外品牌所垄断。此前,国内工程作业船舶仅DP1级动力定位系统可以实现国产化,DP2、DP3级动力定位系统产品则主要被国外品牌所垄断。专家认为,DP3船舶动力定位系统是我国走向深海不可或缺的核心关键装备,为我国在该领域的国产化和产业化打下了坚实的技术基础,也将为我国海洋工程向深海进军提供坚实的技术保障。

动力定位系统产业化缓慢

1998年,哈工程大研制成功我国首套动力定位系统,现在应用较多的DP2、DP3都没有产品推出。目前,我国的动力定位系统主要依靠进口,价格大概为50万欧元/套。

动力定位系统包括的三大分系统中,我国在推进系统方面的产业化基础最好,国内设计生产的推进系统已经应用到不同类型的船舶上,未来主要的工作是针对海工项目的特殊需求,开发出新型推进装置(产品库求购供应);DP2和DP3控制系统的研制尚处于起步阶段,技术难点体现在海况数据库不完整;位置测量系统中位置传感器领域还是空白,特别是高精度的位置传感器,主要原因是投入大、见效慢,企业缺乏进入该领域的动力。

据了解,在DP推进系统领域,我国不少企业已具备一定的产业化能力。武汉船机在该系统的集成方面早已实现产业化,推进系统集成包括主机(产品库求购供应)、齿轮箱(产品库求购供应)、主推调距桨(产品库求购供应)装置、全回转推进装置、艏艉侧推(产品库求购供应)、发电机(产品库求购供应)组、舵系等,应用项目包括78米三用工作船(船型船厂买卖)、300吨起重铺管船(船型船厂买卖)以及5万吨半潜船(船型船厂买卖)等海工船舶动力定位系统的集成。目前,武汉船机作为责任单位,正在开展国家发展和改革委员会海洋工程装备研发及产业化专项——“3000米深水钻井船(船型船厂买卖)动力定位系统技术研发

及产业化”,以推进系统为载体进行动力定位系统的集成设计和配套。此外,苏州动力系统

股份有限公司、南京船用设备有限公司、上海振华重工有限公司等也具备为船舶和海洋工程提供各类型推进产品的能力。

在DP3控制系统方面,哈工程大、七〇八所、中国海洋石油工程股份有限公司研制的HDP3控制系统已经通过海试,海试结果理想,全部项目满足中国船级社规范要求。。

位置测量系统方面,我国则主要依赖进口。

动力定位系统是船舶、海洋石油平台建造领域的核心技术,其产业属于资金技术密集型产业,产业关联度高,带动性强。全球船舶动力定位系统市场规模约为40亿美元,而且还在以每年20%以上的速度不断扩大。动力定位系统(DP3)国内每年有约20亿元人民币的市场需求,潜在DP船舶需求超过200艘。目前,国内动力定位系统市场主要为挪威KONGSBERG等国外品牌所垄断。此前,国内工程作业船舶仅DP1级动力定位系统可以实现国产化,DP2、DP3级动力定位系统产品则主要被国外品牌所垄断。专家认为,DP3船舶动力定位系统是我国走向深海不可或缺的核心关键装备,为我国在该领域的国产化和产业化打下了坚实的技术基础,也将为我国海洋工程向深海进军提供坚实的技术保障。

哈尔滨工程大学船舶工程学院大二大连实习专题报告

实习总结报告 一、实习主要过程 大连7.8,于中国人民第七八一四厂,作者听取了周老师关于工厂简介讲座,之后进行现场305艇陈列处参观及对展厅参观。7.9,于铁建宾馆听了大连厂资深专家金老师关于船舶总装及工艺过程的讲解。7.10,在大连老虎滩旁参观104舰。7.11亦于铁建宾馆,听取金老师关于船体建造工艺现状各个流程的讲座。7.12---7.14奔赴大连船舶重工集团有限公司(CSIC)进行为期三天的实习:7.12上午,安全意识讲座及大连船舶重工发展简史,主讲人韩主任;下午对建造现场和船坞进行了参观。7.13上午,沙明文科长对船体设计展开了详细的叙述;下午,有关老师进行了船舶总体相关介绍;。7.14上午,袁工程师讲述轮机工艺概况;下午,原哈工程船舶工程学院教授佟福山讲述了造船业的特点及现在学习对未来工作的影响。7.15,作者前往大连船舶重工海洋工程有限公司场地对钻井平台进行参观。7.16,参观军港701号猎潜艇,潜艇上军士介绍关于猎潜艇的一些概况。7.17,作者先去中远船务(COSCO)大连总部对公司整体有一定的了解,之后去中远船务大连工地坐车现场参观。中午赶赴旅顺开始4天旅顺的实习。 旅顺7.18先去大连滨海船厂,之后于中铁渤海轮渡码头观看烟大轮渡靠岸情景。7.19,上午去6号码头参观164号导弹驱逐舰,下午去5号码头参观北油560补给舰。7.20 二、实习收获和体会 在本次实习之前,虽然在船舶工程学院学习了2年,但是对船舶的认识还是比较缺乏的,尤其对船舶的整体和感官上的认识甚少。另外,作者一直对船舶方向的工作性质和以后可能从事的工作方面没有太多的考虑。经过这次的实习,可以说自己在多方面有了很大的进步,特别是在以后从事工作方面有了一定深入的思考和规划。另外,不但实际见到真正的船体结构实物,亲眼见证书本上所记叙的船舶构造组元,也明白了书本知识和实践经验之间相辅相成的关系。当然,自己的专业知识依然很少,还得不断的努力学习,不断的向目标靠近。 本次在技术层面上自己的收获主要体现在以下方面: 1.通过相关专业讲座,我加强了船舶专业性相关知识的认识,了解船舶行业的运营模 式,了解船舶工业从提出需求、下订单、设计、生产制造、使用的全过程生命周期; 并了解了船舶的建造的几个基本工艺流程,生产设计—放样--号料—零件加工—结构装配,舾装、涂装,密性实验,船舶下水,码头舾装,系泊试验,试航,交船。并对各个流程工艺及相关技术有了一定的深入学习。 2.通过现场工地的参观,对船舶的基本构造,并将现场所见和书本知识联合起来,对船 舶及其一些部件有了感官上整体性认识,如对横梁、甲板、龙骨、底板、平台都有了形状上的感触,此外,对钻井平台,船舶分段结构也有了一定认识。又如船舶的零件加工板的拼接、剪切、装配等等。 3.见识到一些不同类别的船舶,如猎潜艇,轮渡,潜艇,开阔了自己的眼界,也对各种 船上机舱区域、上层建筑、甲板区域及各个舱室陈列布置有一定的了解。并认识了各种船舶的特点。 4.对船舶的作用有了些许了解。如:在大连重工就对油船,集装箱船及货船用途有了相 关学习。相应各种船舶的用途特点也决定了各类船舶的制造特点及形体要求。如烟大轮渡在其运输火车的一对五轨道对接技术。 5.安全常识。作为重工行业,船舶工程行业的安全教育不容半点疏忽。感受最深的去每 一个厂区参观的时候第一个要强调的就是安全意识,到工地实习更是要佩戴安全帽等。可见,安全在这个行业尤为重要。

中国动力定位系统行业总体发展状况(中企智业)

深圳中企智业投资咨询有限公司

中国动力定位系统行业总体发展状况.............................. 错误!未定义书签。 第一节中国动力定位系统行业规模情况分析 (2) 一、动力定位系统行业单位规模情况分析 (2) 二、动力定位系统行业人员规模状况分析 (2) 三、动力定位系统行业资产规模状况分析 (3) 四、动力定位系统行业市场规模状况分析 (3) 五、动力定位系统行业敏感性分析 (4) 第二节中国动力定位系统行业财务能力分析 (4) 一、动力定位系统行业盈利能力分析 (4) 二、动力定位系统行业偿债能力分析 (5) 三、动力定位系统行业营运能力分析 (6) 四、动力定位系统行业发展能力分析 (7) 1

2 第一节 中国动力定位系统行业规模情况分析 一、动力定位系统行业单位规模情况分析 目前,全球船舶和海洋工程装备动力定位系统市场几乎被欧美企业垄断,名列前茅的企业主要包括挪威的康士伯海事、美国的L-3通讯公司、美国GE 公司、德国Praxis 和芬兰NAVIS 公司。这些主要公司也是国际动力定位运营商协会的主要成员。 除上述厂家外,还有很多企业都已经或者正在开发动力定位系统。美国Beier 公司专为平台工作船开发了IVCS 2000动力定位系统,广泛使用于美国和欧洲的大型工作艇船队。在中国Beier 通讯每年为30艘左右的海工船舶提供DP-1/DP-2动力定位系统以及船舶监控系统、通讯导航设备、船舶控制台等。此外,法国NAUDEQ Company 、Sirehna 公司,荷兰Imtech Marine 、PRAXlSE 、日本三井造船,以及中国海兰信、振华重工、哈尔滨工程大学等也纷纷涉足该领域。 二、动力定位系统行业人员规模状况分析 2016年中国动力定位系统行业从业人员中,生产人员占比为37.25%,技术人员占比为51.06% ,行政人员占比为7.9%。 图表- 1:2016年中国动力定位系统行业从业人员专业构成分析 数据来源:国际动力定位运营商协会

动力定位系统设计程序

动力定位系统设计程序 第一节概述 本设计程序主要描述动力定位系统工厂设计部分的工作流程,对于设备制造厂、专业机构的相应工作仅作简单介绍,对于工厂今后船舶动力定位系统的设计,该程序具有一定的指导作用。 第二节设计准备工作 1.系统基本信息的确认 1.1根据技术规格书的要求明确船舶的船级社和该船级社动力定位系统的入级 符号。 1.2与船东协商,确定船舶工作的外部环境条件:风速、流速、浪高。 1.3与船东协商,确定船舶的动力定位等级。 1.4论证主推进器及动力定位推进器的型式,通常借鉴母型船并最终与船东商 定。 1.4.1主推进器通常采用以下型式: -吊舱式推进器(POD) -全回转推进器(Z型或L型) -尾轴推进器+舵 1.4.2动力定位推进器通常采用以下型式: -侧向推进器 -可升缩型全回转推进器 1.5初估推进器的功率,可借鉴母型船进行。 1.5.1主推进器功率按以下两种情况预估: -船舶有自由航行的航速要求 -船舶无自由航行的航速要求,既只有较低航速能力做工作区域机动应用、

长距离调遣采用拖航的船舶 1.5.2动力定位推进器按不同型式、数量进行功率配置论证。 1.5.3对于DP2、DP3入级符号,应注意推进器要求有冗余,通常用增加数量和 增大功率来实现,以保证在缺少任意一台推进器时,余下的推进器能力仍然足够。 1.6初估电力负荷 1.6.1由总设计师配合确定船舶工作工况的分类。 1.6.2由总设计师配合确定动力定位时各推力器的负荷系数。 1.6.3初估除推进器负荷之外的其它用电负荷,包括推进辅助机械、专用工作机 械、机舱辅机、空调、通风、冷藏、日用生活用电、观通导航等,由各相关专业配合确定。 1.6.4确定、优化发电机组功率和数量,由轮机专业配合确定。对于DP2、DP3 发电机要求有冗余,通常用增加数量和增大功率来实现,以保证在缺少任意一台发电机时,余下的发电机能力仍然足够。 1.7根据动力定位系统的入级符号的要求,熟悉相应的设备、系统的设计要求。 1.8由动力定位系统设计责任人告知船、机、电专业主管动力定位系统的入级符 号,要求各专业在相关系统设计和设备技术谈判时注意定位系统的特殊要求,并将所要求的内容反应在工厂图纸和设备技术协议中。 2. 动力定位系统技术协议的签订 2.1根据动力定位系统的入级符号的要求,按附表1表完成系统的基本配置,并 体现到技术协议之中。同时应征求船东意见,对于位置参照系统的类型、数量及其它特殊要求,也应在协议中反应,因为它会对整个系统的价格产生较大影响。

船用动力定位DP系统概述(报告精选)

北京先略投资咨询有限公司

船用动力定位DP系统概述 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.360docs.net/doc/f12918572.html, 1

目录 船用动力定位DP系统概述 (3) 第一节船用动力定位DP系统的定义和分类 (3) 一、动力定位DP0系统 (3) 二、动力定位DP1系统 (3) 三、动力定位DP2系统 (3) 四、动力定位DP3系统 (3) 第二节船用动力定位DP系统的市场情况 (4) 一、动力定位DP1系统的市场情况 (4) 1、全球 (4) 2、中国 (5) 二、动力定位DP2系统的市场情况 (8) 1、全球 (8) 2、中国 (8) 三、动力定位DP3系统的市场情况 (10) 1、全球 (10) 2、中国 (11) 2

船用动力定位DP系统概述 第一节船用动力定位DP系统的定义和分类 国际海事组织和国际海洋工程承包商协会将DP定义为动力定位船舶需要装备的全部设备,包括动力系统、推进器系统和动力定位控制系统。 由于海上作业船舶对动力定位系统的可靠性要求越来越高,IMO和各国船级社都对DP提出了严格要求,制定了三个等级标准。设备等级一(DP1):在单故障的情况下可能发生定位失常。设备等级二(DP2):有源组件或发电机、推进器、配电盘遥控阀门等系统单故障时不会发生定位失常,但当电缆、管道、手控阀等静态元件发生故障时可能会发生定位失常。设备等级三(DP3):任何但故障都不会导致定位失常。DP的分级主要考虑设备的可靠性和冗余度,目的是对动力定位系统的设计标准、必须安装的设备、操作要求和试验程序等作出规定,保证DP安全可靠运行,并避免在DP作业时对人员、船舶、其他设备造成损害。 一、动力定位DP0系统 DP0船舶装备一套集控手动操作系统和航向自动保持的动力定位系统(DPS),能在最大环境条件下,使船舶的位置和航向保持在限定范围内。 二、动力定位DP1系统 DP1船舶装备具有自动定位和航向自动保持的动力定位系统(DPS),另外,还有一套独立的集控手动操作系统和航向自动保持的动力定位系统,能在最大环境条件下,使船舶的位置和航向保持在限定范围内。 三、动力定位DP2系统 DP2船舶装备系统具有自动定位和航向自动保持的动力定位系统(DPS),另外,还有两套独立的集控手动操作系统和航向自动保持的动力定位系统,即使船舶发生单个故障,能在最大的环境条件下,使船舶的位置和航向保持在限定范围内。 四、动力定位DP3系统 DP3船舶装备具有自动定位和航向自动保持的动力定位系统(DPS),另外, 3

船舶动力定位系统控制技术的发展与展望

科技创新 随着人类向深海进军,动力定位系统(dynamic position- ing,DP)越来越广泛地应用于海上作业船舶(海洋考察船、半 潜船等)、海上平台(海洋钻井平台等)、水下潜器(ROV)和军 用舰船(布雷舰、潜艇母船等)。它一般由位置测量系统,控制 系统,推力系统三部分构成。位置测量系统(传感器)测量当 前船位,控制器根据测量船位与期望值的偏差,计算出抗拒 环境干扰力(风、流、浪)使船舶恢复到期望位置所需的推力, 推力系统进行能量管理并对各推力器的推力进行分配,推力 器产生的推力使船舶(平台)在风流浪的干扰下保持设定的航 向和船位。动力定位系统的核心是控制技术,它标志着动力 定位系统的发展水平。 动力定位控制技术的发展 计算机技术,传感器和推进技术的发展,无疑给动力定 位系统带来了巨大的进步,但是真正代表动力定位技术发展 水平的还是控制技术的发展。至今动力定位控制技术已经经 历三代,其特点分别是经典控制理论、现代控制理论和智能 控制理论在动力定位控制技术中的应用。对应的是第一,二, 三代动力定位产品。 进入九十年代以后,智能控制方法在动力定位系统获得 广泛应用,逐步形成了第三代动力定位系统。Katebi等在 1997年,Donha和Tannuri2001年研究了基于鲁棒控制的 控制器,1998年,Thor I.Fossen做了全比例实验,采用李亚 普洛夫设计被动非线性观测器。非线性随机过程控制方法的 应用以及欠驱动控制逐渐成为研究的热点。神经网络,模糊 控制,遗传算法等等理论给动力定位系统控制器的研究开辟 了一片新的天地。 国内外常用的动力定位控制技术 1.PID控制 早期的控制器代表类型,以经典的PID控制为基础,分 别对船舶的三个自由度:横荡,纵荡,艏摇进行控制。风力采 用风前馈技术。根据位置和艏向偏差计算推力大小,然后确 定推力分配逻辑产生推力,实现船舶定位。这种方法在早期 曾取得成功。但是它有不可避免的缺陷:一是除了风前馈以 外,位置和艏向控制都不是以模型为基础的,属于事后控制, 控制的精度和响应的速度都有局限性;二是若在PID控制器 的基础上,采用低通滤波技术,可以滤除高频信号,但它却使 定位误差信号产生相位滞后。这种相位滞后限制了可以用于 控制器的相角裕量,因此滤波效果越好,则对控制器带宽和 定位精度的限制就愈大;三是PID参数难以选择,一旦海况 和船体有变化,PID参数将不得不重新选择。 2.LQG控制 Kalman滤波和最优控制相结合形成了线性二次高斯型 LQG控制(Linear Quadratic Guass),基于LQG控制的第二代 动力定位系统应用非常广泛。现代较多商用船舶的DP系统 都是采用的这种控制方式。 Kalman滤波器或扩展Kalman滤波器接收测量的船舶 运动综合位置信息,实现以下功能:1)滤除测量噪声和船舶高 频运动信号;2)给出船舶低频运动的状态估计值,该估计值 反馈提供给LQG最优控制器;3)状态递推,实时修正低频估 计值,在传感器故障无数据时,系统也能正常运行一段时间。 由于采用Kalman滤波或扩展Kalman滤波,取样和修正 能在同一个周期内完成,因而解决了控制中存在的由于滤波 而导致的相位滞后问题。LQG控制在节能、安全、鲁棒性能 上都有比较大的进步。控制精度和响应速度满足了大部分需 求。但它也有如下缺点:一是模型不够精确。动力定位系统设 计时,是在假设一系列固定的艏摇角度(一般线性化为36个 艏摇角,从0°到360°,间隔为10°)或者假设艏摇很小(采用小 角度理论)的基础上对运动方程进行线性化而获得的模型。 而实际的船舶定位过程是一个复杂的高度非线性的过程。上 述假设条件势必带来误差;二是计算工作量比较大。船舶动力定位系统控制技术的发展与展望 余培文陈辉刘芙蓉 摘要:船舶动力定位是深海开发的关键技术之一,随着海上油气生产向深海的发展,动力定位系统会更受重视,对控制技术也会提出更高的要求。本文简要介绍了动力定位控制技术的发展过程以及一些代表性的控制技术 在动力定位中的应用,包括PID控制,最优控制,模型参考自适应控制,反步法,模糊控制,神经网络等,最后 对动力定位控制技术的发展热点做了展望。 关键词:动力定位控制技术展望 44 CWT中国水运2009·2

哈工程(哈尔滨工程大学)船舶考研史上最全资料,包括流体力学,船舶结构力学0204192337

我有哈工程(哈尔滨工程大学)船舶考研最全资料(流体力学,船舶结构力学) 本人2012年考的哈工程的船舶,有全套的哈工程船舶考研资料。我有时放假在家,不方便发资料,需要的话请务必提前联系我: (1)船舶结构力学: a.近十三年真题(00-12年的真题),全部整理出详细答案(其他人的资料都没有答案)!! b.本科生期末考试题:2003年第一学期A卷、B卷,2004年第一学期B卷,2008-2009年第一学期B卷,2009-2010年第一学期A卷。所有期末试卷都有详细 答案!!(对于流体力学来讲,期末试题也很重要,因为很多原题就出自这些期末试题,更重要的是这些期末试题都有详细答案) c.本校辅导班内部使用的往年重点真题(均带答案)。 d.高分学子笔记;本校辅导班的2010,2011出题范围。(2)流体力学: a.近十三年真题(00-12年的真题),全部整理出详细答案(其他人的资料都没有答案)!! b.本科生期末考试题:01-02年第一学期,02-03年第 一学期,03-04年第一学期,04-05年第一学期A卷;2007年04级流体力学试卷A,2008年05级流体力学

试卷A。全部试卷都有详细答案!!!(对于流体力学来讲,期末试题比真题都重要,因为几乎所有的期末的大题都曾出现在真题上过。11年就是个典型的例子,流体力学的两个大题都是这些期末试卷里的题!!!) c.课本课后习题全部详细答案(往年很多考研原题都是课本的课后习题原题........); d.本校辅导班内部使用的往年重点真题(均带答案)。 e.哈工程的流体力学课件,本校的辅导班的 2010,2011年出题范围。 (3)复试 a.船舶设计原理题库,2011年考前三套复试笔试模 拟题 b.复试辅导班讲义,专业英语翻译. c.近三年复试的船舶设计原题真题! 资料一直更新中!!骗人的死全家!! 想要就联系我球球号953464687

动力定位(DP)系统简介知识分享

动力定位(D P)系统简 介

动力定位(DP)系统简介 作者:王卫卫 来源:《广东造船》2014年第01期 摘要:随着海洋工程项目的蓬勃发展,动力定位系统(简称DP系统)的应用已越来越广泛。本文对DP系统等级、工作原理以及根据船级社不同入级符号的设备配置等作了简单的介绍,希望能够对大家以后的开发设计及生产有所帮助。 关键词:DP;入级符号;特点;工作原理 中图分类号:P751文献标识码:A Investigation of Dynamic Positioning System WANG Weiwei ( Guangzhou Shipyard International Co., Ltd. Guangzhou 510382 ) Abstract: The application of Dynamic Positioning System (DP system) is more and more popular because of development of ocean project. The article introduce the level of DP system, work principle, the requirement of equipment according to different DP notations. I hope it is helpful to exploder, design and production in the future. Key words: DP;Classification notation;characteristic;work principle 1前言 动力定位系统(Dynamic Positioning System)简称DP系统,是从上个世纪70年代逐渐发展起来的,并逐步由浅水海域向深水海域发展,应用于各种海洋工程、海上科考、水下工程等领域。随着船舶自动化程度越来越高,DP系统的定位能力以及自动化程度也越来越高,而以上各类领域的工程项目也越来越离不开带有DP系统的海上钻井平台和船舶。本文简要介绍DP系统的工作原理,以及根据船级社不同入级符号对DP系统的等级和不同等级下设备的配置。 2DP系统工作原理 IMO给出的DP船舶定义为:仅靠推力器的推力作用能够自动保持船舶位置(固定位置或者预定航迹)的船舶。 DP系统的工作原理:由于海上海浪、风速、风向的影响,船舶或者平台在海上必然会产生移动,DP系统就是利用计算机软件对采集到的周围的环境因素如水流、风速、风向、海浪等,根据位置参照系统(GPS、罗经等)进行汇总计算后不断控制调整船舶或者平台上的各个推力器的大小和方向,从而使得船舶或者平台保持事先设定的位置。

动力定位控制系统研究

收稿日期:2007211220修回日期:2007212224 基金项目:国家“863”计划海洋技术领域“海洋油气资 源勘探开发技术”专题(2006AA09Z327)“深海平台动力定位控制系统研究” 作者简介:周 利(1983-),男,硕士生。研究方向:动力定位系统研究。 E 2m ail :zhonli20@https://www.360docs.net/doc/f12918572.html,  文章编号:167127953(2008)022******* 动力定位控制系统研究 周 利,王 磊,陈 恒 (上海交通大学海洋工程国家重点实验室,上海200030) 摘 要:回顾近年来船舶与海洋工程动力定位控制系统的研究成果,总结动力定位控制系统中的滤波技术及典型的控制策略,提出将控制系统分为主动式控制和被动式控制。 关键词:动力定位;控制系统;研究中图分类号:U661.1 文献标志码:A Review on t he St udy of Dynamic Positioning Control System for Vessels ZH OU Li ,WANGLei ,CHEN H eng (State key Laboratory of Ocean Engineering ,Shanghai Jiaotong University ,Shanghai 200030,China )Abstract :Reviewed in this paper arc the research methods on dynamic positioning control system for ves 2sels in recent years.Filtering in dynamic positioning control system ,typical control strategies are summed up.Also control system is classified into initiative control system and passive control system.Some references a 2bout dynamic positioning control system are offered. K ey w ords :dynamic positioning system ;control system 钻井平台、舰船等海洋结构物经常需要将其定位于海上某一点以进行钻井、打捞、海上救助、铺管、海洋调查、潜水等各种作业。以往,大多采用锚泊等方法进行定位,所需建设工程时间较长,尤其在深海处,锚泊定位方法存在较大困难。随着船舶与海洋工程的迅速崛起,传统的定位系统已经不能满足深海地域定位作业的要求,船舶动力定位系统能够很好地解决这一问题。它的优点是定位成本不会随着水深增加而增加,并且操作也比较方便,因此动力定位系统的研究越来越具有现实意义。 1 动力定位系统简介 动力定位系统是一种高新控制技术,广泛地 应用于船舶及海上浮式作业平台,它是一种闭环的控制系统,在不借助锚泊系统的情况下,不断检测出船舶的实际位置与目标位置的偏差,再根据外界风、浪、流等外界扰动力的影响计算出使船舶恢复到目标位置所需推力的大小,并对船舶上各推力器进行推力分配,使各推力器产生相应的推力,从而使船尽可能地保持在海平面上要求的位置上。 动力定位系统由3部分组成:①位置测量系统;②控制系统;③推力系统。其中控制系统是动力定位系统的核心部分。 海洋结构物在海上的运动是由风、水流、波浪、推力器等共同产生的。其中,风、水流、二阶波浪慢漂力以及推力器引起的运动速度为0~0.25rad/s ,称为低频;一阶波浪引起的运动速度为0.3~1.6rad/s ,称为波频。前者引起的慢漂运动 使其缓慢地漂离原来的位置,必须加以控制;后者引起高频往复运动。动力定位系统很难并且也没有必要对高频位移进行控制,因为这会大大加速推力器系统的磨损和能量的消耗。从这个角度考虑,必须在位置估计中采用滤波技术,把这3个高频分量滤掉,而滤波器就很好充当了这一角色。 第37卷 第2期2008年4月 船海工程SHIP &OCEAN EN GIN EERIN G Vol.37 No.2 Apr.2008

船舶动力定位技术简述

1.动力定位技术背景 1.1 国外动力定位技术发展 目前,国际上主要的动力定位系统制造商有Kongsberg公司、Converteam公司、Nautronix公司等。 下面分别介绍动力定位系统各个关键组成部分的技术发展现状。 1.动力定位控制系统 1)测量系统 测量系统是指动力定位系统的位置参考系统和传感器。国内外动力定位控制系统生产厂家均根据船舶的作业使命选择国内外各专业厂家的产品。位置参考系统主要采用DGPS,水声位置参考系统主要选择超短基线或长基线声呐,微波位置参考系统可选择Artemis Mk 4,张紧索位置参考系统可选择LTW Mk,激光位置参考系统可选择Fanbeam Mk 4,雷达位置参考系统可选择RADius 500X。罗经、风传感器、运动参考单元等同样选择各专业生产厂家的产品。 2)控制技术 20世纪60年代出现了第一代动力定位产品,该产品采用经典控制理论来设计控制器,通常采用常规的PID控制规律,同时为了避免响应高频运动,采用滤波器剔除偏差信号中的高频成分。 20世纪70年代中叶,Balchen等提出了一种以现代控制理论为基础的控制技术-最优控制和卡尔曼滤波理论相结合的动力定位控制方法,即产生了第二代也是应用比较广泛的动力定位系统。 近年来出现的第三代动力定位系统采用了智能控制理论和方法,使动力定位控制进一步向智能化的方向发展。智能控制方法主要体现在鲁棒控制、模糊控制、非线性模型预测控制等方面。 2001 年5 月份,挪威著名的Kongsberg Simrad 公司首次展出了一项的新产品—绿色动力定位系统(Green DP),将非线性模型预测控制技术成功地引入到动力定位系统中。Green DP 控制器由两部分组成:环境补偿器和模型预测控制器。环境补偿器的设计是为了提供一个缓慢变化的推力指令来补偿一般的环境作用力;模型预测控制器是通过不断求解一个精确的船舶非线性动态数学模型,用以预测船舶的预期行为。模型预测控制算法的计算比一般用于动力定位传统的控制器设计更加复杂且更为耗时,主要有三个步骤:1.从非线性船舶模型预测运动;2.寻找阶跃响应曲线;3.求解最佳推力。控制器结构如图所示[1]: 图1.1Green-DP总体控制图

DNV挪威船级社规范2003版 中文 6.7动力定位系统

第6篇第7章 船舶入级规范 新造船舶 特殊设备和系统 附加船级第6篇第7章 动力定位系统 2003年1月 目录页码 第一节通则 4 第二节规划通则9 第三节DP控制系统13 第四节推进器系统16 第五节电源18 第六节环境规则参数19

规范更改说明 综述 本章为上一版本的重版,也包含一些在2002年7月版本的第0部分第1章第3节列出的修改和勘误,除此之外,没有别的修改。 本章在被新的修订版替换之前有效,改版前对规范所作的少量修正和勘误,仅列表刊载在第0部分第1章第3节中,不会发行新的副刊。第0部分第1章通常于每年1月及7月修订。 修正过的各章将发给本规范的所有订户,建议再版本的购买者核对刊印在第0篇第1章第1节规范各章的最新目录,以确认该章为现行版本。

目录 第1节通则 4 A.规则 4 A 100 范围 4 A 200 入级符号 4 A 300 环境入级参数 4 B. 定义 4 B 100 通则 4 C.证书 5 C 100 通则 5 D.送审文件 5 D 100 通则 5 D 200 ern计算 5 D 300 仪表与自动化 5 D 400 推进器文本 5 D 500 电源系统文本 5 D 600 故障模式响应分析(FMEA) 6 D 700 操作手册 7 D 800 试验和海试程序 7 E.完整的DP系统测试 7 E 70 通则 7 E 200 测量系统 7 E 300 推进器 7 E 400 电源 7 E 500 联合操纵 7 E 600 完整的DP系统测试 8 E 700 DYNPOS-AUTR和DYNPOS-AUTRO的冗余测试 8 F.变更8 F 100 船东义务 8 第2节规划通则9 A. 通则9 A 100 通则 9 B. 冗余和故障模式9 B 100 通则9 B 200 冗余9 B 300 故障模式9 B 400 独立性9 B 500 对DYNPOS-AUTRO的一般要求10 C. 系统规划10 C 100 通则10 C 200 DP控制中心 11 C 300 位置控制系统的规划 11 C 400 控制面板的规划和布置 11 C 500 数据通讯链的规划与布置 12 D. 内部通讯 12 D 100 通则 12 第3节 DP控制系统13 A. 通用要求13 A 100 通则13 B. 系统规划13 B 100 操纵杆推进器控制13 B 200 推进器控制模式选择13 C. 位置参照系统13 C 100 通则13 D. 传感器14 D 100 通则14 F. 监测14 F 100 通则14 F 200 因果分析15 第4节推进器系统16 A. 通则16 A 100 适用范围16 A 200 推进器配置16 A 300 推进器控制16 A 400 指示16 第5节电源17 A. 通则17 A 100 通则17 A 200 发电机的容量和数量17 A 300 电源管理(对DYNPOS-AUTR和DYNPOS-AUTRO) 17 A 400 主配电板和分配电板的规划17 B. 控制系统电源18 B 100 通则18 B 200 软件制造18 C. 辅助系统(对DYNPOS-AUTR和DYNPOS-AUTRO) 18 C 100 通则18 C 200 燃油18 C 300 冷却水18 第6节环境规则参数 19 A. 内容描述19 A 100 通则19

哈工程--船舶动力装置复习题

船舶动力装置复习题 1、如何理解船舶动力装置的含义?它有哪些部分组成? 保证船舶正常航行、作业、停泊以及人员正常工作和生活的全部机械、设备和系统的综合体。 推进装置、辅助装置、机舱自动化系统、船舶系统。 推进装置的性能直接代表动力装置的特点。 2、简述柴油机动力装置的特点。 (1)有较高的经济性,这一优点使柴油机船的续航力大大提高,换句话说,一定续航力下所需之燃油贮备量较少;从而使营运排水量相应增加。 (2)重量轻。 (3)具有良好的机动性,操作简单,启动方便,正倒车迅速。 缺点: (1)由于柴油机的尺寸和重量按功率比例增长快,因此单机组功率受到限制,低速柴油机也仅达8×l04kW左右,中速机2.4×104kW左右,而高速机仅在9×103kW或更小。 (2)柴油机工作中的噪声、振动较大。 (3)中、高速柴油机的运动部件磨损较厉害,寿命低。 (4)柴油机在低转速时稳定性差,因此不能有较小的最低稳定转速,影响船舶的低速航行性能。另外,柴油机的过载能力也较差,在超负荷10%时,一般仅能运行1h。 3、船舶动力装置的技术特征包括哪些技术指标? (一)技术指标(二)、经济性指标(三)、运行性指标 (一)、技术指标:①功率指标②重量指标③尺寸指标 (二)、经济性指标:①主机燃料消耗率②动力装置燃料消耗率③推进装置的有效热效率 ④建造的经济性⑤营运的经济性:每海里航程的燃料消耗量---经济航速最大盈利航速 ⑥节能投资的经济标准 (三)、运行性指标:①可靠性:动力装置能正常运行的时间正常运行时间越长表示动力装置比较可靠或可靠性高,反之则可靠性低。可用船舶动力装置在使用阶段的故障发生率和因此而发生的停航时间来考核,并常以主、辅机修理间隔作为衡量依据,故要求其主要零、部件及易损件的使用寿命较长。 ②机动性:指装置中的各种机器设备,改变工况时的工作性能。 ③振动和噪声的控制 ④主机遥控和机舱自动化 ⑤动力性和配合性:指柴油机动力的发挥和利用情况及与螺旋桨的配合性能 4、如何理解经济航速的含义? 每海里航程装置的燃料消耗量最低 5、何谓柴油机功率减额输出? 根据柴油机工作原理,为提高柴油机的热效率,即降低柴油机燃油消耗率的方法之一是提高气缸内最高燃烧压力P max和平均有效压力P e的比值。P max/P e越大,柴油机指示热效率ηi高,燃油消耗率可降低。如果提高P max会受发动机机械负荷限制,只有降低使用负荷P e来实现。所谓减额输出,即把最高燃烧压力维持在标定功率时的最高燃烧压力,降低标定功率时的有效压力,使二者比值增大,来实现比标定功率时低的燃油消耗率。对同一缸径及行程的柴油机,在改变匹配的增压器通道截面、改变气缸压缩容积(用改变活塞杆下部垫片厚度的方法),并用一种可变定时的喷油泵,使其在某一负荷范围内保持其最大燃烧压大不变,以形成一个降低燃油消耗率的功率及转速的输出范围。

DNV动力定位规范

RULES FOR CLASSIFICATION OF D ET N ORSK E V ERITAS Veritasveien 1, NO-1322 H?vik, Norway Tel.: +47 67 57 99 00 Fax: +47 67 57 99 11SHIPS NEWBUILDINGS SPECIAL EQUIPMENT AND SYSTEMS ADDITIONAL CLASS PART 6 CHAPTER 7 DYNAMIC POSITIONING SYSTEMS JANUARY 2004 This booklet includes the relevant amendments and corrections shown in the July 2007 version of Pt.0 Ch.1 Sec.3. CONTENTS PAGE Sec.1General Requirements (5) Sec.2General Arrangement (11) Sec.3Control System (15) Sec.4Thruster Systems (18) Sec.5Power Systems (19) Sec.6Environmental Regularity Numbers (21)

CHANGES IN THE RULES Comments to the rules may be sent by e-mail to rules@https://www.360docs.net/doc/f12918572.html, For subscription orders or information about subscription terms, please use distribution@https://www.360docs.net/doc/f12918572.html, Comprehensive information about DNV and the Society's services is found at the Web site https://www.360docs.net/doc/f12918572.html, ? Det Norske Veritas Computer Typesetting (FM+SGML) by Det Norske Veritas Printed in Norway If any person suffers loss or damage which is proved to have been caused by any negligent act or omission of Det Norske Veritas, then Det Norske Veritas shall pay compensation to such person for his proved direct loss or damage. However, the compensation shall not exceed an amount equal to ten times the fee charged for the service in question, provided that the maximum compen-sation shall never exceed USD 2 million. In this provision "Det Norske Veritas" shall mean the Foundation Det Norske Veritas as well as all its subsidiaries, directors, officers, employees, agents and any other acting on behalf of Det Norske Veritas. General. The present edition of the rules includes additions and amendments decided by the board in November 2003, and supersedes the January 2003 edition of the same chapter. The rule changes come into force on 1 July 2004. This chapter is valid until superseded by a revised chapter. Supple-ments will not be issued except for an updated list of minor amend-ments and corrections presented in Pt.0 Ch.1 Sec.3. Pt.0 Ch.1 is normally revised in January and July each year. Revised chapters will be forwarded to all subscribers to the rules.Buyers of reprints are advised to check the updated list of rule chap-ters printed Pt.0 Ch.1 Sec.1 to ensure that the chapter is current. Main changes —Steering gears shall be designed for continuous operation when they form part of the DP-system. Testing requirements to steer-ing gear shall also be specified. —The specific requirement for certification of UPS used for DP control systems is removed. Certification of UPSs now shall fol-low main class requirements in Pt.4 Ch.8 Electrical Systems.—Requirement for certification of the independent joystick system required for notations DYNPOS-AUT , DYNPOS-AUTR and DYNPOS-AUTRO introduced. —The new rules give opening for one of the three gyros required for notation DYNPOS-AUTR and DYNPOS-AUTRO to be re-placed by a heading device based upon another principle, as long as this heading device is type approved as a THD (Transmitting Heading Device) as specified in IMO Res. MSC.116 (73). — The possibility for letting the independent joystick system use the same redundant network as the DP control system is re-moved. In the new rules the independent joystick system may share the communication link with the manual control, but not with the DP-control system. —More specific requirements to the effect of failures in the inde-pendent joystick control system. —Power supply for the independent joystick system is now re-quired to be independent of the DP control system UPSs. —The input power supply to the redundant UPSs is now required derived from different sides of the main switchboard. — Specification of power supply arrangement for position reference systems (PRS). The requirement is now that the power supply shall be in line with the overall redundancy requirements. PRSs shall still be powered from UPS. —The requirement for full separation between fuel oil systems de-signed with redundancy for notation DYNPOS-AUTR is clari-fied. —The new rules require FMEAs for Power Management Systems.— Requirement for DP-Control centre arrangement and layout doc-umentation is introduced. Corrections and Clarifications In addition to the above stated rule requirements, a number of correc-tions and clarifications have been made in the existing rule text.

中国动力定位系统行业产品价格监测(中元智盛)

北京中元智盛市场研究有限公司

中国动力定位系统行业产品价格监测.............................. 错误!未定义书签。 第一节动力定位系统市场价格特征 (2) 第二节当前动力定位系统市场价格评述 (2) 第三节影响动力定位系统市场价格因素分析 (2) (一)产品成本 (2) (二)市场需求 (3) (三)竞争因素 (3) (四)其他因素 (3) 第四节未来动力定位系统市场价格走势预测 (4) 1

2 第一节 动力定位系统市场价格特征 近年来,国内动力定位系统产品的市场价格逐年上涨,其中2012年为2747.26万元/台套,到2016年则达到3185.27万元 /台套。 图表- 1:2012-2017年9月中国动力定位系统市场价格分析 数据来源:市场调研 第二节 当前动力定位系统市场价格评述 目前,动力定位系统产品一共有3种类别,分别为DP1、DP2、DP3,其中DP1价格最低,而DP3所需技术要求最高,价格也最高。 第三节 影响动力定位系统市场价格因素分析 企业定价不同,反应出来的最后市场上产品的价格也会有所不同。影响国内动力定位系统价格的因素很多,有企业内部因素,也有企业外部因素;有主观的因素,也有客观的因素。概括起来,大体上可以有产品成本、市场需求、竞争因素和其他因素四个方面。 (一)产品成本 在实际工作中,产品的价格是按成本、利润和税金三部分来制定的。成本又可分解为固定成本和变动成本。产品的价格有时是由总成本决定的,有时又仅由

变动成本决定。成本有时又分为社会平均成本和企业个别成本。就社会同类产品市场价格而言,主要的是受社会平均成本影响。在竞争很充分的情况下,企业个别成本高于或低于社会平均成本,对产品价格的影响不大。 企业定价时,不应将成本孤立地对待,而应同产量、销量、资金周转等因素综合起来考虑。成本因素还要与影响价格的其他因素结合起来考虑。 (二)市场需求 产品价格除受成本影响外,还受市场需求的影响。即受商品供给与需求的相互关系的影响。当商品的市场需求大于供给时,价格应高一些;当商品的市场需求小于供给时,价格应低一些。反过来,价格变动影响市场需求总量,从而影响销售量,进而影响企业目标的实现。因此,企业制定价格就必须了解价格变动对市场需求的影响程度。反映这种影响程度的一个指标就是商品的价格需求弹性系数。 (三)竞争因素 1、完全竞争是一种理想化了的极端情况。在完全竞争条件下,买者和卖者都大量存在,产品都是同质的,不存在质量与功能上的差异,企业自由地选择产品生产,买卖双方能充分地获得市场情报。在这种情况下,无论是买方还是卖方都不能对产品价格进行影响,只能在市场既定价格下从事生产和交易。 2、不完全竞争是现实中存在的典型的市场竞争状况。不完全竞争条件下,最少有两个以上买者或卖者,少数买者或卖者对价格和交易数量起着较大的影响作用,买卖各方获得的市场信息是不充分的,它们的活动受到一定的限制,而且它们提供的同类商品有差异,因此,它们之间存在着一定程度的竞争。在不完全竞争情况下,企业的定价策略有比较大的回旋余地,它既要考虑竞争对象的价格策略,也要考虑本企业定价策略对竞争态势的影响。 3、完全垄断是指一种商品的供应完全由独家控制,形成独占市场。在完全垄断竞争情况下,交易的数量与价格由垄断者单方面决定。完全垄断在现实中也很少见。 (四)其他因素 3

相关文档
最新文档