热设计方法

太阳能集热器的设计与计算

华扬公司工程计算举例: 客户要求 1)、项目名称:河南郑州太阳能集中热水工程; 2)、用水类型:全天 3)、用水量:3吨/天 4)、用水方式:落水式 5)、辅助能源:电加热 设计气象参数依据 1)、河南郑州在我国为二等太阳能辐照度地区。太阳辐射强度高,但总量大,年辐射总量为 16.41 MJ/m2.a。 2)、郑州地理纬度为34°43′,东经113°21′左右; 3)、郑州地区全年自来水水温在5-12℃之间。(设计取值8℃,春分时节); 确定总用水量 人均用水当量参照给排水设计规范,如下表:

选择初始水温:

参照下表,采用设计冷水水温为8℃。 集热面积计算 将已知条件“用户设计用水量3吨,日平均辐射量16.41MJ/㎡,,设计热水温度为50℃,初始水温8℃。,太阳能保证率取0.5(系统要求全年使用)”等参数代入国家标准 GB 50364-2005《民用建筑太阳能热水系统应用技术规范》中 直接循环系统计算公式,集热面积c A 为: )1()(L cd T i end w w c J f t t C Q A ηη--= c A ——直接系统集热器采光面积,㎡; w Q ——日均用水量Kg ;3000L end t ——储水箱内水的终止温度(用水温度);50℃ w C ——水的定压比热容,4.18 KJ/(㎏2℃); i t —— 自来水的初始温度,8℃; t J ——集热器受热面上春分时节日辐照量,取16410KJ/m 2 f ——太阳能保证率,无量纲,0.5;

cd η——集热器全日集热效率,无量纲, L η—管路及储水箱热损失率(按最寒冷季节取值),无量纲, 取0.3; 则: Ac=Q W C W (t end - t i )f/J T η cd (1-η L )= 3000 ㎏34.18 KJ/㎏2℃3 (50℃-8℃)350%÷{16410 KJ/㎡30.53(1-0.3)}≈45.85㎡ 选择用全玻璃管联箱横插直接循环集热器,直径47*1500/每组50支(集热面积5.41,配水量300-500L平均每只管带6—10L)9组,从而提供3T热水,(即取每只带水箱水6.7L水箱水的容积。) 参数表

热交换器设计说明书

结构设计 管箱设计 参照标准GB151-2014 壳体内径DN=450mm,材料为Q235,许用应力[δ]=125Mpa,壳体厚度δ=8mm,采用卷制。 接管 管程接管:Ф159×8,无缝钢管,材料为10号钢,L=100mm。 壳程接管:Ф219×8,无缝钢管,材料为10号钢,L=100mm。 管板 固定管板材料为Q235 Pg=1.6Mpa,厚度b=40mm。 具体尺寸(:mm) DN D D1 D2 D3 D4 D5 d2 450 565 530 500 447 487 450 18 螺栓规格数量 b f b P s P t M16 24 30 40 0.6 1.0

折流板 选取弓形折流板,上下缺口,材料Q235,缺口高度h=112.5mm,板间距l s =237.5mm, 进出口板间距L s,i =l s,o =260mm,厚度δ=6mm,外径D b=446.5mm,折流板数目9,经 计算换热与结构均符合要求。 拉杆 材料为Q235,选用Ф=16的拉杆4根,具体位置及装配方式见装配图,一端与管板采用螺纹连接,另一端用螺母固定在折流板上。 封头 选用材料为16Mn的椭圆形标准封头,取壁厚8mm。 H=137 h=25 D i =450 分程隔板 选用材料Q235,厚度为8mm,宽450mm,长489mm,一端为和封头形状相同的圆冠,另一端为平面,分程隔板焊于管箱内。 支座(JB-T4712.1-2007) DN450 120包角焊制,单筋,带垫板 L 1 b 1 δ 1 δ 2 b 3 δ 3 弧长 b 4 δ 4 e L 2 420 120 8 8 96 8 540 200 6 48 290

散热器设计的基本计算(最新整理)

散热器设计的基本计算 一、概念 1、热路:由热源出发,向外传播热量的路径。在每个路径上,必定经过一些不同的介质, 热路中任何两点之间的温度差,都等于器件的功率乘以这两点之间的热阻,就像电路中的欧姆定律,与电路等效关系如下。 热路电路 热耗P (W)电流V ab I (A) 温差△T=T1-T2 (℃)电压V ab=V a-V b(V) 热阻R th=△T/P (℃/ W)电阻R=V ab/I (Ω) 热阻串联R th=R th1+R th2+…电阻串联R=R1+R2+… 热阻并联1/R th=1/R th1+1/R th2+…电阻并联1/R=1/R1+1/R2+… 2、热阻:在热路中,各种介质及接触状态,对热量的传递表现出的不同阻碍作用—— 在热路中产生温度差,形成对热路中两点间指标性的评价。 符号——Rth 单位——℃/W。 ?稳态热传递的热阻计算: R th= (T1-T2)/P T1——热源温度(无其他热源)(℃) T2——导热系统端点温度(℃) ?热路中材料热阻的计算: R th=L/(K·S) L——材料厚度(m) S——传热接触面积(m2) 3、导热率:是指当温度垂直向下梯度为1℃/m时,单位时间内通过单位水平截面积所 传递的热量。 符号——K or λ单位——W/m-K,

铝合金10702261900平面 铝合金1050209硅胶垫佳日丰泰 5.0铝合金6063201矽胶套帽佳日丰泰 1.0铝合金6061160相变基膜佳日丰泰 1.4铝合金7075 130矽硅膜鑫鑫顺源0.9铁80导热膏KDS-2 0.84不锈钢17 空气 0.04 二、热设计的目标 1、确保任何元器件不超过其最大工作结温(T jmax ) ?推荐:器件选型时应达到如下标准 民用等级:T jmax ≤150℃ 工业等级:T jmax ≤135℃军品等级:T jmax ≤125℃ 航天等级:T jmax ≤105℃ ?以电路设计提供的,来自于器件手册的参数为设计目标2、温升限值 器件、内部环境、外壳: △T ≤60℃ 器件每升高2℃,可靠性下降10%;器件温升为50℃时,寿命只有温升25℃的1/6,电解电容温升超过10℃,寿命下降1/2。三、计算 1、TO220封装+散热器 1)结温计算?热路分析 热传递通道:管芯j →功率外壳c →散热器 s →环境空气a

热交换器的选型和设计指南

热交换器的选型和设计指南

目录 1 概述 (1) 2 换热器的分类及结构特点。 (1) 3 换热器的类型选择 (2) 4 无相变物流换热器的选择 (11) 5 冷凝器的选择 (13) 6 蒸发器的选择 (14) 7 换热器的合理压力降 (17) 8 工艺条件中温度的选用 (18) 9 管壳式换热器接管位置的选取 (19) 10 结构参数的选取 (19) 11 管壳式换热器的设计要点 (23) 12 空冷器的设计要点 (32) 13 空冷器设计基础数据 (35)

1 概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。 2 换热器的分类及结构特点。 表 2-1 换热器的结构分类

3 换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1) 热负荷及流量大小 2) 流体的性质 3) 温度、压力及允许压降的范围 4) 对清洗、维修的要求 5) 设备结构、材料、尺寸、重量 6) 价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100°C以下到 1100°C高温。此外,它还具有容量

热交换器设计计算

热交换器设计计算 一、基本参数 管板与管箱法兰、壳程圆筒纸之间的连接方式为e 型 热交换器公称直径DN600,即D i =600mm 换热管规格φ38?2,L 0=3000mm 换热管根数n=92 管箱法兰采用整体非标法兰 管箱法兰/壳体法兰外直径D f =760mm 螺柱孔中心圆直径D b =715mm 壳体法兰密封面尺寸D 4=653mm 二、受压元件材料及数据 以下数据查自GB 150.2—2011; 管板、法兰材料:16Mn 锻件 NB/T 47008—2010 管板设计温度取 10℃ 查表9,在设计温度100℃下管板材料的许用应力: =t r σ][178Mpa (δ≤100mm ) 查表B.13,在设计温度100℃壳体/管箱法兰/管板材料的弹性模量: Mpa 197000 E E E p f f ===’’’ 壳程圆筒材料:Q345R GB 713 壳程圆筒的设计温度为壳程设计温度 查表2,在设计温度100℃下壳程圆筒材料的许用应力: =t c σ][189Mpa (3mm <δ≤16mm ) 查表B.13,在设计温度10℃下壳程圆筒材料的弹性模量Mpa 197000E s = 查表B.14在金属温度20℃~80℃范围内,壳程圆筒材料平均线膨胀系数: ℃) (α??=mm /mm 10137.15-s 管程圆筒材料:Q345R GB 713 管程圆筒的设计温度为壳程设计温度 按GB/T 151—2014 中7.4.6.1规定,管箱圆筒材料弹性模量,当管箱法兰采用长颈对焊法兰时,取管箱法兰的材料弹性模量,即Mpa 197000E h = 换热管材料:20号碳素钢管 GB 9948 换热管设计温度取100℃ 查表6,在设计温度100℃下换热管材料的许用应力Mpa 147σ][t t =(δ≤16mm ) 查表B.3,设计温度100℃下换热管材料的屈服强度Mpa 220R t eL =(δ≤16mm )

电子产品散热设计概述(doc 45页)

电子产品散热设计概述(doc 45页) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

YEALINK 行业 dell

电子产品的散热设计 一、为什么要进行散热设计 在调试或维修电路的时候,我们常提到一个词“**烧了”,这个**有时是电阻、有时是保险丝、有时是芯片,可能很少有人会追究这个词的用法,为什么不是用“坏”而是用“烧”?其原因就是在机电产品中,热失效是最常见的一种失效模式,电流过载,局部空间内短时间内通过较大的电流,会转化成热,热**不易散掉,导致局部温度快速升高,过高的温度会烧毁导电铜皮、导线和器件本身。所以电失效的很大一部分是热失效。 高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。 温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致元件失效。 那么问一个问题,如果假设电流过载严重,但该部位散热极好,能把温升控制在很低的范围内,是不是器件就不会失效了呢?答案为“是”。 由此可见,如果想把产品的可靠性做高,一方面使设备和零部件的耐高温特性提高,能承受较大的热应力(因为环境温度或过载等引起均可);另一方面是加强散热,使环境温度和过载引起的热量全部散掉,产品可靠性一样可以提高。 二、散热设计的目的 控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度。最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。 三、散热设计的方法 1、冷却方式的选择 我们机电设备常见的是散热方式是散热片和风扇两种散热方式,有时散热的程度不够,有时又过度散热了,那么何时应该散热,哪种方式散热最合适呢?这可以依据热流密度来评估,热流密度=热量 / 热通道面积。 按照《GJB/Z27-92 电子设备可靠性热设计手册》的规定(如下图1),根据可接受的温升的要求和计算出的热流密度,得出可接受的散热方法。如温升40℃(纵轴),热流密度0.04W/cm2(横轴),按下图找到交叉点,落在自然冷却区内,得出自然对流和辐射即可满足设计要求。

冷凝器设计计算资料

冷凝器设计计算

冷凝器换热计算 第一部分:设计计算一、设计计算流程图

二、 设计计算(以HLR45S 为例) 1、已知参数 换热参数: 冷凝负荷:Q k =61000W 冷凝温度:t k =50℃ 环境风温度:t a1=35℃ 冷凝器结构参数: 铜管排列方式:正三角形叉排 翅片型式:开窗片,亲水膜 铜管型式:光管 铜管水平间距:S 1=25.4mm 铜管竖直方向间距:S 2=22mm 紫铜光管外径:d 0=9.52mm 铜管厚度:δt =0.35mm 翅片厚度:δf =0.115mm 翅片间距:S f =1.8mm 冷凝器尺寸参数 排数:N C =3排 每排管数:N B =52排 2、计算过程 1)冷凝器的几何参数计算 翅片管外径:f b d d δ20+== 9.75 mm

铜管内径:t i d d δ-=0=8.82 mm 当量直径:) ()(2))((4411f f b f f b eq S d S S d S U A d δδ-+---= ==3.04 mm 单位长度翅片面积:32 2110/)4 (2-?- =f b f S d S S f π=0.537 m 2/m 单位长度翅片间管外表面积:310/)(-?-=f f f b b s S d f δπ=0.0286 m 2/m 单位长度翅片管总面积:b f t f f f +==0.56666 m 2/m 翅片管肋化系数:i t i t d f f f πβ===20.46 2)空气侧换热系数 迎面风速假定:f w =2.6 m/s 最窄截面处风速:))(/(11max b f f f f d S S w S S w --=δ=4.5 m/s 冷凝器空气入口温度为:t a1=35℃ 取出冷凝器时的温度为:t a2=43℃ 确定空气物性的温度为:2/)(21a a m t t t +==39℃ 在tm =39℃下,空气热物性: v f =17.5×10-6m 2/s ,λf =0.0264W/mK ,ρf =1.0955kg/m 3,C Pa =1.103kJ/(kg*℃) 空气侧的雷诺数:f eq f v d w /Re max = =783.7 由《制冷原理与设备》中公式(7-36),空气侧换热系数 m eq eq n f f O d d C ??? ? ??= γλαRe '=50.3 W/m 2K 其中: 362)( 103)( 000425.0)( 02315.0518.0eq eq eq d d d A γ γ γ -?-+-==0.1852

热交换器原理与设计

绪论 1. 2.热交换器的分类: 1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等 2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式 4)按照传送热量的方法来分:间壁式,混合式,蓄热式 恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。 过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。 第一章 1.Mc1℃是所需的热量,用W表示。两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。 2.W—对应单位温度变化产生的流动流体的能量存储速率。 4.顺流和逆流情况下平均温差的区别:在顺流时,不论W1、W2值的大小如何,总有μ>0,因而在热流体从进口到出口的方向上,两流体间的温差△t总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1<W2时,μ>0,△t不断降低,当W1>W2时,μ<0,△t不断升高。 5.P(定义式P12) 物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。 6.R—冷流体的热容量与热流体的热容量之比。(定义式P12) 7.从φ值的大小可看出某种流动方式在给定工况下接近逆流的程度。除非处于降低壁温的目的,否则最好使φ>0.9,若φ<0.75就认为不合理。 (P22 例1.1) 8.所谓Qmax是指一个面积为无穷大且其流体流量和进口温度与实际热交换器的流量和进口温度相同的逆流型热交换器所能达到的传热量的极限值。 9.实际传热量Q与最大可能传热量Qmaxε表示,即ε=Q/Qmax。意义:以温度形式反映出热、冷流体可用热量被利用的程度。 10.根据ε的定义,它是一个无因次参数,一般小于1。其实用性在与:若已知ε及t1′、t2′时,就可很容易地由Q=εW min(t1′-t2′)确定热交换器的实际传热量。 11.带翅片的管束,在管外侧流过的气体被限制在肋片之间形成各自独立的通道,在垂直于 流动方向上(横向)不能自由运动,也就不可能自身进行混合,

散热器的选型与计算..

散热器的选型与计算 以7805 为例说明问题. 设I=350mA,Vin=12V, 则耗散功率Pd=(12V-5V)*0.35A=2.45W 按照TO-220封装的热阻θ JA=54℃/W,温升是132℃, 设室温25℃,那么将会达到7805的热保护点150℃,7805 会断开输出. 正确的设计方法是: 首先确定最高的环境温度, 比如60℃, 查出7805 的最高结温TJMAX=125℃ , 那么允许的温升是65℃. 要求的热阻是65℃ /2.45W=26℃/W.再查7805 的热阻,TO-220 封装的热阻θ JA=54℃/W, 均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候, 应该加上4℃/W 的壳到散热片的热阻. 计算散热片应该具有的热阻也很简单, 与电阻的并联一样, 即 54//x=26,x=50 ℃/W.其实这个值非常大, 只要是个散热片即可满足. 散热器的计算: 总热阻RQj-a=(Tjmax-Ta)/Pd Tjmax : 芯组最大结温150℃ Ta : 环境温度85℃ Pd : 芯组最大功耗 Pd=输入功率- 输出功率 ={24×0.75+(-24) ×(-0.25)}-9.8 ×0.25 ×2

=5.5 ℃ /W 总热阻由两部分构成,其一是管芯到环境的热阻RQj-a, 其中包括结壳热阻RQj-C 和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻. 管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a 应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C 其中k:导热率铝为2.08 d: 散热器厚度cm A: 散热器面积cm2 C: 修正因子取1 按现有散热器考虑,d=1.0 A=17.6×7+17.6 ×1×13 算得散热器热阻RQd-a=4.1℃ /W, 散热器选择及散热计算目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。 散热计算 任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散热措施,则管芯的温度可达到或超过允许的结温,器件将受到损坏。因此必须加散热装置,最常用的就是将功率器件安装在散热器上,利

热交换器设计

热交换器设计 在采用一体化布置的高温气冷堆中,为了使预应力混凝土压力容器体积不致过大,蒸汽发生器应尽量紧凑,严格限制受热面空间布置,并要求其具有较高的功率密度。因此,一体化布置的高温气冷反应堆主要选用直流型多头螺旋管式蒸汽发生器。 本文从实际工程设计出发,对多头螺旋管式蒸汽发生器的设计进行了研究,提出了多头螺旋管束受热面结构的设计方法,推荐了螺旋管内外的传热系数和压降的计算关系式。根据所提出设计方法和螺旋管内外的传热系数和压降的计算关系式对260MW蒸汽发生器进行了设计计算。 由于螺旋管具有占地面积小、传热系数大、结构紧凑、易于清洗、污垢热阻小等优点,不仅在核反应堆,而且在直流锅炉、急冷锅炉、各种石油化工设备中的换热器,热交换器都有相当广泛的应用。因此本文得到的结果不仅适用于高温气冷反应堆的蒸汽发生器,而且适用于各种工业设备中的螺旋管式换热器和螺旋管式热交换器。 - I -

- II - 主要符号表 英 文 字 母 pf c 液体比热,W /kg ℃; D 螺旋直径,m ; c D 中心柱直径,m ; d D 套筒直径,m ; d 管子外径,m ; i d 管子内径,m ; aeff n i F F F ,, 所示的修正系数,无因次; G 质量流速,kg/sm 2; H 管束高度,m ; h 螺旋管导程,m ; mac h 对流放热系数,W/m 2℃; mic h 核沸腾放热系数,W/m 2℃; f K 液体的导热系数,W/m ℃; L 螺旋管长度,m ; M 头数,个; Nu 努塞尔特数,无因次; g Nu 汽相努塞尔特数,无因次; n 轴向方向管子排数,个; w g ,Pr 管壁温度确定的汽相pr 数,无因次; Pr 普朗特数,无因次; Re 雷诺数,无因次;

热交换器原理与设计题库考点整理史美中

热交换器原理与设计 题型:填空20%名词解释(包含换热器型号表示法)20% 简答10%计算(4题)50% 0 绪论 ?热交换器:将某种流体的热量以一定的传热方式传递给他种流体的设备。(2013-2014学年第二学期考题[名词解释]) ?热交换器的分类:按照热流体与冷流体的流动方向分为:顺流式、逆流式、错流式、混流式 ?按照传热量的方法来分:间壁式、混合式、蓄热式。(2013-2014学年第二学期考题[填空]) 1 热交换器计算的基本原理(计算题) ?热容量(W=Mc):表示流体的温度每改变1℃时所需的热量?温度效率(P):冷流体的实际吸热量与最大可能的吸热量的比率(2013-2014学年第二学期考题[名词解释]) ?传热有效度(ε):实际传热量Q与最大可能传热量Q max之比 2 管壳式热交换器 ?管程:流体从管内空间流过的流径。壳程:流体从管外空间流过的流径。 ?<1-2>型换热器:壳程数为1,管程数为2 ?卧式和立式管壳式换热器型号表示法(P43)(2013-2014学年第二学期考题[名词解释])

记:前端管箱型式:A——平盖管箱B——封头管箱 壳体型式:E——单程壳体 F——具有纵向隔板的双程壳体 H——双分流 后盖结构型式:P——填料函式浮头 S——钩圈式浮头 U——U 形管束 ?管子在管板上的固定:胀管法和焊接法 ?管子在管板上的排列:等边三角形排列(或称正六边形排列)法、同心圆排列法、正方形排列法,其中等边三角形排列方式是最合理的排列方式。(2013-2014学年第二学期考题[填空]) ?管壳式热交换器的基本构造:⑴管板⑵分程隔板⑶纵向隔板、折流板、支持板⑷挡板和旁路挡板⑸防冲板 ?产生流动阻力的原因:①流体具有黏性,流动时存在着摩擦,是产生流动阻力的根源;②固定的管壁或其他形状的固体壁面,促使流动的流体内部发生相对运动,为流动阻力的产生提供了条件。 ?热交换器中的流动阻力:摩擦阻力和局部阻力 ?管壳式热交换器的管程阻力:沿程阻力、回弯阻力、进出口连接管阻力 ?管程、壳程内流体的选择的基本原则:(P74) 管程流过的流体:容积流量小,不清洁、易结垢,压力高,有腐蚀性,高温流体或在低温装置中的低温流体。(2013-

散热器简化设计计算方法

壁挂散热器价格简化设计计算方法 一. 金旗舰散热量Q的计算 1.基本计算公式: Q=S×W×K×4.1868÷3600 (Kw) 式中: ①.Q —散热器散热量(KW)=发动机水套发热量×(1.1~1.3) ②.S —散热器散热面积(㎡)=散热器冷却管的表面积+2×散热带 的表面积。 ③.W —散热器进出水、进出风的算术或对数平均液气温差(℃), 设计标准工况分为:60℃、55℃、45℃、35℃、25℃。它们分别对应散热器允许适用的不同环境大气压和自然温度工况条件。④.K —散热系数(Kcal/m.h.℃)。它对应关联为:散热器冷却管、散热带、钎焊材料选用的热传导性能质量的优劣;冷却管与散热带钎焊接合率的质量水平的优劣;产品内外表面焊接氧化质量水平的优劣;冷却管内水阻值(通水断面积与水流量的对应关联—水与金属的摩擦流体力学),散热带风阻值(散热带波数、波距、百叶窗开窗的翼宽、角度的对应关联—空气与金属的摩擦流体阻力学)质量水平的优劣。总体讲:K值是代表散热器综合质量水平的关键参数,它包容了散热器从经营管理理念、设计、工装设备、物料的选用、采购供应、制造管理控制全过程的综合质量水平。根据多年的经验以及

数据收集,铜软钎焊散热器的K值为:65~95 Kcal/m2.h.℃;改良的簿型双波浪带铜软钎焊散热器的K值为:85~105 Kcal/m2.h.℃;铝硬钎焊带电子风扇系统的散热器的K值为:120~150 Kcal/m2.h.℃。充分认识了解掌握利用K值的内涵,可科学合理的控制降低散热器的设计和制造成本。准确的K值需作散热器风洞试验来获取。 ⑤.4.1868和3600 —均为热能系数单位与热功率单位系数换算值⑥.发动机水套散热量=发动机台架性能检测获取或根据发动机升功 率、气门结构×经验单位系数值来获取。 二、计算程序及方法 1. 散热面积S(㎡) S=冷却管表面积F1+2×散热带表面积F2 F1={ [2×(冷却管宽-冷却管两端园孤半径)]+2π冷却管两端园孤半径}×冷却管有效长度×冷却管根数×10 F2=散热带一个波峰的展开长度×一根散热带的波峰数×散热带的 宽度×散热带的根数×2×10 2. 算术平均液气温差W(℃) W=[(进水温度+出水温度)÷2]-[(进风温度+出风温度)÷2] 常用标准工况散热器W值取60℃,55℃,增强型取45℃,35℃。这要根据散热器在什么工况环境使用条件下来选取。 3. 散热系数K

发动机散热器的设计计算

发动机散热器的设计计算 散热片面积是冷却水箱的基本参数,通常单位功率所需散热面积为0.20~0.28㎡/KW。发动机后置的车辆冷却条件比较差,工程机械行走速度慢没有迎风冷却,因此所配置的水箱散热面积宜选用上限。 水箱所配相关管道不能太小,其中四缸机的管道内径≧37mm,六缸机的管道内径≧42mm。 水箱迎风面积要求尽可能大一点,通常情况下为0.31~0.37㎡/KW,后置车、工程车辆还要大一些,由于道路条件改善,长时间的高速公路上高速行驶,或者容易超载,经常爬坡的车辆也要选得大一点。 对冷却液的要求: 1.冷却作用:有效的带走一定的热量,使发动机得到冷却,防止过热。 2.防冻作用:防止冷却液结冰而导致水箱和柴油机水腔冻裂。 3.防氧化和腐蚀:冷却液可防止金属件的氧化和腐蚀。 为改善发动机的工作条件,进一步提高其冷却性能,发动机后置或者重型车都配置了膨胀水箱。膨胀水箱应高于散热水箱50mm左右,必须具有相当于冷却系统总容积6%的冷却液膨胀空间,储备水量应是冷却系统总容积的11%,有暖风时达到20%,冷却液液面不能淹没加水伸长颈管,加水伸长颈管上部必须设通气孔,通气管不宜小于φ3.2mm,膨胀水箱最低液面以下水深不得低于50mm,以防止空气进入注水管。 由于受到发动机水循环系统进出口口径大小的限制,发动机进水接口外径为34mm(散热器出水接口外径也为34mm),发动机回水接口外径为35mm(散热器回水接口外径为35mm)。 本产品所选用的发动机额定功率为:110kw 在设计或选用冷却部件时应以散入冷却系统的热量Q为原始数据,来计算冷却系统的循环水量和冷却空气量:

用经验式 =???==3600 21.0431*******.03600u e e W h p Ag Q 69.14kJ/s=59450kcal/h 燃料热能传给冷却系的分数,取同类机型的统计量,%,柴油机A=0.23~0.30,取A=0.25 e g -燃料消耗率,kg/kw.h ;柴油机为0.210 e P -发动机有效功率,取最大功率110kw 若水冷式机油散热器,要增加散热量,W Q 增大5%~10%. 在算出发动机所需的散走的热量后,可计算冷却水循环量 187.41000814.69??=?= W W W W W C r t Q V =206.41L/min W t ?-冷却水循环的容许温升(6?-12?),取8? W r -水的密度,(1000kg/3m ) W C -水比热(4.187kJ/kg.C ?) 实际冷却水循环量为:==W a V V 2.1247.69L/min 冷却空气需要量:047.101.12014.69??=?= Pa W W W W C r t Q V =3.27m 3/s a t ?-散热器前后流动空气的温度差,取20C ? a r -空气密度,一般a r 取1.01kg/3m Pa C -空气的定压比热,可取Pa C =1.047kJ/kg.C ? 二.散热器设计 1.散热器的计算所根据的原始参数是散热器散发的热量和散热器的外形尺寸。 散热器散发的热量就等于发动机传给冷却液的热量。 已知散热器散发的热量后,所需散热面积F 可由下式计算:

技术讲座--热设计基础

【技术讲座】热设计基础(一):热即是“能量”,一切遵循能量守恒定律 在开发使用电能的电子设备时,免不了与热打交道。“试制某产品后,却发现设备发热超乎预料,而且利用各种冷却方法都无法冷却”,估计很多读者都会有这样的经历。如果参与产品开发的人员在热设计方面能够有共识,便可避免这一问题。下面举例介绍一下非专业人士应该知道的热设计基础知识。 “直径超过13cm,体积庞大,像换气扇一样。该风扇可独立承担最大耗电量达380W的PS3的散热工作”。 以上是刊登在2006年11月20日刊NE Academy专题上的“PlayStation3”(PS3)拆解报道中的一句话。看过PS3内像“风扇”或“换气扇”一样的冷却机构,估计一定会有人感到惊讶。 “怎么会作出这种设计?” “这肯定是胡摸乱撞、反复尝试的结果。” “应该运用了很多魔术般的最新技术。” “简直就是胡来……” 大家可能会产生这样的印象,但事实上并非如此。 PS3的冷却机构只是忠实于基础,按照基本要求累次设计而成。既没有胡摸乱撞,也不存在魔术般的最新技术。 在大家的印象里,什么是“热设计”呢?是否认为像下图一样,是“一个接着一个采取对策”的工作呢?其实,那并不能称为是“热设计”,而仅仅是“热对策”,实际上是为在因热产生问题之后,为解决问题而采取的措施。

如果能够依靠这些对策解决问题,那也罢了。但是,如果在产品设计的阶段,其思路存在不合理的地方,无论如何都无法冷却,那么,很可能会出现不得不重新进行设计的最糟糕的局面。 而这种局面,如果能在最初简单地估算一下,便可避免发生。这就是“热设计”。正如“设计”本身的含义,是根据产品性能参数来构想应采用何种构造,然后制定方案。也可称之为估计“大致热量”的作业。 虽说如此,但这其实并非什么高深的话题。如果读一下这篇连载,学习几个“基础知识”,制作简单的数据表格,便可制作出能适用于各种情况的计算书,甚至无需专业的理科知识。 第1章从“什么是热”这一话题开始介绍。大家可能会想“那接下来呢”?不过现在想问大家一个问题。热的单位是什么? 如果你的回答是“℃”,那么希望你能读一下本文。 热是能量的形态之一。与动能、电能及位能等一样,也存在热能。热能的单位用“J”(焦耳)表示。1J能量能在1N力的作用下使物体移动1m,使1g的水温度升高0.24℃。

产品设计原理与方法学习报告

产品设计原理与方法学习报告 虽然仍有许多人将设计视为一种艺术形式,由设计师决定产品的模式,但事实上绝大部分设计师是在商业环境中工作,他们的设计作品是否成功,取决于产品能否满足顾客和用户。因此设计师必须具备理解民众需要的能力,除了已知的需要,还包括隐含的、尚未浮面的需要。过去人们普遍认为设计师的工作就是为产品提供吸引人的外壳包装,无须考虑产品对人、对社会与环境的影响。如今设计师要改变自己的角色——不仅需要满足人们目前的愿望,还必须为人们提供他们并不知道自己是否想要的产品,或者从未想过他们能够拥有的产品。 然而现在的设计师存在偏颇的观念与实践:1、平均化,在处理不同的事物和变量时采用平均值。2、在设计中寻找共通点,然后将共通点夸张。3、创造所谓的标准。这其中一个重要原因是设计师对未知、意想不到和未能预决事物的恐惧。设计师总想要预先决定结果,排除无法确定的事物,而标准化的方式让他们可以将变量变为常数。标准化方式大多数时候欠缺从其他角度来考虑设计的品质,如不同使用者的自由与不同选择。因此,设计师要考虑细节,根据实际的项目对相关参数进行仔细修改,如果一成不变的照搬设计,就不会有好的设计品质,很容易陷入一种偏颇的观念:一个地方的民众(使用者)与其他地方的民众是一样的或相似的。改变对设计的品质有极大的、多重的影响,因此设计要满足不断改变的需要和希望。面对改变时,设计师倾向采取三种方法解决问题:(1)寻找替代产品或新的设计来克服问题。(2)在设计中设定许多法规与控制,无论任何时候使用者都需要遵循,从而将使用者固定在一个预先决定的范围中,控制他们的行为,确保设计产品能够达到预期结果。(3)提醒或教育。但其重要缺陷就是使用者的行为未必会符合期望。 综上,只有不断发掘使用者需要和希望,追寻社会和文化的改变,才能够提出新的解决问题方法和设计方案,以服务公众。设计师应当重视和尝试采用“共同决策”和“自我决策”方式,才能令作品具有高度的使用者适用性。应给予使用者更多机会:①认识自己的需要和喜好②建立目标③发表意见④参与决策⑤评估结果⑥建立机制跟进使用设计成品后的情况。除了参考文献和使用者对话外,设计师还需深入观察和分析使用者在某一特定公共环境中的各种行为,才能真实了解使用者的反应,应建立一套与使用者双向沟通的方式与实践模式。

热交换器设计

2、设计方案的选择 2.1换热器型式的选择 在乙醇精馏过程中塔顶一般采用的换热器为列管式换热器,故初步选定在此次设计中的换热器为列管式换热器。 列管式换热器的型式主要依据换热器管程与壳程流体的温度差来确定。在乙醇精馏的过程中乙醇是在常压饱和温度下冷凝,进口温度为76℃,出口温度为45。冷却介质为水,入口温度为24℃,出口温度为36℃,两流体的温度差不是很大,再根据概述中各种类型的换热器的叙述,综合以上可以选用固定管板式换热器。 2.2流体流速的选择 流体流速的选择涉及到传热系数、流动阻力及换热器结构等方面。增大流速,可加大对流传热系数,减少污垢的形成,使总传热系数增大;但同时使流动阻力加大,动力消耗增多;选择高流速,使管子的数目减小,对一定换热面积,不得不采用较长的管子或增加程数,管子太长不利于清洗,单程变为多程使平均传热温差下降。因此,一般需通过多方面权衡选择适宜的流速。表1至表3列出了常用的流速范围,可供设计时参考。选择流速时,应尽可能避免在层流下流动。 表1 管壳式换热器中常用的流速范围 流体的种类一般流体易结垢液体气体 流速,m/s 管程0.5 ~3.0 > 1.0 5.0 ~30 壳程0.2 ~1.5 > 0.5 3.0 ~15 表2 管壳式换热器中不同粘度液体的常用流速 液体粘度,mPa·s > 1500 1500 ~500 500 ~100 100 ~35 35 ~ 1 < 1 最大流速,m/s 0.6 0.75 1.1 1.5 1.8 2.4 表3 管壳式换热器中易燃、易爆液体的安全允许速度 液体名称乙醚、二硫化碳、苯甲醇、乙醇、汽油丙酮 安全允许速度,m/s < 1 < 2 ~3 < 10 由于使用的冷却介质是井水,比较容易结垢,乙醇则不易结垢。水和乙醇的粘度都较小,参考以上三个表格数据可以初步选定管程流速为0.9m/s,壳程流速为7m/s。 2.3流体出口温度的确定 冷却介质水的入口温度24℃,出口温度为36℃,故,可以求得水的定性温度为:Tm=30℃ 热流体乙醇在饱和温度下冷凝,故可以确定入口温度和出口温度相同,故乙醇的定性温度Tm=60.5℃。

蒸发器尺寸设计

蒸发器工艺尺寸计算 加热管的选择和管数的初步估计 1加热管的选择和管数的初步估计 蒸发器的加热管通常选用38*2.5mm无缝钢管。 加热管的长度一般为0.6—2m,但也有选用2m以上的管子。管子长度的选择应根据溶液结垢后的难以程度、溶液的起泡性和厂房的高度等因素来考虑,易结垢和易起泡沫溶液的蒸发易选用短管。根据我们的设计任务和溶液性质,我们选用以下的管子。 可根据经验我们选取:L=2M,38*2.5mm 可以根据加热管的规格与长度初步估计所需的管子数n’, =124(根) 式中S=----蒸发器的传热面积,m2,由前面的工艺计算决定(优化后的面积); d0----加热管外径,m;L---加热管长度,m;因加热管固定在管板上,考虑管板厚度所占据的传热面积,则计算n’时的管长应用(L—0.1)m. 2循环管的选择 循环管的截面积是根据使循环阻力尽量减小的原则考虑的。我们选用的中央循环管式蒸发器的循环管截面积可取加热管总截面积的40%--100%。加热管的总截面积可按n’计算。循环管内径以D1表示,则 所以mm 对于加热面积较小的蒸发器,应去较大的百分数。选取管子的直径为:循环管管长与加热管管长相同为2m。 按上式计算出的D1后应从管规格表中选取的管径相近的标准管,只要n和n’相差不大。循环管的规格一次确定。循环管的管长与加热管相等,循环管的表面积不计入传热面积中。 3加热室直径及加热管数目的确定 加热室的内径取决于加热管和循环管的规格、数目及在管板撒谎能够的排列方式。 加热管在管板上的排列方式有三角形排列、正方形排列、同心圆排列。根据我们的数据表加以比较我们选用三角形排列式。

电加热器设计功率计算公式与方法

电加热器设计功率计算公式与方法 一.功率计算公式: 1、初始加热所需要的功率 KW = ( C1M1△T + C2M2△T )÷ 864/P + P/2 式中:C1C2分别为容器和介质的比热(Kcal/Kg℃) M1M2分别为容器和介质的质量(Kg) △T为所需温度和初始温度之差(℃) H为初始温度加热到设定温度所需要的时间(h) P最终温度下容器的热散量(Kw) 2、维持介质温度抽需要的功率 KW=C2M3△T/864+P 式中:M3每小时所增加的介质kg/h 二、电加热器功率设计计算举例: 有一只开口的容器,尺寸为宽500mm,长1200mm,高为600mm,容器重量150Kg。内装500mm高度的水,容器周围都有50mm的保温层,材料为硅酸盐。水需3小时内从15℃加热至70℃,然后从容器中抽取20kg/h的70℃的水,并加入同样重量的水。需要多大的功率才能满足所要的温度。 技术数据: 1、水的比重:1000kg/m3 2、水的比热:1kcal/kg℃ 3、钢的比热:0.12kcal/kg℃ 4、水在70℃时的表面损失4000W/m2 5、保温层损失(在70℃时)32W/m2 6、容器的面积:0.6m2 7、保温层的面积:2.52m2 初始加热所需要的功率: 容器内水的加热:C1M1△T = 1×(0.5×1.2×0.5×1000)×(70-15) = 16500 kcal 容器自身的加热:C2M2△T = 0.12×150×(70-15) = 990 kcal 平均水表面热损失:0.6m2 × 4000W/m2 × 3h × 1/2 × 864/1000 = 3110.4 kcal 平均保温层热损失:2.52m2 × 32W/m2 × 3h × 1/2 × 864/1000 = 104.5 kcal (考虑20%的富裕量) 初始加热需要的能量为:(16500 + 990 + 3110.4 + 104.5)×1.2 = 70258.8 kcal/kg℃ 工作时需要的功率: 加热补充的水所需要的热量:20kg/H × (70-15)×1kcal/kg℃ = 1100kcal 水表面热损失:0.6m2 × 4000W/m2 × 1h × 864/1000 = 2073.6 kcal 保温层热损失:2.52m2 × 32W/m2 × 1h × 864/1000 = 69.67 kcal (考虑20%的富裕量) 工作加热的能量为:(1100 + 2073.6 + 69.6)×1.2 = 6486.54 kcal/kg℃ 工作加热的功率为:6486.54 ÷864÷1 = 7.5 kw 初始加热的功率大于工作时需要的功率,加热器选择的功率至少要27.1kw。 最终选取的加热器功率为35kw。

散热器尺寸设计计算方法(20200521132117)

散热器尺寸设计计算方法 判断依据:() Q h A T T h a 其中Q:散热器换热量,W h:散热器与空气的表面对流换热系数,W/(m2*K) A:散热器表面积,m2 T:散热器平均温度,℃ h T:空气温度,℃ a 一.自然冷却 对流换热量 1.散热器与空气的表面对流换热系数h的计算: 自然冷却,h可以近似取 5 W/(m2*K) 2.散热器表面积A的计算: 散热器的表面积可近似为翅片的表面积 A d h n 2 其中 L:散热器长度 d:翅片高度 n:翅片个数 3.空气温度a T取45℃。 4.散热器平均温度h T的计算 自然冷却时,散热器均稳性能较好,在环境温度为45℃时,我司测试标准为散热器NTC最大温升45℃,此时散热器的平均温升约40℃,,取5℃的安全余量,散热器平均温度75℃。 则散热器的对流换热量5235 Q L d n

辐射换热量 对于表面未做处理的散热器辐射换热量约为对流换热量的25%。 则散热器的总换热量为 1.255235437.5 Q L d n L d n 对于表面做镀黑处理的散热器辐射换热量约为对流换热量的40%。 则散热器的总换热量为 1.45235490 Q L d n L d n 5.模块功耗Q的计算:可近似用变频器功率*%作为模块的功耗。 结论:通过计算的Q与实际模块的损耗值P进行对比,如果超出很多说明散热器的设计冗余较大。 二.强迫风冷 1.散热器与空气的表面对流换热系数h的计算: 对于直径120mm以下尺寸轴流风机h可近似取30 W/(m2*K) 对于直径120mm以上尺寸轴流风机h可近似取45 W/(m2*K) 对于大型离心风机,h可近似取60 W/(m2*K) 2.散热器表面积A的计算: 散热器的表面积可近似为翅片的表面积 2 A L d n 其中L:散热器长度 d:翅片高度 n:翅片个数 3.空气温度a T取45℃。 4.散热器平均温度h T的计算 强迫风冷时,散热器均稳性能较差,在环境温度为45℃时,我司测试标准为散热器NTC最大温升45℃,此时散热器的平均温升约30℃,取5℃的安全余量,散热器平均温度升25℃,此时散热器温度为70℃。

相关文档
最新文档