中考数学探索规律的技巧
初中数学中规律探索型问题的类型与解题方法

初中数学中规律探索型问题的类型与解题方法关键词:初中数学规律探索型问题类型解题方法
规律探索型问题是中考中的必考知识点,我们把规律探索型问题也称为归纳猜想型问题,其特点是这样的:给出一组具有某种特定关系的数、式、图形;或是给出与图形有关的操作变化过程;或是给出某一具体的问题情境,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.规律探索型问题包括三类问题:数字类规律探索问题、图形类规律探索问题、点的坐标类规律探索问题.
一、数字类规律探索问题
1.解题思路
解答数字类规律探索问题,应在读懂题意、领会问题实质的前提下进行,或分类归纳,或整体归纳,得出的规律要具有一般性,而不是一些只适合于部分数据的“规律”.
2.例题展示
3.例题分析
二、图形类规律探索问题
1.解题思路
解答图形类规律探索问题,要注意分析图形特征和图形变换规律,一要合理猜想,二要加以实际验证.
2.例题展示
3.例题分析
针对几何图形的规律探索题,首先要仔细观察、分析图形,从中发现图形的变化特点,再将图形的变化以数或式的形式表示出来,从而得出图形的变化规律.如果图形的变化具有周期性,就要先确定循环周期及一个循环周期内图形的变化特点,然后用所求总数除以循环周期,得到余数,进而使所求问题得以解决.
本题就是一个典型的规律性问题,由AB为边长为2的等边三角形ABC的高,利用三线合一得到B为BC的中点,求出BB的长,利用勾股定理求出AB的长,进而求出S,同理求出S,依此类推,得到S.。
初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学规律探究问题是指通过观察数列、图形或数据等,在一定的规则下寻找并探究其中的规律性的问题。
这种问题在初中数学中占有很重要的地位,有助于学生培养数学思维能力、观察力和逻辑推理能力。
初中数学规律探究问题的类型可以分为数列规律、图形规律和数据规律三类。
一、数列规律问题:数列规律问题是最常见的一类规律探究问题。
通过观察数列中的数字间的关系,找出数列中的规律,并根据规律继续发展数列的下一项。
解题技巧:1. 观察数列中的数字之间的差值或倍数关系,找出数列的通项公式。
1, 3, 5, 7, ...这个数列中,每项相差2,可推测通项公式为2n-1。
2. 观察数列中的数字之间的乘积关系,找出数列的通项公式。
2, 6, 18, 54, ...这个数列中,每项之间都是前一项乘以3,可推测通项公式为2*3^n-1。
3. 观察数列中的数字之间的其他关系,如开方、乘方、递推等。
1, 2, 4, 8, ...这个数列中,每项都是前一项乘以2,可推测通项公式为2^n。
二、图形规律问题:图形规律问题是通过观察一系列图形的形状、数量、位置等特征,找出其中的规律,并根据规律继续绘制下一个图形。
解题技巧:1. 观察图形中的线段、角度、对称性等几何特征,找出图形的规律。
菱形图形的内角和都是360度,可用来判断菱形的特征。
2. 观察图形之间的变形关系,如旋转、平移、翻转等。
向上平移一次得到下一个图形,可用来判断图形的规律。
3. 观察图形中的数字和符号之间的关系,如大小、顺序、重复等。
图形中重复出现的数字可能有特殊的含义,可以利用这些数字来推测规律。
解题技巧:1. 观察数据之间的数值关系,如加减、乘除、指数等。
一组数据之间的差值相等,可用来推测规律。
2. 观察数据之间的变化趋势,如递增、递减、周期性等。
一组数据呈现递增或递减的趋势,可用来推测规律。
3. 观察数据之间的比例关系,如比值、百分比、占比等。
最新中考数学探索规律总结3篇

最新中考数学探索规律总结3篇最新中考数学探索规律总结3篇时光在流逝,从不停歇;万物在更新,而我们在成长,回顾这段时间的教学,一定收获了许多吧,让我们一起来写一份教学总结吧。
但是教学总结要写什么内容才能让人眼前一亮呢?以下是小编为大家整理的中考数学探索规律总结,希望对大家有所帮助。
中考数学探索规律总结1本学期我仍担任九年级两个班的数学教学,在本学期教学期间认真备课、上课、听课、评课,及时批改作业、讲评作业,做好课后辅导工作,广泛涉猎各种知识,不断提高自我的业务水平。
,充实自我的头脑,构成比较完整的知识结构,严格要求学生,尊重学生,使学生学有所得,学有所用,不断提高,从而不断提高自我的教学水平和思想觉悟,并顺利完成教育教学任务。
下头我就这一学期中所做的一些工作做一下小结。
一、学生情景九年级是初中三年的关键时刻,学生取得好成绩才是最重要的事情。
九年级学生整体学习风气很浓,学习数学的进取性也很高,还有一些同学经过一个学期的努力,基础知识有了必须的提高,学习态度也端正了许多,但班级两极分化还是很严重。
今后还应当在这方面多多研究。
二、教学工作方面1、备好课。
本学期我每一节课前都认真钻研教材,对教材的基本思想、基本概念,了解教材的结构,重点与难点,掌握知识的逻辑,能运用自如,明白应补充哪些资料,怎样才能教好。
了解学生的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的预防措施。
研究教法,解决如何把已掌握的教材传授给学生,包括如何组织教材、如何安排每节课的活动。
2、在课堂上,组织好课堂教学,关注全体学生,注意信息反馈,调动学生的学习进取性,课堂语言简洁明了,课堂提问面向全体学生,注意引发学生学数学的兴趣,课堂上讲练结合,精讲多练。
三、总复习工作面向全体学生1、让学生板演,加强解题过程训练。
如果只分析,优等生还能够,但有些学生就可能跟不上,并且让学生板演还能让不一样层次学生都有机会表现,因为学生板演可为教师供给反馈信息,如暴露知识上的缺欠,可弥补讲课中的不足,同时,学生板演中出现的优秀解题方法,为教师供给向学生学习的良好机会;另外也能够培养学生胆识,培养学生独立思考本事,促进记忆。
(完整版)中考规律探究题的解题方法

中考规律探究题的解题方法数式规律探究通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查了学生的分析、归纳、抽象、概括能力。
一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。
数式规律探究是规律探究问题中的主要部分,解决此类问题注意以下三点:1、一般地,常用字母n为正整数,从1开始。
2、在数据中,分清奇偶,记住常用表达式。
正整数…n-1,n,n+1…奇数…2n-3,2n-1,2n+1,2n+3…偶数…2n-2,2n,2n+2…3、熟记常用的规律①1、4、9、16...... n2②1、3、6、10……(1)2n n+③1、3、7、15……2n-1④1+2+3+4+…n=(1)2n n+⑤1+3+5+…+(2n-1)= n2 ⑥2+4+6+…+2n=n(n+1)⑦12+22+32….+n2=16n(n+1)(2n+1)⑧13+23+33….+n3=14n2(n+1)数字规律探究反映了由特殊到一般的数学方法,解决此类问题常用的方法有以下两种:1、观察法例1:观察下列等式:①1×12=1-12②2×23=2-23③3×34=3-34④4×45=4-45……猜想第几个等式为(用含n的式子表示)例2:探索规律:31=3,32=9,33=27,34=81,35=243,36=729……,那么32009的个位数字是。
2、函数法例3、将一正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法n= (用含例4:有一组数:1、2、5、10、17、26……请观察这组数的构成规律,用你发现的规律确定第8个数为。
练习:1、观察下列等式:1×3=12+2×1;2×4=22+2×2;3×5=32+2×3……请将你猜想到的规律用含自然数n(n≥1)的代数式表示出来:。
中考数学专题复习探索规律问题

专题探索规律问题解读考点考点归纳归纳 1:数字猜想型基础知识归纳:数字规律问题主要是在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.注意问题归纳:要认真分析比较,从而发现题中蕴涵的数量关系,通过猜想,再通过计算解决问题.例1一列数:0,-1,3,-6,10,-15,21,……,按此规律第n个数为归纳 2:数式规律型基础知识归纳:数式规律问题主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.注意问题归纳:要注意观察、分析、归纳、并验证得出结论.例2有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果yn= 用含字母x和n的代数式表示.归纳 3:图形规律型基础知识归纳:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,要注意对应思想和数形结合.注意问题归纳:要注意分析图形的组成与分拆过程中的特点,要注意数形结合.例3如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为.归纳 4:数形结合猜想型基础知识归纳:数形结合猜想型问题首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系,数形结合总结出图形的变化规律,进而解决相关问题.注意问题归纳:要注意观察图形,发现图形的变化方式,用好数形结合思想解决问题.例4如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;……,按此规律继续旋转,直至得到点P2014为止.则AP2014= .归纳5:动态规律型基础知识归纳:动态规律问题是探求图形在运动变换过程中的变化规律,解答此类问题时,要将图形每一次的变化与前一次变化进行比较,明确哪些结果发生了变化,哪些结果没有发生变化,从而逐步发现规律.注意问题归纳:要注意探求图形的变化规律,明确发生变化的与没有发生变化的量,从而逐步发现规律.例5如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,……,An分别过这些点做x轴的垂线与反比例函数y=1x的图象相交于点P1,P2,P3,P4,……Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,……,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,……,Bn﹣1,连接P1P2,P2P3,P3P4,……,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,……,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为.2年中考2015年题组1.2015绵阳将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=A.14 B.15 C.16 D.17考点:1.规律型:图形的变化类;2.综合题.2.2015十堰如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是A.222 B.280 C.286 D.2923.2015荆州把所有正奇数从小到大排列,并按如下规律分组:1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,…,现有等式Am=i,j表示正奇数m 是第i组第j个数从左往右数,如A7=2,3,则A2015=A.31,50 B.32,47 C.33,46 D.34,424.2015包头观察下列各数:1,43,97,1615,…,按你发现的规律计算这列数的第6个数为A.2531 B.3635 C.47 D.6263考点:1.规律型:数字的变化类;2.综合题.5.2015重庆市下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为A.21 B.24 C.27 D.306.2015泰安下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为A.135 B.170 C.209 D.252考点:1.规律型:数字的变化类;2.综合题.7.2015重庆市下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是A.32 B.29 C.28 D.26考点:1.规律型:图形的变化类;2.综合题.8.2015崇左下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有A.160 B.161 C.162 D.1639.2015贺州观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是A.0 B.3 C.4 D.8考点:1.尾数特征;2.规律型;3.综合题.10.2015宜宾如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为A .231π B.210π C.190π D.171π11.2015鄂州在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y 轴上,点C1、E1、E2、C2、E3、E4、C3…在x 轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是A .201421)(B .201521)(C .201533)(D .201433)(答案D .考点:1.正方形的性质;2.规律型;3.综合题.12.2015庆阳在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1n 是正整数的顶点A2n+1的坐标是A .4n ﹣3.2n ﹣3.3 D .313.2015宁德如图,在平面直角坐标系中,点A1,A2,A3…都在x 轴上,点B1,B2,B3…都在直线y x 上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是A .20142,20142B .20152,20152C .20142,20152D .20152,20142考点:1.一次函数图象上点的坐标特征;2.等腰直角三角形;3.规律型;4.综合题.14.2015河南省如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是A .2014,0B .2015,﹣1C .2015,1D .2016,0考点:1.规律型:点的坐标;2.规律型;3.综合题;4.压轴题.15.2015张家界任意大于1的正整数m 的三次幂均可“分裂”成m 个连续奇数的和,如:5323+=,119733++=,1917151343+++=,…按此规律,若3m 分裂后其中有一个奇数是2015,则m 的值是A .46B .45C .44D .4316.2015邵阳如图,在矩形ABCD 中,已知AB=4,BC=3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A 在整个旋转过程中所经过的路程之和是A .2015π B.π C .3018π D.3024π17.2015威海如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为A .92432B .98132C .9812 D .88132考点:1.正多边形和圆;2.规律型;3.综合题.18.2015日照观察下列各式及其展开式:222()2a b a ab b +=++;33223()33a b a a b ab b +=+++;4432234()464a b a a b a b ab b +=++++;554322345()510105a b a a b a b a b ab b +=+++++;…请你猜想10()a b +的展开式第三项的系数是A .36B .45C .55D .66考点:1.完全平方公式;2.规律型;3.综合题.19.2015宁波如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A2处,称为第1次操作,折痕DE 到BC 的距离记为h1;还原纸片后,再将△ADE 沿着过AD 中点D1的直线折叠,使点A 落在DE 边上的A2处,称为第2次操作,折痕D1E1到BC 的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC 的距离记为h2015,到BC 的距离记为h2015.若h1=1,则h2015的值为A .201521B .201421C .2015211- D .2014212-考点:1.相似三角形的判定与性质;2.三角形中位线定理;3.翻折变换折叠问题;4.规律型;5.综合题.20.2015常州数学家歌德巴赫通过研究下面一系列等式,作出了一个着名的猜想. 4=2+2; 12=5+7;6=3+3; 14=3+11=7+7;8=3+5; 16=3+13=5+11;10=3+7=5+5 18=5+13=7+11;…通过这组等式,你发现的规律是 请用文字语言表达.21.2015淮安将连续正整数按如下规律排列:若正整数565位于第a 行,第b 列,则a+b= .22.2015雅安若1m ,2m ,…,2015m 是从0,1,2这三个数中取值的一列数,若122015...m m m +++=1525,222122015(1)(1)...(1)1510m m m -+-++-=,则1m ,2m ,…,2015m 中为2的个数是 .23.2015桂林如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n 行有 个点.24.2015梧州如图是由等圆组成的一组图,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由12个圆组成…按此规律排列下去,则第⑥个图由 个圆组成.25.2015百色观察下列砌钢管的横截面图:则第n 个图的钢管数是 用含n 的式子表示26.2015北海如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n等份,分点分别为P1,P2,P3,…,Pn﹣1,过每个分点作x 轴的垂线分别交直线AB 于点T1,T2,T3,…,Tn ﹣1,用S1,S2,S3,…,Sn ﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△Tn ﹣1Pn ﹣2Pn ﹣1的面积,则当n=2015时,S1+S2+S3+…+Sn﹣1= .考点:1.一次函数图象上点的坐标特征;2.规律型;3.综合题.27.2015南宁如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点,按照这种移动规律移动下去,第n次移动到点An,如果点An 与原点的距离不小于20,那么n 的最小值是 .28.2015常德取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:,如果自然数m 最少经过7步运算可得到1,则所有符合条件的m 的值为 .29.2015株洲“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为12b S a =+-,孔明只记得公式中的S 表示多边形的面积,a 和b 中有一个表示多边形边上含顶点的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a 还是b 表示多边形内部的整点个数,请你选择一些特殊的多边形如图1进行验证,得到公式中表示多边形内部的整点个数的字母是 ,并运用这个公式求得图2中多边形的面积是 .30.2015内江填空:()()a b a b -+= ;22()()a b a ab b -++= ;3223()()a b a a b ab b -+++= .2猜想:1221()(...)n n n n a b a a b ab b -----++++= 其中n 为正整数,且2n ≥.3利用2猜想的结论计算:98732222...222-+-+-+. 31.2015南平定义:底与腰的比是51-的等腰三角形叫做黄金等腰三角形.如图,已知△ABC 中,AB=BC,∠C=36°,BA1平分∠ABC 交AC 于A1.AB=AA1A C;122探究:△ABC是否为黄金等腰三角形请说明理由;提示:此处不妨设AC=13应用:已知AC=a,作A1B1∥AB交BC于B1,B1A2平分∠A1B1C交AC于A2,作A2B2∥AB 交B2,B2A3平分∠A2B2C交AC于A3,作A3B3∥AB交BC于B3,…,依此规律操作下去,用含a,n的代数式表示An﹣1An.n为大于1的整数,直接回答,不必说明理由考点:1.相似形综合题;2.新定义;3.探究型;4.综合题;5.压轴题;6.规律型.33.2015重庆市如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.1请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除并说明理由;2已知一个能被11整除的三位“和谐数”,设其个位上的数字x1≤x≤4,x为自然数,十位上的数字为y,求y与x的函数关系式.2014年题组1.2014年南平中考如图,将1,若规定a,b表示第a排第b列的数,则8,2与2014,2014表示的两个数的积是A.B.C. D.12.2014年株洲中考在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位……依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是A.66,34 B.67,33 C.100,33 D.99,343.2014年宜宾中考如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,……An分别是正方形的中心,则这n个正方形重叠部分的面积之和是A.n B.n-1 C.n11()4D.n1()4考点:1.正方形的性质;2.全等三角形的判定与性质.4.2014年崇左中考如图,在平面直角坐标系中,A1,1,B﹣1,1,C﹣1,﹣2,D1,﹣2.把一条长为2014个单位长度且没有弹性的细线线的粗细忽略不计的一端固定在点A处,并按A﹣B﹣C﹣D﹣A……的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是A.﹣1,0 B.1,﹣2 C.1,1 D.﹣1,﹣15.2014年百色中考观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,……由以上规律可以得出第n个等式为.6.2014年衡阳中考 如图,在平面直角坐标系xOy 中,已知点0M 的坐标为()10,,将线段0OM 绕原点O 逆时针方向旋转45,再将其延长至点1M ,使得100M M OM ⊥,得到线段1OM ;又将线段1OM 绕原点O 逆时针方向旋转45,再将其延长至点2M ,使得211M M OM ⊥,得到线段2OM ;如此下去,得到线段3OM 、4OM 、5OM 、…….根据以上规律,请直接写出线段2014OM 的长度为 .答案2014.7.2014年抚顺中考如图,已知CO1是△ABC 的中线,过点O1作O1E1∥AC 交BC 于点E1,连接AE1交CO1于点O2;过点O2作O2E2∥AC 交BC 于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC 交BC 于点E3,……,如此继续,可以依次得到点O4,O5,……,On 和点E4,E5,……,En .则OnEn= AC .用含n 的代数式表示考点:1.相似三角形的判定与性质;2.三角形中位线定理.8.2014年资阳中考如图,以O0,0、A2,0为顶点作正△OAP1,以点P1和线段P1A 的中点B 为顶点作正△P1BP2,再以点P2和线段P2B 的中点C 为顶点作△P2CP3,……,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是9.2014年宜宾中考在平面直角坐标系中,若点Px,y 的坐标x 、y 均为整数,则称点P 为格点,若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如图中△ABC 是格点三角形,对应的S=1,N=0,L=4.1求出图中格点四边形DEFG 对应的S,N,L 的值.2已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,求S的值.考点:1.规律型:图形的变化类; 2.二元一次方程组的应用.10.2014年凉山中考实验与探究:三角点阵前n行的点数计算如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第n行有n个点……容易发现,10是三角点阵中前4行的点数约和,你能发现300是前多少行的点数的和吗如果要用试验的方法,由上而下地逐行的相加其点数,虽然你能发现1+2+3+4+……+23+24=300.得知300是前24行的点数的和,但是这样寻找答案需我们先探求三角点阵中前n行的点数的和与n的数量关系前n行的点数的和是1+2+3+……+n﹣2+n﹣1+n,可以发现.2×1+2+3+……+n﹣2+n﹣1+n=1+2+3+……+n﹣2+n﹣1+n+n+n﹣1+n﹣2+……3+2+1把两个中括号中的第一项相加,第二项相加……第n项相加,上式等号的后边变形为这n个小括号都等于n+1,整个式子等于nn+1,于是得到1+2+3+……+n﹣2+n﹣1+n=12nn+1这就是说,三角点阵中前n项的点数的和是12nn+1下列用一元二次方程解决上述问题设三角点阵中前n行的点数的和为300,则有12nn+1整理这个方程,得:n2+n﹣600=0解方程得:n1=24,n2=25根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300.请你根据上述材料回答下列问题:1三角点阵中前n行的点数的和能是600吗如果能,求出n;如果不能,试用一元二次方程说明道理.2如果把图中的三角点阵中各行的点数依次换成2、4、6、……、2n、……,你能探究处前n行的点数的和满足什么规律吗这个三角点阵中前n行的点数的和能使600吗如果能,求出n;如果不能,试用一元二次方程说明道理.1年模拟1.2015届山东省济南市平阴县中考二模在平面直角坐标系xOy中,对于点Px,y,我们把点P-y+1,x+1叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….例如:点A1的坐标为3,1,则点A2的坐标为0,4,…;若点A1的坐标为a,b,则点A2015的坐标为A.-b+1,a+1 B.-a,-b+2 C.b-1,-a+1 D.a,b2.2015届山东省潍坊市昌乐县中考一模如图,下面是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图 A2多出“树枝”A.32 B.56 C.60 D.643.2015届山西省晋中市平遥县九年级下学期4月中考模拟如图,四边形ABCD 中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形AnBnCnDn.下列结论正确的是①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A7B7C7D7周长为;④四边形AnBnCnDn面积为.A.①②③ B.②③④ C.①③④ D.①②③④4.2015届广东省深圳市龙华新区中考二模如图,已知直线y=-12x+2与x轴交于点B,与y轴交于点A.过线段AB的中点A1做A1B1⊥x轴于点B1,过线段A1B的中点A2作A2B2⊥x轴于点B2,过线段A2B的中点A3作A3B3⊥x轴于点B3…,以此类推,则△AnBnBn-1的面积为A .112n -B .12nC .114n -D .14n5.2014-2015学年山东省潍坊市诸城市实验中学中考三模如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO 在y 轴上,点B1,B2,B3,…都在直线y=33x 上,则A2015的坐标是 .考点:1.一次函数图象上点的坐标特征;2.等边三角形的性质;3.规律型.6.2015届北京市平谷区中考二模在平面直角坐标系中,点A,B,C 的坐标分别为()1,0,()0,1,()1,0-.一个电动玩具从坐标原点O 出发,第一次跳跃到点P1,使得点P1与点O 关于点A 成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B 成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C 成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A 成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B 成中心对称;.…照此规律重复下去.则点P3的坐标为 ;点Pn 在y 轴上,则点Pn 的坐标为 .7.2015届北京市门头沟区中考二模在平面直角坐标系xOy 中,矩形OABC 如图放置,动点P 从0,3出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2次碰到矩形的边时,点P 的坐标为 ;当点P 第6次碰到矩形的边时,点P 的坐标为 ;当点P 第2015次碰到矩形的边时,点P 的坐标为____________.答案7,4, 0,3 ,1,4.8.2015届安徽省安庆市中考二模一组按规律排列的式子:,,,,…则第n 个式子是 n为正整数.9.2015届山东省威海市乳山市中考一模在直角坐标系xOy中,对于点Px,y,我们把点P′y+1,-x+1叫做点P的影子点.已知点A1的影子点为A2,点A2的影子点为A3,点A3的影子点为A4,…,这样依次得到点A1,A2,A3,…,An,…若点A1的坐标为a,b,对于任意的正整数n,点An均在y轴的右侧,则a,b应满足的条件是.10.2015届山东省日照市中考模拟如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A1,3,A12,3,A24,3,A38,3,B2,0,B14,0,B28,0,B316,0.1观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将△OA3B3变换成△OA4B4,则A4的坐标是.2若按1题找到的规律将△OAB进行了n次变换,得到的△OAnBn,比较每次变换中三角形顶点坐标有何变化,找出规律,推出Bn的坐标是.11.2015届广东省佛山市初中毕业班综合测试如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的两条邻边长分别为6和8,则第n个菱形的周长为.12.2015届湖北省黄石市6月中考模拟如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An﹣1AnBn﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于2011的阴影三角形共有__________个.13.2015届广东省佛山市初中毕业班综合测试若a是不为1的有理数,我们把11a-称为a的差倒数.如:2的差倒数是112-=-1,-1的差倒数是111(1)2=--.已知a1=-13,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推.1分别求出a2,a3,a4的值;2求a1+a2+a3+…+a2160的值.。
初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学中,规律探究问题是指通过分析数列、图形或公式等数学对象的特点,寻找其中隐藏的规律并加以运用来解决问题的一类问题。
这类问题需要学生具备分析能力、抽象能力、推理能力等多方面的综合能力。
初中数学规律探究问题的类型较为多样,常见的有以下几类:1. 数列问题:通过观察数列中的数字之间的规律,找出数列的通项公式或下一个数字,进而解决问题。
已知数列1、2、4、7、11、16的通项公式是多少?解题技巧:观察数列中相邻数字之间的差或比例是否存在固定规律,如果存在,可通过运算找出通项公式;如果不存在,则考虑是否可以构造新的数列来寻找规律。
2. 图形问题:通过观察图形中的形状、边长、角度等特点,找出图形的规律并解决问题。
已知一个正方形从第一阶到第四阶的边长依次为1、2、3、4,第十个阶的边长是多少?解题技巧:观察图形中相邻部分之间的关系,寻找存在的等差、等比、对称等规律;如果能够构造新的图形来辅助分析,更容易找出规律。
3. 公式问题:通过观察公式中的变量、系数等特点,推测出公式的规律并解决问题。
已知一个等差数列的公差是d,前n项的和为Sn,求第n项的值。
1. 观察法:通过观察数列、图形或公式等数学对象的特点,寻找其中存在的规律。
2. 归纳法:通过观察到的规律,总结规律的表达式或公式。
3. 推理法:通过观察到的规律,根据数学常识进行推理和证明。
4. 验证法:通过代入具体数值,验证所得的规律是否成立。
5. 构造法:通过构造新的数列、图形或公式等,辅助分析和解题。
除了以上解题技巧外,良好的数学基础知识和逻辑思维能力也是解决规律探究问题的重要因素。
平时要加强基础知识的学习,培养逻辑思维能力,多进行思维训练和思维导图的绘制,提高解决问题的能力。
初中数学规律探究问题的类型及解题技巧分析
初中数学规律探究问题的类型及解题技巧分析数学是一门理性思维和逻辑推理的学科,而规律探究则是数学学习中的重要一环。
在初中数学教学中,规律探究问题的类型多种多样,解题技巧也有一定的规律可循。
本文将就初中数学规律探究问题的类型及解题技巧进行分析,希望能够对初中生们的数学学习有所帮助。
一、规律探究问题的类型1. 数列问题数列是规律探究问题中常见的类型,通常以一定的形式给出一组数,要求学生找出其中的规律并继续衍生下去。
例如:1, 2, 4, 8, 16, ...学生需要观察这组数,发现每个数都是前一个数乘以2得到的,于是可以推测出下一个数为32。
这种问题要求学生有一定的观察力和逻辑推理能力。
2. 几何图形问题△, △△, △△△, ...学生需要观察这些图形,发现每个图形都是在上一个图形的基础上增加了一个△,因此可以预测下一个图形为△△△△。
3. 方程式问题1+3=4, 2+5=7, 3+7=10, ...学生需要观察这些等式,发现每个等式的结果都是前两个数的和,因此可以总结出通用的表达式:第n个等式的结果为n+(n-1)。
二、解题技巧分析1. 观察数据特征在解决规律探究问题时,首先要求学生观察给出的数据,发现其中的特征和规律。
这需要一定的观察力和逻辑推理能力。
学生可以通过列出数据表格、绘制图形等方式来帮助自己更好地观察数据特征。
2. 归纳规律一旦观察到数据的特征和规律,接下来就需要学生归纳出这些规律,并尝试总结出一般性的结论。
这需要学生拥有一定的逻辑思维和抽象思维能力,能够将具体的案例推广到一般的情况下。
3. 验证规律在归纳规律之后,学生需要对所得的规律进行验证。
这可以通过运用所得的规律来推测未知的数据,或者通过实际计算来检验所得的规律是否正确。
这能够帮助学生巩固所学的规律,并加深对规律的理解。
4. 培养逻辑思维和抽象思维解决规律探究问题需要学生有较强的逻辑思维和抽象思维能力。
教师在课堂教学中可以通过启发式问题、讨论互动等方式引导学生去发现规律、归纳规律,培养学生的逻辑思维和抽象思维。
中考探索规律题型总结
4.单词规律:考察单词序列中的规律。学生需要观察单词的拼写、词义、词性等规律,找出规律并推测下一个或缺失的单词。
5.颜色规律:考察颜色序列中的规律。学生需要观察颜色的变化、组合、重复等规律,找出规律并推测下一个或缺失的颜色。
解决"探索规律"Байду номын сангаас型的关键是仔细观察,寻找数字、图形、字母、单词或颜色之间的规律,并通过逻辑推理来得出答案。学生可以运用归纳、类比、比较等思维方法,训练自己的观察力和推理能力。
为了提高解决这类题型的能力,建议学生多做相关的练习题,积累经验,并注意总结不同类型的规律模式。此外,学生还可以培养自己的思维灵活性和逻辑推理能力,通过阅读、思考和讨论来提升对事物规律的敏感度。
在中考中,"探索规律"是一种常见的题型,主要考察学生观察、归纳和推理的能力。下面是对"探索规律"题型的总结:
1.数字规律:考察数字序列中的规律。学生需要观察数字之间的关系,找出规律并推测下一个或缺失的数字。
2.图形规律:考察图形序列中的规律。学生需要观察图形的形状、方向、大小、排列等特征,找出规律并推测下一个或缺失的图形。
初中数学规律探究问题的类型及解题技巧分析
初中数学规律探究问题的类型及解题技巧分析初中数学中,规律探究问题是一种常见的问题类型,涉及到数学中的一些规律、性质或者关系。
这种问题要求学生通过观察、思考和归纳总结等方法,找出数学中隐藏的规律,进而解决问题。
一、类型分析:1. 数列的规律探究问题:这种类型的问题要求学生根据给定的数列,找出其中的规律,推测下一项或者特定位置处的数值。
例如:给定数列1,3,5,7,…,学生需要找出这个数列的通项公式,并计算第100项的值。
解题技巧:观察数列中相邻两项之间的差值或者比值是否有规律,尝试使用数学表达式表示,利用已知的条件求解未知项的值。
2. 几何图形的规律探究问题:这种类型的问题要求学生观察给定的几何图形之间的关系,找出其中的规律并推导出结论。
例如:给定一组图形,每个图形都由一些小正方形组成,学生需要找出这些图形的面积与小正方形个数之间的规律。
解题技巧:观察图形中各个元素的数量、形状或者位置的变化规律,推测出图形之间的关系,利用已知的条件推导出未知的结论。
二、解题技巧分析:1. 观察准确:解决规律探究问题的关键是准确观察给定的条件,发现其中的规律,不能遗漏任何细节。
2. 归纳总结:在观察的基础上,要通过归纳总结的方法,将观察到的规律进行概括和总结,形成一个可以适用于所有情况的规律表达式。
3. 测试验证:根据归纳总结得到的规律表达式,进行一定数量的测试,验证这个规律表达式是否正确,是否适用于所有情况。
4. 推演运用:在掌握规律表达式并验证无误后,可以使用这个规律来解决其他类似的问题,进一步运用推演的方法。
5. 灵活运用:在解决规律探究问题时,要善于灵活运用各种数学知识,例如代数、几何、等差等差数列、等比数列等,将不同的数学概念和方法结合起来,找到最优解。
初中数学规律探究问题是一种需要观察、归纳和推演的问题类型。
学生在解决这类问题时,要注重观察准确、归纳总结、测试验证和推演运用,灵活运用各种数学知识,找到解决问题的最优解。
初中数学规律探究问题的类型及解题技巧分析
初中数学规律探究问题的类型及解题技巧分析
初中数学中,规律探究问题是一类常见的题型,它要求学生根据给定的数学模型或数据,通过发现其中的规律和特点,从而得出结论或预测未来的情况。
在解决此类问题时,
需要注意以下几点:
1. 了解规律探究问题的种类
(1)填空类:给出一些数据,让学生填完整。
这种问题可以引导学生通过数学计算,逐步发现规律并填写合适的数值。
(2)判断正误类:描述一些情况,让学生判断其真实性。
这种问题需要学生分析已
有的数据,了解其特点,再结合自己的数学知识进行判断。
(3)特殊情况类:给出一些数据或模型,要求学生找出其中的特殊规律和特点。
解
决这类问题需要学生具有较强的发现和归纳能力。
(4)推广类:根据已有的模型或数据,推广出更广泛的规律和结论。
这类问题需要
学生通过已有的数学知识和常识,进行全面系统的推理和归纳。
(1)建立模型:将给定数据转化为数学模型,对数据进行排序、分类、分组等处理,从而更好地发现规律。
(2)观察数据特点:通过对数据或模型的观察,发现其规律和特点,了解其数学性质。
(3)运用数学知识:学生需要将已有的数学知识和方法,书面配置在规律探究问题
的解决过程中,例如算术平均数、周期性函数等等。
(4)反复检验结论:通过反复检验自己得出的结论,确保其正确性和可靠性,为发
现更深层次的规律和特点提供条件。
综上所述,规律探究问题是初中数学中非常常见的一部分,解决此类问题需要学生具
有一定的观察、分析和推理能力,同时需要掌握相应的技巧和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探索规律的技巧
智慧锦囊
一般步骤为:①实践要从简单的情形出发,先做三个具体的例子(如果看不出规律,就多做几个),然后认真观察、比较;
②猜想分析猜想可能的规律;③验证用具体数值代入猜想,推出公式。
具体来说:一、标出序列号:每次探索一定写出序列号,把变量和序列号放在一起加以比较,就容易确定序列号与每一数据之间的关系;例如序列号:1,2,3,4,5,……n
已知变量: 0,3,8,15,24,……?
(2) 牢记求和公式:总和=
2
1(首项+末项)×项数;
▲二、统计的过程性:在统计数据时要用n 个数据相+(或-、×、÷等)的形式,把每一次增减数据都写出来,而不是一个单一和的形式;如统计三角形的面积要写成如下形式:
序列号面积
1
2
1 a·b
2
2
1 c·d
3.
2
1 e·f
……
n ?
而不是写成如下形式:
序列号面积
1. a
2 . b
3. c
……
n ?
三、注意化简:利用幂,即数的平方或立方等,或者把一组数写成乘积的形式,如5,7,11,19,35,67..及把一组数据2、6、12写成1×2、2×3、3×4的形式;
四、竖排:如果题目中给出的式子较多,可把它们竖排,这样更容易找出规律。
五、如果规律所形成的图案向呈直线方向发展(宽度不增加),那么该函数一定就是一次函数;如果规律所形成的图案向四周延伸,那么该函数一定就是二次函数。
若能判断出所求规律的式子是一次函数或二次函数,可以先设函数,然后用待定系数法解决问题。
六、注意循环型+函数型的分类思考
范例点睛
例1.观察下图,它们是按一定规律排列的,依照此规律,第几个图形共有120 个★。
解:序列号图形个数
1 1
2. 1+2
3. 1+2+3
……
n 1+1+2+3+..+n=
2
1(1+n)n
所以:
2
1(1+n)n=120 解得n=15
评价:此题强调了统计数据时的过程性.
例2..观察下列三角形数阵,第2002个数是第几行第几个数?
解:∵每一行最后一个数字是前面所有行数(包括本行))之和,设2002在第n行则
2
1(1+n)n≥2002
∵60×60=3600,65×65=4225,64×63=4032 ∴n=63
∵第63行最后一个数=
2
1(1+n)n=2016,第62行最后一个数是2016-63=1953,
∵,2002-1953=49,
∴第2002个数是第63行的第49个数
评价:此题强调了求和公式的灵活运用.
例3.把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M=(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013是第几组第几个数?
1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
解:2013是第212013+=1007个数,
设2013在第n 组,则1+3+5+7+…+(2n-1)≥1007,即2)1n 21n -+(≥1007,
解得:n≥31.7,
当n=31时,这组数的总个数为: 1+3+5+7+…+61=961; 1007-961=46
故第1007个数在第32组的第46个数 故A 2013=(32,46).
注意:1+3+5+7+…+(2n-1)的项数
为 (末项+1)÷2
王者闯关
1.观察下面数阵规律并完成各题解答.
(1)表中第8行最后一个数是___,它是自然数____的平方,第8行共有____个数; (2)用含n 代数式表示:第n 行第一个数是____,最后一个数是___,第n 行共有__ 个数;
(3)第n 行各数之和是_____
2. 观察下列三角形数阵,第1972个数是第几行第几个数?
3.如图,将1、2、3三个数按图中方式排列,若规定(a ,b )表示第a 排第b 列的数,则(
8,2)与(2016,2016
)表示的两个数的积是( )
4.(2014菏泽)下面是一个有规律的数阵:
根据数阵的规律,第n (n 是整数,且n≥3)行从左到右数第n ﹣2个数是 (含n 的代数式)
5.将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,
若第n 个“龟图”中有245个“○”,则n=( )
6. 如图,用火柴棍摆出一列正方形图案,第①个图案用火柴棍的个数为4根,第②个图案用火柴棍的个数为12根,第③个图案用火柴棍的个数为
24
根,若按这种方式摆下去,摆出第30个图案用火柴棍个数为( )
7. 如图,直线l 上有2个圆点A ,B .我们进行如下操作:第1次操作,在A ,B 两圆点间插入一个圆点C ,这时直线l 上有(2+1)个圆点;第2次操作,在A ,C 和C ,B 间再分别插入一个圆点,这时直线l 上有(3+2)个圆点;第3次操作,在每相邻的两圆点间再插入一个圆点,这时直线l 上有(5+4)个圆点;…第n 次操作后,这时直线l 上有 个圆点. 8.(2013•威海)在平面直角坐标系中,A (1,0)、B (0,1)、C (﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P 1.使得点P 1与点O 关于点A 成中心对称;第二次跳跃到点P 2,使得点P 2与点P 1关于点B 成中心对称;第三次跳跃到点P 3,使得点P 3与点P 2关于点C 成中心对称;第四次跳跃到点P 4,使得点P 4与点P 3关于点A 成中心对称;第五次跳跃到点P 5,使得点P 5与点P 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
关于点B 成中心对称;…照此规律重复下去,则点P 2016坐标为 .
参考答案: 1.(1)64,8,15 (2)(2
)n 2 -2n+2,n 2 ,(2n-1); (3)第n 行各数
之和:
2. 第62行第31个数。
在数列中是第(1+7
)×7÷2+2=30个,30÷3=10,(8,2)表示的数正好是第10轮(2016,2016)在数列中是第(1+2016)×2016÷2=20311120个, 20311120÷3=677040,(2016,2016)表示的数正好是第677040轮最后一个数, 即(2016,2016)表示的数是,
答案为
=3求和公式,注意其和例3一样,和的项数为(末项+1)÷2
6. 设摆出第n 个图案用火柴棍为S n . ①图,S 1=1×(1+1)+1×(1+1); ②图,S 2=2×(2+1)+2×(2+1); ③图,S 3=3×(3+1)+3×(3+1);
…;
第n 个图案,Sn=n (n+1)+n (n+1)=2n (n+1). 则第⑨个图案为:2×9×(9+1)=180. 7. 解:第1次操作,有(2+1)个圆点,第2次操作,有(3+2)个圆点,第3次操作,有(5+4个圆点,根据这个规律,第n 次操
作后,这时直线l 上有2n-1+1+2n-1=2n
+1个圆点
8. 点P 1(2,0),P 2(-2,2),P 3(0,-2),P 4(2,2),P 5(-2,0),P 6(0,0),P 7(2,0),从而可得出6次一个循环, ∴点P 2016的坐标为(0,0).。