材料的合成与制备制粉技术

合集下载

粉体材料成形理论与技术

粉体材料成形理论与技术

物理性能(一):粉末的颗粒形状
颗粒形状是决定粉末工艺性能(松装密度、流动性等) 的主要因素。粉末生产方法不同,所得粉末的颗粒形 状也不同。 铁粉颗粒形状与生产方法的关系
一般来说,由气态、液态转变成粉末时,粉末颗粒形状容易趋 于球形,由固态转变成粉术时,粉末颗粒形状则趋于不规则形状, 或者经特殊加工后可呈片状。粉末的形状一般用光学显微镜观察。
粉末冶金用金属粉末颗粒的大小可大致按下表分级:
物理性能(二):粉末粒度与粒度组成
在粉末冶金生产中,通常用标准振动筛进行筛分析以 测定粉末颗粒大小和粒度组成。生产上常用的最细筛 网是325目;目数是指1英寸(25 4mm)长度筛同上的筛 孔数。325目即1英寸长度有325个孔,其筛孔大小为44 /µm。通过325目筛(小于44µm)的细粉,通常叫做亚筛 析粉。用筛分析不能精确测定粉末颗粒大小,实际上, 筛分析只能测定粉末粒度的范围。如-100目、+150目 则表示这批粉未能通过100目,而不能通过1 50目。 另外,用筛分析测定粉末颗粒大小时,必须注意颗粒 的形状,筛孔与实际颗粒尺寸间的关系。当然,球形 颗粒只能通过比其直径略大的筛孔。等轴状(多角不规 则形)颗粒可能也是这样,但不够精确。

物理性能(二):粉末粒度与粒度组成
在生产中到底采用什么粒度分布为最好,目前还没有一个定量 的说法,而只能凭经验拟定一个粒度分布大致范围,用幅度较 大的质量百分比来表示粉末粒度组成。根据粉末冶金生产实践, 关于金属粉末的粒度分布,大体可提出以下几点原则: ①从定性方面来说,细粉比粗粉好。因为细粉颗粒间的接触面 积大,烧结件的性能好,但是,粉末越细,烧结收缩越大。 ②应尽量避免全部采用粗粉。因粗粉容易形成大孔隙。一般来 说,当孔隙度相同时,大孔隙是有害的。 ③粗细粉未应搭配使用,装粉时可实现充分的填充,减少孔隙 度,达到合理排列。这样,产品的压坯密度和强度增加,弹性 后效减少。 ④压制大型压坯时,细粉含量不宜过多。细粉含量多时,需要 的单位压制压力增大,同时沿压制方向的密度差增大。 金属粉末粒度组成的测定

纳米材料的制备方法与技巧

纳米材料的制备方法与技巧

纳米材料的制备方法与技巧纳米材料是一种具有纳米级尺寸(1纳米=10^-9米)的材料,在材料科学和纳米技术领域有着广泛的应用。

制备纳米材料的方法有很多种,下面将介绍几种常用且重要的纳米材料制备方法与技巧。

1. 物理法物理法是通过物理手段实现纳米材料的制备,其中包括热蒸发法、磁控溅射法和高能球磨法等。

热蒸发法是将材料在高温条件下蒸发,并通过凝结形成纳米材料。

磁控溅射法是将材料置于惰性气体环境下,利用高能离子撞击材料表面产生离子化原子或离子,并通过表面扩散形成纳米材料。

高能球磨法是通过球磨机将原料粉末进行机械剪切和冲击,使其粒度减小到纳米级别。

2. 化学合成法化学合成法是通过化学反应合成纳米材料,其中包括溶液法、气相法和电化学法等。

溶液法是将金属盐或金属有机化合物溶解在溶剂中,通过控制反应条件和添加适当的保护剂或模板剂制备纳米材料。

气相法是在控制的气氛和温度下通过气相反应合成纳米材料,例如化学气相沉积法。

电化学法是通过利用电化学原理,在电解质溶液中施加电压或电流,使材料在电极表面形成纳米颗粒。

3. 生物法生物法是利用生物体或其代谢物合成纳米材料,其中包括生物模板法、生物还原法和植物提取法等。

生物模板法是使用生物体或其组织的特殊形态或功能作为模板,在其表面合成纳米材料。

生物还原法是利用生物体或其细胞酶的还原活性将金属离子还原为金属纳米团簇。

植物提取法是通过植物提取物作为还原剂和模板,在其作用下合成纳米材料。

4. 加工法加工法是通过物理或化学加工手段制备纳米材料,其中包括机械法、电化学法和光电化学法等。

机械法是通过机械加工方式如研磨、切割等将材料分解成纳米颗粒。

电化学法是通过在电解质中施加电压或电流,使材料在电极表面形成纳米结构。

光电化学法是通过光催化反应,在光照条件下制备纳米材料。

在纳米材料的制备过程中,还需要注意一些技巧和注意事项。

首先,要精确控制反应条件,包括温度、压力和pH值等。

不同条件对于纳米材料的形成过程和性能具有重要影响。

纳米材料的制备技术及进展

纳米材料的制备技术及进展

纳米材料的制备技术及进展1 前言纳米材料又称超微细材料, 其粒子粒径范围在1~ 100nm 之间。

在性能上与同组成的微米晶粒材料有着非常显著的差异。

纳米技术是20世纪80年代末期诞生并崛起的新科技, 它的基本含义是在纳米尺寸范围( 10- 9~ 10- 7m) 内认识和改造自然, 通过直接操作和安排原子、分子创造新物质.。

它所研究的领域是人类过去很少涉及的非宏观、非微观的中间领域, 从而开辟了人类科学技术进入了一个崭新的时代—纳米科技时代。

纳米科技研究的核心是纳米材料体系, 这个体系的范围通常定为1~ 100 nm 左右. 目前研究的纳米材料主要集中在纳米微粒、纳米晶以及一维尺度的纳米丝( 又称纳米晶须) 和纳米管以及纳米微粒构成的二维固体( 纳米薄膜) 和三维固体( 纳米块体) , 其中纳米薄膜和纳米块体又是研究的热点。

近十几年来, 随着微电子尖端技术的高速发展, 各种电子器件日趋微化, 关于表面催化性质的研究以及生物工程材料的开发等均促使人们对固体微粒的制备、结构、物性和应用前景进行了广泛深入的研究。

包括金属、非金属、有机、无机和生物等多种颗粒材料, 国内外许多公司都投资开发研究。

随着物质的超微化, 其表面电子结构和晶体结构发生变化, 产生了宏观物体所不具有的表面效应, 超微粒材料具有一系列优异的电、磁、光、力学和化学等宏观特性, 从而使其作为一种新型材料在电子、冶金、宇航、化工、生物和医学等领域展现出广阔的应用前景。

目前, 世界各国对超微细材料的研究主要包括制备、微观结构、宏观物性和应用等四个方面。

其中超微粉的制备技术是关键, 因为制备工艺和过程的研究与控制对超微粉的微观结构和宏观性能具有重要的影响。

制备超微粉的途径大致有两种: 一是粉碎法, 即通过机械作用将粗颗粒物质逐步粉碎而得; 另一种是造粉法, 即利用原子、离子或分子通过成核和长大两个阶段合成而得。

若以物料状态来分则可归纳为固相法、液相法和气相法三大类, 随着科技的不断发展以及不同物理化学特性超微粉的需求, 在上述方法的基础上衍生出许多新的制备技术。

简述纳米材料的化学制备及其主要方法

简述纳米材料的化学制备及其主要方法

简述纳米材料的化学制备及其主要方法纳米材料是近年来最受瞩目的领域之一,是一类在尺度上高度集束的材料,具有非常独特的物理和化学性质。

纳米材料的制备方法有多种,其中化学制备就是最为常见的方法之一。

本文将着重从化学的角度出发,讲述纳米材料的制备方法。

一、纳米材料的特性由于其尺度介于1100 nm之间,纳米材料具有由物理和化学属性所决定的表面特性。

它具有高比表面积、良好的活性性和质地、结构灵活性和可调节性等优势。

纳米材料具有许多新的物理及化学性质,使得该材料非常有用,已成为许多领域的催化剂、电子器件、传感器等产业的重要原料。

二、纳米材料的化学制备纳米材料的化学制备技术主要包括溶剂热法、溶液凝胶法、分子印迹技术、离子交换法和溶剂沉积技术。

1.剂热法溶剂热法是一种简易的制备纳米材料的方法,其原理是:将原料溶解于溶剂中,再加热,使其发生聚集,形成纳米材料。

溶剂热法主要用于制备无机纳米粉末。

2.曛凝胶法溶液凝胶法是一种常用的制备有机纳米粒子的方法,其原理是:将适当浓度的有机分子溶液滴加到添加剂溶液中,当偶联剂的表面活性会发生反应,从而形成纳米颗粒。

3.子印迹技术分子印迹技术是一种模仿生物体分子印迹的化学合成方法,被用于制备有机和无机纳米材料,其核心原理是利用分子印迹技术来控制材料形貌,使之具有特定的尺寸和形状。

4.子交换法离子交换法是一种将有机分子转化为纳米粒子的技术,被用于制备纳米材料,原理是通过离子交换法将大分子替换成小分子,使得分子构型发生变化,形成纳米颗粒。

5.剂沉积技术溶剂沉积技术是一种利用溶剂的沉积原理,将特定的材料精细分散在另一种液体中,再把这种分散的液体涂布在某种表面上,使之形成膜的方法。

结论纳米材料的化学制备技术是实现纳米材料合成的重要手段之一,它可以实现无机或有机纳米材料的合成、形状调整和尺寸控制等,从而满足特定领域的应用需求。

纳米材料的化学制备技术还有很大的发展潜力。

纳米陶瓷材料制备技术

纳米陶瓷材料制备技术

纳米陶瓷材料制备技术邱安宁5990519118 F9905104陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用.但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使它的应用受到了较大的限制,随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有象金属一样的柔韧性和可加工性.英国著名材料专家Cahn指出纳米陶瓷是解决陶瓷脆性的战略途径,因此纳米陶瓷的研究就成了当今材料科学研究的热点领域.纳米材料一般指尺寸为1~100nm,处于原子团族和宏观物体交接区域内的粒子.而从原子团族制备材料的方法,称这为纳米技术.纳米材料由于具有表面效应、体积效应、量子尺寸效应和宏观量子隧道效应而产生奇异的力学、电学、磁学、热学、光学和化学活性等特性,它既是一种新材料又是新材料的重要原料[3 ].所谓纳米陶瓷,是指显微结构中的物相具有纳米级尺度的陶瓷材料,也就是说晶粒尺寸、晶界宽度、第二相分布、缺陷尺寸等都是在纳米量级的水平上.由于界面占有可与颗粒相比拟的体积百分比,小尺寸效应以及界面的无序性使它具有不同于传统陶瓷的独特性能.本文将描述纳米陶瓷的主要制备技术及加工中的理论问题,并利用在材料加工的原理就其典型应用进行讨论。

2.1决定陶瓷性能的主要因素决定陶瓷性能的主要因素组成和显微结构,即晶粒、晶界、气孔或裂纹的组合性状,其中最主要的是晶粒尺寸问题,晶粒尺寸的减小将对材料的力学性能产生很大影响.图1是陶瓷材料的晶粒尺寸与强度的关系图,其中的实线部分是现在已达到的,而延伸的虚线部分则是希望达到的[2 ].从图中可见晶粒尺寸的减小将使材料的力学性能有数量级的提高,同时,由于晶界数量级的大大增加,使可能分布于晶界处的第二相物质的数量减小,晶界变薄使晶界物质对材料性能的负影响减小到最低程度;其次,晶粒的细化使材料不易造成穿晶断裂,有利于提高材料韧性;再次,晶粒的细化将有助于晶粒间的滑移,使材料具有塑性行为.因此,纳米陶瓷将使材料的强度、韧性和超塑性大大提高,长期以来人们追求的陶瓷增韧和强化问题在纳米陶瓷中可望得到解决[4, 5].由于纳米材料中有大量的界面,这些界面为原子提供了短程扩散途径及较高的扩散速率,并使得材料的烧结驱动力也随之剧增,这大大加速了整个烧结过程,使得烧结温度大幅度降低.纳米陶瓷烧结温度约比传统晶粒陶瓷低6 0 0℃,烧结过程也大大缩短[3 , 5],以纳米TiO2 陶瓷为例,不需要加任何助剂,1 2nmTiO2 粉可以在低于常规烧结温度40 0~6 0 0℃下进行烧结,同时陶瓷的致密化速率也迅速提高[3 ].通过对Y2 O3 浓度为3%的ZrO2 纳米粉末的致密化和晶粒生长这2个高温动力学过程进行研究表明,由于晶粒尺寸小,分布窄,晶界与气孔的分离区减小以及烧结温度的降低使得烧结过程中不易出现晶粒的异常生长.控制烧结的条件,已能获得晶粒分布均匀的陶瓷体[6].美国和西德同时报道,成功地制备了具有清洁界面的纳米陶瓷TiO2 (1 2nm),与粒度为1 . 3μmTiO2 陶瓷相比得到相同硬度,而烧结温度降低,因而,纳米粉末的出现,大大改变了材料的烧结动力学,使陶瓷烧结得以很大的改善[5].所谓超塑性是指在拉伸试验中,在一定的应变速率下,材料产生较大的拉伸形变,一般陶瓷中,并不具备金属那样的晶格滑移系统,很难具备超塑性,在纳米材料中利用晶界表面众多的不饱和链,造成沿晶界方向的平移,超塑性就可能实现.如Nieh等人在四方二氧化锆中加入Y2 O3 的陶瓷材料中观察到超塑性达80 0 % ,Si3 N4纳米陶瓷同样存在超塑性行为,是微米级Si3 N4陶瓷的2 1 . 4% [2 , 5].上海硅酸盐研究所研究发现,纳米3Y-TZP陶瓷(1 0 0nm左右)在经室温循环拉伸试验后,其样品的断口区域发生了局部超塑性形变,形变量高达380 % ,并从断口侧面观察到了大量通常出现在金属断口的滑移线[2 ]. tsuki等人对制得的Al2 O3 -SiC纳米复相陶瓷进行拉伸蠕变实验,结果发现伴随晶界的滑移,Al2 O3 晶界处的纳米SiC粒子发生旋转并嵌入Al2 O3 晶粒之中,从而增强了晶界滑动的阻力,也即提高了Al2 O3 -SiC纳米复相陶瓷的蠕变能力[7].最近研究发现,随着粒径的减小,纳米TiO2 和ZnO陶瓷的形变敏感度明显提高,如图2所示,由于这些试样气孔很少,可以认为这种趋势是细晶陶瓷所固有的.最细晶粒处的形变率敏感度大约为0 .0 4,几乎是室温下铅的 1 / 4,表明这些陶瓷具有延展性,尽管没有表现出室温超塑性,但随着晶粒的进一步减少,这一可能是存在的[4].由于纳米陶瓷的晶粒尺寸极小,纳米材料具有极大的晶面,晶面的原子排列混乱,纳米晶粒易在其它晶粒上运动,使纳米陶瓷在受力时易于变形而不呈现脆性.室温下的纳米TiO2 陶瓷晶体表现出很高的韧性,压缩至原长度的 1 / 4仍不破碎.另外,在微米级的陶瓷中引入纳米相,可以抑制基体晶粒长大,使组织结构均化,有利于改善陶瓷材料的力学性能.1 988年Izaki等首先用纳米碳化硅补强氮化硅陶瓷使氮化硅陶瓷力学性能显著改善[3 ].3.制备工艺和方法为获得纳米陶瓷,必须首先制备出小尺寸的纳米级陶瓷粉末,随着世界各国对纳米材料研究的深入,它的制备方法也日新月异,出现了热化学气相反应法、激光气相法、等离子体气相合成法、化学沉淀法、高压水热法、溶胶-凝胶法等新方法,以上各种方法都各有优缺点,为了便于控制反应的条件及粉末的产率、粒径与分布等,实际上也常采用两种或多种制备技术.3.1热化学气相反应法(CVD法)是目前世界上用于制备纳米粉体的常用方法,CVD法制备纳米粉体工艺是一个热化学气相反应和形核生长的过程.在远高于热力学计算临界反应温度条件下,反应产物蒸气形成很高的过饱和蒸气压,使得反应产物自动凝聚形成大量的核,这些核在加热区不断长大聚集成颗粒,在合适的温度下会晶化成为微晶.随着载气气流的输运和真空的抽送,反应产物迅速离开加热区进入低温区,颗粒生长、聚集、晶化过程停止,最后进入收集室收集起来,就可获得所需的纳米粉体 .此工艺过程可通过调节浓度、流速、温度和组成配比等工艺参数获得最佳工艺条件,实现对纳米粉体组成、形貌、尺寸和晶相等的控制.3.2激光气相法(LICVD法)激光气相法是以激光为快速加热热源,利用反应气体分子对特定波长激光束的吸收布产生热解或化学反应,在瞬时完成气相反应的成核、长大和终止,形成超细微粒.通常采用连续波CO2 激光器,加热速率快,高温驻留时间短,迅速冷却,可获得均匀超细,最低颗粒尺寸小于 1 0nm的粉体.该方法反应中心区域与反应器之间被原料气隔离,污染小,能够获得稳定质量的粒径范围为小于50nm的超细粉末,晶粒粒径尺寸可控,同种成分的粉体,激光法可通过合成参数控制粉体的晶型.并适合于制备用液体法和固相法不易直接得到的非氧化物(氮化物,碳化物等),缺点是原料制造价格高,设备要求高,费用贵.3.3等离子体气相合成法(PCVD)pcvd法是制备纳米陶瓷粉体的主要手段之一,它具有高温急剧升温和快速冷却的特点,是制备超细陶瓷粉体的常用手段.目前采用得最多的是热等离子法.等离子气相合成法又分为直流电弧等离子体法(DC法),高频等离子体法(RF法)和复合等离子体法.其中的复合等离子法则是采用DC等离子体法和RF等离子体法二者合一的方式,利用二相相互补充来制备超细陶瓷粉体.该法制得的纳米粉纯度高,稳定性好,效率高 .ee等人采用复合等离子体法,用多级注入的方法以制备Si3 N4和Si3 N4/SiC复合粉体,最终得到颗粒尺寸在1 0~30nm的Si3 N4纳米粉体.在Si3 N4纳米粉体制备过程中,采用分级注入方式对产物中总氮含量、游离硅含量和a-Si3 N4含量都有很大影响.采用三级注入方式,产物基本都是无定型Si3 N4.等离子体法制备技术容易实现批量生产,产率高达 2 0 0~ 1 0 0g/h[1 1 ].高压水热法可有效克服粉末在煅烧过程中颗粒的长大及超细粉末易团聚的弱点.可将化学深沉法制备的Zr(OH)4置于高压中处理,使氢氧化物进行相变,控制高压处理的温度和压力,可制得颗粒尺寸为 1 0~ 1 5nm,形状规则的氧化锆超细粉末.通过对不同前驱体,不同酸碱度及不同矿化剂参与条件下,氧化锆相形成,晶粒生成等机理的研究表明,水热法是极有应用前景的粉末制备工艺3.5溶胶-凝胶(SOL-GEL)法此方法的基本工艺过程包括:醇盐或无机盐水解→SOL-GEL→干燥、焙烧→纳米粉体.有人用醇盐水解SOL-GEL制备出平均粒径小于6nm的TiO2 纳米粉末.也可利用有机金属化合物作起始原料,制备非氧化物超细陶瓷粉体[1 3 ].目前大多数人认为溶液的pH值、溶液浓度、反应温度和反应时间4个主要参数对溶胶-凝胶化过程有重要影响,适当地控制这4个参数可制备出高质量的纳米粉末.如纳米Al2 O3 粉可用低浓度的硝酸铝和氢氧化钠溶液反应生成偏铝酸钠,硝酸中和至pH值为7. 6 ,得到Al(OH)3 凝胶,过滤洗涤后,再加入硝酸形成Al(OH)3 溶胶,在溶胶中通入氨气,至pH值为1 0 ,分离凝胶干燥、焙烧得到纳米Al2 O3 粉体.用此法制备Al2 O3 粉体可通过蒸馏或重结晶技术保证原料的纯度,整个工艺过程不引入杂质离子,有利于高纯纳米粉的制备[1 4].该法在生产上应用较广,但原料价格高,高温热处理时,易使颗粒快速团聚等,故同时可引入冷冻、加压干燥法或形成乳浊液等技术来减小粉体颗粒的团聚.CVD法、LICVD法、PCVD法和SOL-GEL法是制备非氧化物纳米陶瓷粉体主要方法.CVD法对设备要求不高,操作简便,而且便于放大,但较难获得 2 0nm以下的粉体.PCVD法和SOL-GEL法对设备要求较高,但易于获得均匀超细(小于2 0nm)的高纯度、污染小的纳米粉体.SOL-GEL法是最便利的方法,易于大规模生产,缺点是纯度难以保证.3.典型应用(碳化硅及氮化硅纳米粉体制备工艺)3.1热化学气相反应法(CVD法)制备Si C,Si3 N4的硅源主要是硅卤化物和硅烷类物质,如Si Cl4,Si H4,(CH3 )2 Si Cl2 ,Si(CH3 )4等。

纳米材料制备技术

纳米材料制备技术

纳米材料制备技术1.物理制备技术:(1)气相法:通过热分解或还原反应,在载气中使金属或化合物气态原料形成纳米粒子,然后冷凝得到纳米材料。

(2)溶液法:通过溶液中的溶质以浓集、析出的方式实现纳米材料的制备,如化学还原法、溶胶-凝胶法、沉积-沉淀法等。

(3)粉末冶金法:将金属或化合物原料粉末经过混合、压制和烧结等工艺步骤制备成纳米颗粒。

(4)电化学法:通过电解沉积、阳极氧化等电化学方法,以金属离子或化合物为原料,制备纳米结构的材料。

2.化学制备技术:(1)水热合成法:将溶液经过加热和加压处理,在高温高压环境下合成纳米材料。

(2)碳量子点法:将含有碳源的溶液进行热处理或光照处理,通过裂解和组装作用制备纳米尺寸的碳材料。

(3)真空蒸发法:将金属或化合物原料放置在真空腔中,通过蒸发和冷凝等过程制备纳米材料,如蒸发凝聚法和磁控溅射法等。

3.生物制备技术:(1)微生物法:利用一些特殊的微生物(如细菌、真菌、植物等),通过它们的代谢产物或细胞外酶的作用,合成得到纳米材料。

(2)生物矿化法:利用生物体内的一些有机分子作为模板,通过加入金属或化合物源,通过生物矿化作用,形成纳米尺度的晶体。

4.机械制备技术:(1)高能球磨法:用高能球磨机对粉末材料进行高强度球磨,使粉末颗粒碰撞、摩擦、破碎等过程,最终得到纳米颗粒。

(2)电压脉冲法:利用电脉冲的能量作用于材料表面,产生高温、高压等效应,从而制备纳米材料。

纳米材料制备技术的选择取决于所需纳米材料的特性和应用需求。

以上是常见的几种制备技术,但仍有更多新颖的技术不断涌现。

纳米材料的制备过程也需要考虑如材料成本、制备规模、可扩展性等因素,以实现纳米材料的可持续发展和产业应用。

金属粉末制备方法分类及其基本原理

金属粉末制备方法分类及其基本原理摘要简要介绍了金属粉末的制备方法。

由机械法和物理化学法两大类方向具体介绍。

同时简述了各种金属粉末制备方法的基本原理。

关键词金属粉末;制备;分类;原理1 引言:金属及其化合物的粉末制备目前已发展了很多方法,对于这些方法的分类也有若干种。

根据原料的状态可分为固体法、液体法和气体法;根据反应物的状态可分为湿法和干法;根据生产原理可分为物理化学法和机械法。

一般来说在物理化学方法中最重要的方法为还原法、还原-化合法和电解法;在机械法中最主要的方法则是雾化法和机械粉碎法。

金属粉末的生产方法的选择取决于原材料、粉末类型、粉末材料的性能要求和粉末的生产效率等。

随着粉末冶金产品的应用越来越广泛,对粉末颗粒的尺寸形状和性能的要求越来越高,因此粉末制备技术也在不断地发展和创新,以适应颗粒尺寸和性能的要求。

2 金属粉末的制备方法:2.1 物理化学法:2.1.1 还原法:金属氧化物及盐类的还原法是一种应用最广泛的粉末制备方法。

可以采用固体碳还原铁粉和钨粉,用氢或分解氨制取钨、钼、铁、铜、钴、镍等粉末;用转化天然气和煤气可以制取铁粉等,用纳、钙、镁等金属作还原剂可以制取钽、铌、钛、锆、钍、铀等稀有金属粉末。

金属氧化物及盐类的还原法基本原理为,所使用的还原剂对氧的亲和力比氧化物和所用盐类中相应金属对氧的亲和力大,因而能够夺取金属氧化物或盐类中的氧而使金属被还原出来。

由于不同的金属元素对氧的作用情况不同,因此生成氧化物的稳定性也不大一样。

可以用氧化反应过程中的△G的大小来表征氧化物的稳定程度。

如反应过程中的△G值越小,则表示其氧化物的稳定性就越高,即其对氧的亲和力越大。

其优点是操作简单,工艺参数易于控制,生产效率高,成本较低,适合工业化生产;缺点是只适用于易与氢气反应、吸氢后变脆易破碎的金属材料。

2.1.2 金属热还原和还原化合法:金属热还原是,被还原的原料可以是固态的、气态的,也可以是熔盐。

后二者相应的又具有气相还原和液相沉淀的特点。

粉末冶金工艺过程

粉末冶金工艺过程粉末冶金工艺是一种高科技的金属成形技术,在有些特殊的条件下,粉末冶金技术可以得到可靠的金属部件。

一、粉末冶金工艺流程:1、晶料粉末制备:将晶料磨成粉之后,采用机械、电烧、化学或催化反应制备粉末物料,运用特殊工艺可得到可湿性的粉末材料。

2、制备表面活性剂:通过机械分散或化学合成得到表面活性剂,可以有效地促进粉末粒子间的亲和作用。

3、粉体团聚:将团聚剂和粉末物料添加到适当的容器中,加热或搅拌使物料粒子间形成聚集体,改变物料粒子结构形成粉体团聚体。

4、烧结:将粉体团聚体放入容器中,通过加热或压缩烧结成金属部件,冷却后可得到比较稳定的形态。

二、粉末冶金工艺优势:1、重量轻:由于原材料粒子细小,重量较轻,可以制造出体积小、重量轻的零件。

2、抗腐蚀性能强:采用粉末冶金工艺,用高纯度的洁净物质作为原材料,因此产品抗腐蚀性能好。

3、降低产品成本:因为粉末冶金工艺可以在很短的时间内完成工艺,从而可以降低产品成本。

4、灵活性强:粉末冶金工艺有一定的非结晶结构,可以为用户提供很多不同形状和功能的部件。

三、粉末冶金工艺的应用:1、汽车类:在汽车的制造中,可以用粉末冶金工艺制造汽车零部件,也可以制造高强度、轻量的结构件,以满足现代汽车的性能需求。

2、航空航天类:在航空航天领域,粉末冶金技术可以用于制造发动机、燃烧室和其他部件,以满足不断变化的性能要求。

3、电子信息类:粉末冶金技术可用于制造高精度、高密度的零部件,以满足电子信息产品的性能和稳定性需求。

4、聚合物类:在聚合物类,我们可以根据不同的应用需求,利用粉末冶金工艺,高效地制造复杂的高分子结构。

总结:粉末冶金工艺是一种高科技的金属成形技术,其具有重量轻、抗腐蚀性能强、降低产品成本、灵活性强等优势;应用于汽车、航空航天、电子信息、聚合物等领域,是一种被广泛使用的金属成形技术。

粉末冶金技术

根据雾化介质(气
流、水流)对金属液
流作用的方式不同, 雾化具有多种形式:
平行喷射(气流与金
属液流平行)
垂直喷射(气流或水
流与金属液流互成垂 直方向)
水雾化时,控制好以下条件可以得细粉末:水 的压力高,水的流速、流量大,金属液流直径小, 过热温度高,金属的表面张力和粘度小,金属液流 长度短,喷射长度短,喷射顶角适当等。 控制好以下条件可以得球形粉末:金属表面张 力要大,过热温度高,水的流速低,喷射顶角大, 液流飞行路程长等。
粉末的羰基物热离解法
从气态金属卤化物气相还原制取金属、合金粉末
以及金属、合金涂层的气相氢还原法
从气态金属卤化物沉积制取金属化合物粉末以及
涂层的化学气相沉积法
从过程的实质来看,现有制粉方法大体上可归纳 为两大类,即机械法和物理化学法。
机械法是将原材料机械地粉碎,而化学成分基本
上不发生变化;
物理化学法是借助化学的或物理的作用,改变原
熔体淬火技术(Melt Quenching
Technology或MQT)。
静力学方法
针对通常铸造合金都是在非均匀形核条件下凝
固,因而针对合金凝固过冷度很小的问题,设法 尽管冷速不高但也同样可以达到很大的凝固过冷
提供近似均匀形核的条件。在这种条件下凝固时, 度,从而提高凝固速度。具体实现这种方法的技
炼法相比,性能优越:
高合金粉末冶金材料的性能比熔铸法生产的好,
例如,粉末高速钢、粉末超合金可避免成分的 偏析,保证合金具有均匀的组织和稳定的性能, 同时,这种合金具有细晶粒组织使热加工性大 为改善;
生产难熔金属材料或制品,一般要依靠粉末冶
金法,例如,钨、铝等难熔金属,即使用熔炼 法能制造,但比粉末冶金的制品的晶粒要粗, 纯度要低。

碳化硼的制备方法

碳化硼的制备方法碳化硼(B4C)具有比重小、研磨效率高、强度高、耐高温、良好的中子吸收能力,并且化学稳定性好等特点,广泛用于硬质材料的磨削、轻质防弹装甲、核反应堆的屏蔽材料、高级耐火材料和火箭的固体燃料等各个领域,所以如何提高B4C的品质是材料工作者比较关心的热点问题之一。

1 碳热还原法碳热还原法是最早被用于制备碳化硼粉末的方法,得到碳化硼,并遵循以下原理:2B2O3(c)+7C(c)=B4C(c)+6CO(g)(1)4H3BO3(c)+7C(c)=B4C(c)+6CO(g)+6H2O(g)(2)于国强等人采用此方法制备了碳化硼粉末,讨论了硼碳比、粉碎过程和煅烧合成等工艺参数对合成粉末性能的影响。

当煅烧合成温度为1 800 ℃、保温40 min,在硼碳比為0.86的条件下制备出的碳化硼纯度最高,其总碳含量为20.7%,折算成B4C含量为101.2%,生成了少量的高硼相。

Chen X等还通过管式炉碳热还原法,用粉气流粉碎粉末制备出的碳化硼的平均粒径为20.4 μm。

碳热还原法尽管大多用于工业,但还有很多缺点,如制备过程更加复杂。

2 自蔓延高温合成法(SHS)自蔓延高温合成法是20世纪60年代发展起来的一种制备新型的无机难熔材料的工艺。

其反应过程如下。

具体步骤:按一定比例,将镁粉(或者铝粉)、碳粉和氧化硼粉末均匀混合后,压制成坯体,在氩气氛围中点燃,然后酸洗得到碳化硼粉末,发生反应如式(3)所示。

6Mg+2B2O3+C=B4C+6MgO (3)张廷安等人对B2O3-Mg-C反应体系进行绝热温度计算,确定该体系具有可行性,温度可降到650 ℃左右,极大地降低能耗。

并且制备出了B4C晶粒细小的完整单晶,同时也含有不完整的单晶。

Berchmans等以Ca为还原性金属、用Na2B4O7为硼源、石油焦作为碳源,利用该方法在较低温度下得到B4C粉末。

自蔓延高温合成法的优势在于:在难熔材料合成方面具有合成时间短、能耗低;用此方法合成出的B4C粉纯度较高而且原始粉末粒度较细(0.1~4 μm);但缺点是:在反应物中残留的MgO极难彻底去除,必须用附加工艺洗去,这是工艺中应该进一步研究的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档