高一数学必修一函数知识点总结
高一数学必修一知识点总结归纳(6篇)

高一数学必修一知识点总结归纳1二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
高一数学必修一知识点总结归纳2对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(完整版)高一数学必修一 函数知识点总结,推荐文档

3. 函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型的形式;),(,)(2n m x c bx ax x f ∈++=②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,y x x y 型如:;),(,n m x dcx b ax y ∈++=④换元法:通过变量代换转化为能求值域的函数,化归思想;常针对根号,举例:y =x 2‒1+x 2+95,原式转化为: ,再利用配方法。
t ,则x 2=t 2+1y =t +(t 2+1)+95=t 25+t +2⑤利用函数有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域;)0(>+=k x k x y ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
二.函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数.区间D 称为y=f(x)的单调增区间.如果对于区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2 时,都有f(x 1)>f(x 2),那么就说f(x)在这个区间上是减函数.区间D 称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;⑴单调性:定义(注意定义是相对与某个具体的区间而言)增函数: 减函数:)()(],,[,x 212121x f x f x x b a x <⇒<∈对任意的)()(],,[,x 212121x f x f x x b a x >⇒<∈对任意的 注:① 函数上的区间I 且x 1,x 2∈I.若>0(x 1≠x 2),则函数f(x)在区间I 上是增函数;2121)()(x x x f x f --若<0(x 1≠x 2),则函数f(x)是在区间I 上是减函数。
数学高一函数知识点

数学高一函数知识点各个科目都考试内容有自己的学习方法,但其实其实全都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。
下面是给大家整理的一些高一函数知识点的研读资料,希望对大家有所能够帮助。
高一数学必修数论一函数高等数学1. 函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x) ;(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);(3)线性判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调上升通道性;偶函数在对称的单调区间内有功能性相反的单调性;2. 复合函数的有关风险问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b 解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究课题函数的问题一定要注意定义域优先优先权的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意两点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图象又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图形又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;五年级数学必修一函数知识点总结一、一次函数定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
高一数学必修一函数图像知识点总结

03
通过大量的练习和实践,提高对复杂函数图像的识别能力和分
析水平。
观看
REPORTING
复合函数性质
复合函数具有“同增异减”的性质,即内外函数的单调性相同时,复合函数为增函数;内外函数的单 调性不同时,复合函数为减函数。
分段函数表达式及性质
分段函数定义
在自变量的不同取值范围内,用不同的解析式来表示一个函 数,这样的函数叫做分段函数。
分段函数性质
分段函数的定义域是各段定义域的并集;分段函数的值域是 各段值域的并集;分段函数在定义域的不同子集上,具有不 同的对应关系。
坐标平面
由x轴和y轴组成的平面称为坐标 平面,其中x轴和y轴的交点称为 原点,坐标为(0,0)。
函数图像绘制方法
01
02
03
列表法
列出函数自变量与函数值 的对应表,然后在坐标系 中描出各点,最后用平滑 的曲线连接各点。
解析法
根据函数解析式,直接利 用函数的性质绘制出函数 的图像。
图象变换法
通过对基本初等函数的图 像进行平移、伸缩、对称 等变换,得到所求函数的 图像。
PART 02
一次函数图像知识点
一次函数表达式及性质
一次函数表达式
y = kx + b (k ≠ 0)
性质
当 k > 0 时,函数图像为增函数;当 k < 0 时,函数图像为减函数。
一次函数图像特征
直线性
一次函数的图像是一条直 线。
斜率
直线的斜率等于一次函数 表达式中的 k 值。
截距
直线在 y 轴上的截距等于 一次函数表达式中的 b 值 。
PART 05
三角函数图像知识点
三角函数基本概念及性质
高一数学必修一函数的应用知识点总结

第三章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。
即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.3、函数零点的求法:○1 (代数法)求方程0)(=x f 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.4、基本初等函数的零点:①正比例函数(0)y kx k =≠仅有一个零点。
②反比例函数(0)k y k x=≠没有零点。
③一次函数(0)y kx b k =+≠仅有一个零点。
④二次函数)0(2≠++=a c bx ax y .(1)△>0,方程20(0)ax bx c a ++=≠有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程20(0)ax bx c a ++=≠有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程20(0)ax bx c a ++=≠无实根,二次函数的图象与x 轴无交点,二次函数无零点.⑤指数函数(0,1)x y a a a =>≠且没有零点。
⑥对数函数log (0,1)a y x a a =>≠且仅有一个零点1.⑦幂函数y x α=,当0n >时,仅有一个零点0,当0n ≤时,没有零点。
5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把()f x 转化成()0f x =,再把复杂的函数拆分成两个我们常见的函数12,y y (基本初等函数),这另个函数图像的交点个数就是函数()f x 零点的个数。
高一数学函数知识点归纳总结大全

高一数学函数知识点归纳总结大全函数是数学中非常重要的概念之一,在高一阶段的数学学习中,我们会接触到许多有关函数的知识点。
本文将对高一数学函数知识点进行归纳总结,旨在帮助同学们系统地理解和掌握这些内容。
一、函数的定义和表示方法函数是一个将一个集合中的元素(称为自变量)映射到另一个集合中的元素(称为因变量)的规则。
函数可以用各种方式来表示,常见的有解析式、图像和表格。
1. 解析式表示法:函数可以用解析式来表示,通常采用f(x)或y的形式表示。
例如:f(x) = 2x + 1,y = sin(x)。
2. 图像表示法:函数的图像是用直角坐标系上的点表示的,其中自变量通常对应横坐标,因变量对应纵坐标。
3. 表格表示法:函数可以用表格形式来表示,其中列出自变量的取值和对应的因变量的取值。
二、函数的性质了解函数的性质有助于我们更好地理解函数的特点和行为。
1. 定义域和值域:函数的定义域是指所有使得函数有意义的自变量的取值范围,而值域则是函数的所有可能的因变量的取值范围。
2. 奇偶性:如果对于函数的定义域中的任意x值,都有f(-x) =f(x)成立,则函数是偶函数;如果对于函数的定义域中的任意x值,都有f(-x) = -f(x)成立,则函数是奇函数;否则函数既不是偶函数也不是奇函数。
3. 单调性:如果函数的自变量增加时,其对应的因变量是单调递增或单调递减的,我们称这个函数是单调函数。
4. 周期性:如果函数的某个正数T满足对于函数的所有x值都有f(x+T) = f(x)成立,则称函数具有周期性,T是函数的一个周期。
三、常见函数的类型在高一阶段,我们会学习到以下几类常见的函数。
1. 一次函数:一次函数的解析式为f(x) = ax + b,其中a和b是常数,且a≠0。
一次函数的图像是一条斜率为a的直线。
2. 二次函数:二次函数的解析式为f(x) = ax^2 + bx + c,其中a、b和c是常数,且a≠0。
二次函数的图像通常是一个开口向上或向下的抛物线。
高一整数函数知识点总结

高一整数函数知识点总结整数函数是高中数学中的重要内容之一,它是函数的一种特殊形式。
在高一数学学习中,掌握整数函数的知识点对于深入理解函数的性质和解题技巧至关重要。
下面将对高一整数函数的知识点进行总结。
知识点一:整数函数的定义整数函数是指定义域为整数集合、值域也是整数集合的函数。
用符号表示,通常写为f(x)。
整数函数一般可以表达成f(x)=ax+b 的形式,其中a和b为整数。
知识点二:整数函数的图像特点整数函数的图像一般是由一系列相互独立的点组成。
因为定义域和值域都是整数集合,所以图像上的点的横坐标和纵坐标均为整数。
整数函数的图像通常以折线的形式出现,呈现出不连续的特点。
知识点三:整数函数的线性关系整数函数可以表示成y=ax+b的形式,其中a和b为整数。
整数函数的线性关系让我们更容易理解和分析函数的性质。
当a为正数时,整数函数呈现递增的趋势;当a为负数时,整数函数呈现递减的趋势;当a为零时,整数函数的值保持不变。
知识点四:整数函数的奇偶性奇函数和偶函数是整数函数中常见的两种特殊情况。
奇函数满足f(-x)=-f(x),即关于原点对称;偶函数满足f(-x)=f(x),即关于y 轴对称。
判断一个整数函数的奇偶性,可以观察函数图像或进行简单的运算。
知识点五:整数函数的应用整数函数在实际问题中有着广泛的应用。
通过整数函数,我们可以描述一些离散的情况,如人口增长、货物销售等。
在解决实际问题时,可以根据已知条件建立整数函数模型,并利用函数的性质进行问题的分析和求解。
以上就是高一整数函数的主要知识点总结。
通过对整数函数的学习,我们可以更好地理解函数的基本概念和特点,为后续的函数研究打下坚实的基础。
在学习整数函数时,需要注意理论与实际问题的结合,多进行练习和实际应用,提高对整数函数的认识和运用能力。
希望同学们能够在高中数学学习中,深入理解整数函数的知识,拓宽数学思维,提升解题能力。
高一数学必修一知识点总结a函数

高一数学必修一知识点总结a函数高一数学必修一知识点总结:a函数a函数是高一数学必修一中的重要知识点之一。
a函数常用于表示二次函数的一般形式,是解决与二次函数相关的各类问题的基础。
本文将从定义、性质和应用三个方面总结a函数的知识点。
一、定义a函数通常写作f(x) = ax^2 + bx + c,其中a、b、c为实数,且a ≠ 0。
其中,a表示二次项系数,b表示一次项系数,c表示常数项。
a函数是一个二次函数,图像一般为抛物线。
二、性质1. 对称轴:对于a函数f(x) = ax^2 + bx + c,对称轴的方程为x = -b/(2a)。
对称轴将抛物线分为两部分,左右对称。
2. 顶点:抛物线的顶点坐标为(-b/(2a), f(-b/(2a)))。
顶点是抛物线的最低点或最高点,也是对称轴上的点。
3. 开口方向:当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。
4. 最值:当抛物线开口向上时,最小值对应顶点;当抛物线开口向下时,最大值对应顶点。
5. 零点:a函数与x轴的交点称为零点,即f(x) = 0的解。
零点可能有两个、一个或零个解。
三、应用1. 图像判断:通过二次函数的a值,可以判断抛物线的开口方向。
当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。
利用顶点坐标,也可以判断抛物线的最值和对称轴。
2. 方程求解:解二次方程可以应用抛物线与x轴的交点。
根据零点的个数,可以判断二次方程的解的情况,进而解决相关问题。
3. 优化问题:在实际问题中,a函数可以用来描述一些最优化问题。
通过对a函数的分析,可以得到相关问题的最佳解。
综上所述,a函数是高一数学必修一中的重要知识点,它是二次函数的一般形式,具有一些固定的性质和应用场景。
掌握a函数的定义、性质和应用,对于解决与二次函数相关的各类问题具有重要意义。
通过在实践中灵活运用所学知识,可以提高数学解题的能力和应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意: 1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合. (6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义. 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备) (见课本21页相关例2) 2.值域 : 先考虑其定义域 (1)观察法 (2)配方法 (3)代换法 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . (2) 画法 A、 描点法: B、 图象变换法 常用变换方法有三种 1) 平移变换 2) 伸缩变换 3) 对称变换 4.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示. 5.映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)” 对于映射f:A→B来说,则应满足: (1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的; (2)集合A中不同的元素,在集合B中对应的象可以是同一个; (3)不要求集合B中的每一个元素在集合A中都有原象。 6.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。 (2)各部分的自变量的取值情况. (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数 如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。 二.函数的性质 1.函数的单调性(局部性质) (1)增函数 设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间. 如果对于区间D上的任意两个自变量的值x1,x2,当x1数.区间D称为y=f(x)的单调减区间. 注意:函数的单调性是函数的局部性质; (2) 图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A) 定义法: ○1 任取x1,x2∈D,且x1
○2 作差f(x1)-f(x2);
○3 变形(通常是因式分解和配方);
○4 定号(即判断差f(x1)-f(x2)的正负);
○5 下结论(指出函数f(x)在给定的区间D上的单调性).
(B)图象法(从图象上看升降) (C)复合函数的单调性 复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减” 注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 8.函数的奇偶性(整体性质) (1)偶函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2).奇函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. (3)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 利用定义判断函数奇偶性的步骤: ○1首先确定函数的定义域,并判断其是否关于原点对称;
○2确定f(-x)与f(x)的关系;
○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x)
= 0,则f(x)是奇函数. 注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 9、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解析式的主要方法有: 1) 凑配法 2) 待定系数法 3) 换元法 4) 消参法 10.函数最大(小)值(定义见课本p36页) ○1 利用二次函数的性质(配方法)求函数的最大(小)值
○2 利用图象求函数的最大(小)值
○3 利用函数单调性的判断函数的最大(小)值:
如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 例题: 1.求下列函数的定义域: ⑴221533xxyx ⑵211()1xyx 2.设函数fx()的定义域为[]01,,则函数fx()2的定义域为_ _ 3.若函数(1)fx的定义域为[]23,,则函数(21)fx的定义域是
4.函数22(1)()(12)2(2)xxfxxxxx ,若()3fx,则x=
5.求下列函数的值域: ⑴223yxx ()xR ⑵223yxx [1,2]x
(3)12yxx (4)245yxx 6.已知函数2(1)4fxxx,求函数()fx,(21)fx的解析式 7.已知函数()fx满足2()()34fxfxx,则()fx= 。
8.设()fx是R上的奇函数,且当[0,)x时,3()(1)fxxx,则当(,0)x时()fx= ()fx在R上的解析式为 9.求下列函数的单调区间: ⑴ 223yxx ⑵223yxx ⑶ 261yxx
10.判断函数13xy的单调性并证明你的结论.
11.设函数2211)(xxxf判断它的奇偶性并且求证:)()1(xfxf. 第三章 基本初等函数 一、指数函数 (一)指数与指数幂的运算
1.根式的概念:一般地,如果axn,那么x叫做a的n次方根,其中n>1,且n∈N*. 负数没有偶次方根;0的任何次方根都是0,记作00n
。
当n是奇数时,aann,当n是偶数时,)0()0(||aaaaaann 2.分数指数幂 正数的分数指数幂的意义,规定:
)1,,,0(*nNnmaaanmn
m
,)1,,,0(11*nNnmaaaanmnmnm
0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质
(1)ra·srraa ),,0(Rsra;
(2)rssraa)( ),,0(Rsra; (3)srraaab)( ),,0(Rsra. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(aaayx且叫做指数函数,其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a>1 0定义域 R 定义域 R 值域y>0 值域y>0 在R上单调递增 在R上单调递减 非奇非偶函数 非奇非偶函数 函数图象都过定点(0,1) 函数图象都过定点(0,1) 注意:利用函数的单调性,结合图象还可以看出: (1)在[a,b]上,)1a0a(a)x(fx且值域是)]b(f),a(f[或)]a(f),b(f[; (2)若0x,则1)x(f;)x(f取遍所有正数当且仅当Rx; (3)对于指数函数)1a0a(a)x(fx且,总有a)1(f; 二、对数函数 (一)对数
1.对数的概念:一般地,如果Nax)1,0(aa,那么数x叫做以.a为底..N的对数,记作:Nxalog(a—
底数,N— 真数,Nalog— 对数式) 说明:○1 注意底数的限制0a,且1a; ○2 xNNaaxlog;
○3 注意对数的书写格式.
两个重要对数: ○1 常用对数:以10为底的对数Nlg;
○2 自然对数:以无理数71828.2e为底的对数的对数Nln.
指数式与对数式的互化 幂值 真数 ba
= NlogaN= b
底数 指数 对数 (二)对数的运算性质 如果0a,且1a,0M,0N,那么: ○1 Ma(log·)NMalog+Nalog;
○2 NMalogMalog-Nalog; ○3 naMlognMalog )(Rn. 注意:换底公式
abbccalogloglog (0a,且1a;0c,且1c;0b).
利用换底公式推导下面的结论 (1)bmnbanamloglog;(2)abbalog1log. (二)对数函数 1、对数函数的概念:函数0(logaxya,且)1a叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).
注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:xy2log2,5log5xy 都不是对数函数,而只能称其为对数型函数. ○2 对数函数对底数的限制:0(a,且)1a.
2、对数函数的性质: